1.3三角函数的有关计算(1)

合集下载

1.3-1三角函数的诱导公式(1)

1.3-1三角函数的诱导公式(1)

x
计算:(1)sin1200
你能概括一下这四组公式的共同特点和规律吗?
公 式 cos( +k· 3600) =cos cos(1800+)=-cos 一
sin( +k· 3600) =sin
sin( 1800+ )=-sin
公 式 二
tan( +k· 3600) =tan tan(1800+) =tan
计算:(1)cos2100
(2)tan2400
二、- 与 - 的终边与角 的终边有 何关系? sin = y sin(- )=-y cos = x cos(-) =x y tan α x y tan( α ) x y

P(x,y) y
O
x
x
-y
P (x,-y)
0 π- cos(180 -)=-cos 0 tan(180 π- -) =-tan
tan(-) =-tan
公 式 四
应用 例1 求cos(-20400)的值: 解: cos(-20400)=cos20400 =cos(5×3600+2400) =cos2400=cos(1800+600)
三、1800- 与 角 1800- 的终边与角 的 y 终边有何关系? 1800- sin = y P(x,y) P (-x,y) sin( 1800- )=y y y cos = x cos(1800-)=-x x y -x O x tan α y x 0 tan(180 -)
x
三、1800- 与 角 1800- 的终边与角 的 终边有何关系? sin = y sin( 1800- )=y cos = x cos(1800-)=-x y tan α x y 0 tan(180 -) sin(1800- )=sin cos(1800- )=-cos tan(1800- )=-tan (2)tan1500

1.3三角函数的计算- 九年级数学下册课件(北师大版)

1.3三角函数的计算-  九年级数学下册课件(北师大版)

∴sin∠EBP=
PE BP
=sin
40°,sin
∠FBP=
PF BP
=sin
20°.
又∵sin 40°>sin 20°,∴
PE BP
PF BP
.
∴PE>PF.
(2)∵α,β 都是锐角,且α>β,
∴sin α>sin β.
又∵sin∠EBP= PE =sin α,sin∠FBP= PF =sin β,
例1 用计算器计算:(结果精确到万分位) (1)sin 26°≈ 0.4384 ; (2) sin82°48′15″≈___0_._9_9__2_1__.
导引:已知锐角求三角函数值,按照正确的按键顺序按键,将屏 幕显示的结果按要求取近似值即可.
总结
(1)依次按sin2 6=键,得到数据再精确到万分位即可; (2)依次按sin8 2 °’ ” 48°’ ”15°’ ”=键,得到数据再
(2)先按 SHIFT cos 0.2187=键,显示:77.367 310 78,再
按°’”键,显示77°22′2.32″,所以∠A≈77°22′.
(3)先按 SHIFT tan 3.527=键,显示:74.170 530 81,再
按°’”键,显示74°10′13.91″,所以∠A≈74°10′.
端离墙壁2.5 m,求梯子与地面所成锐角的度数.
解:设梯子与地面所成的锐角为∠α,
则cos α=2.5 = 5 =0.625. 48
∴∠α≈51°19′4″. 所以,梯子与地面所成的锐角的度数约为51°19′4″.
3 已知sin α= 1 ,求α,若用科学计算器计算且结果以
2 “度、分、秒”为单位,最后按键( D )

PE PB

三角函数的计算(1)学案

三角函数的计算(1)学案

1.3 三角函数的有关计算(1)学号_____姓名_________【预习目标】1、 利用计算器会求任意角的三角函数值;2、 借助三角函数解决简单的实际问题.【相关链接】1、解直角三角形的基本理论依据:在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c .(1)边的关系:(2)角的关系:;(3)边角关系:2、在Rt △ABC 中,∠C=90°,AC=b ,∠A=α.求其它元素.反思:在直角三角形中知道了什么元素,可以求出其它所有元素?【预习导航】一、会用计算器计算非特殊角的三角函数,阅读课本P 16,会用计算器计算非特殊角的三角函数,并完成课本P 17随堂练习1.二、借助三角函数解决简单的实际问题典型例题:例1、如图,某地夏日一天中午,太阳光线与地面成80°角,房屋朝南的窗户高AB=1.8 m ,要在窗户外面上方安装一个水平挡板AC ,使光线恰好不能直射室内,求挡板AC 的宽度.(结果精确到0.01 m)例2、求图中避雷针的长度(结果精确到0.01m).C AB B例3、如图,物华大厦离小伟家60m,小伟从自家的窗中眺望大厦,并测得大厦顶部仰角是45o ,而大厦底部的俯角是37o ,求该大厦的的高度(结果精确到0.1m).跟踪练习1、一个人从山底爬到山顶,需先爬40°的山坡300 m,再爬30°的山坡100 m,求山高.(结果精确到0.01 m)2、如图,直升飞机在跨河大桥AB的上方点P处,此时飞机离地面的高度PO=450 m,且A,B,O三点在一条直线上,测得∠α=30°,∠β=45°,求大桥AB的长.*3、如图,∠C=90°,∠DBC=30°,AB=BD,利用此图求tan 75°的值.三、通过预习,你有什么收获?1.3 三角函数的有关计算(1)随堂测试学号_____姓名_________1、学校校园内有一块如图所示的三角形空地,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价30元,学校建这个花园需投资________元.(精确到1元)2、如图,为了测量某建筑物的高AB,在距离点B a米的D处安置测倾器,测得点A的倾角为α,已知测倾器的高CD=h米,求建筑物的高AB.1.3 三角函数的有关计算(1)随堂测试学号_____姓名_________1、学校校园内有一块如图所示的三角形空地,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价30元,学校建这个花园需投资________元.(精确到1元)2、如图,为了测量某建筑物的高AB,在距离点B a米的D处安置测倾器,测得点A的倾角为α,已知测倾器的高CD=h米,求建筑物的高AB.。

九年级数学下册1.3《三角函数的计算》1初中九年级下册数学

九年级数学下册1.3《三角函数的计算》1初中九年级下册数学

变式训练(xùnliàn)
• 1.如图,∠C=90°,∠DBC=30°,AB=BD,利用 (lìyòng)此图求tan75°的值.
2+ 3
第二十页,共二十二页。
课堂 总结 (kètáng)
• 1.本节课你有什么收获? • 2.本节课你认为自己解决的问题是什么? • 3.通过今天的学习(xuéxí),你想进一步研究的问题是什
第七页,共二十二页。
学习 新知 (xuéxí)
• 如图所示,这是求sin16°,cos42°,tan85°和 sin72°38′25″按键(àn 顺序 jiàn)
第八页,共二十二页。
按键顺序
sin16 °
sin 1 6 =
cos42 ° cos 4 2 =
tan85°
tan 8 5
=
显示结 果
0.275637355
2.解:∠θ≈56°1″
第十七页,共二十二页。
计算 3.
(jìsuàn)
(1)2 cos2 30-°2 sin 60°·cos 45°;
= 2 ·( 3 )-2 2 · ·3 2
2
22
= 3 6
2
(2)2 sin30°-3 tan 45°+4 cos 60°;
= 2· 1 2
=0
-3 ·1+4 ·
第十页,共二十二页。
同学们,仔细想想,除了这个例题当中给出的几种 情况外,你们还能计算什么(shén me)?为什么(shén me)?你 们又是怎么计算的呢?
第十一页,共二十二页。
例1 如图,在Rt△ABC中,∠C=90°, 已知AB=12cm,∠A=35 ° , 求△ABC的周长和面积(miàn jī).
(周长精确到0.1cm,面积保留3个有效数字)

初中数学《1.3 三角函数的计算》教案

初中数学《1.3  三角函数的计算》教案

§.1 三角函数的有关计算(第1课时)教学目标1.经历用计算器由已知锐角求三角函数值的过程,进一步体会三角函数意义.2.能够用计算器进行有关三角函数值的计算.3.能够运用计算器辅助解决含三角函数值计算的实际问题.教学重点1.用计算器由已知锐角求三角函数值.2.能够用计算器辅助解决含三角函数值计算的实际问题.教学难点用计算器辅助解决含三角函数值计算的实际问题.教学方法探索——引导.教学过程一、提出问题,引入新课课本P15引例如图,当登山缆车的吊箱经过点A到达点B时,它走过了200米,已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?怎样用科学计算器求三角函数值呢?二、讲授新课1.用科学计算器求一般锐角的三角函数值.讲解计算器的使用(参照课本)2.下面就请同学们利用计算器求出本节刚开始提出的问题.3.下面请同学们用计算器计算下列各式的值(多媒体演示).(1)sin56°;(2)sin15°49′;(3)cos20°;(4)tan29°;(5)tan44°59′59″;(6)sin15°+cos61°+tan76°.(以小组为单位,展开竞赛,看哪一组既快又准确)4.你能用计算器计算说明下列等式成立吗?(用多媒体演示)下列等式成立吗?(1)sin15°+sin25°=sin40°;(2)cos20°+cos26°=cos46°;(3)tan25°+tan15°=tan40°.由此,你能得出什么结论?三、用计算器辅助解决含有三角函数值计算的实际问题.当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面的夹角是∠β=42°,由此你能想到还能计算什么?四、随堂练习P17五、课时小结本节课主要内容如下:(1)运用计算器计算由已知锐角求它的三角函数值.(2)运用计算器辅助解决含三角函数值计算的实际问题.六、课后作业习题1.4的第1.2题§1.3.1 三角函数的有关计算(一)1.用计算器由已知锐角求它的三角函数值熟练操作,求sin16°,cos42°,tan85°,sin72°38′25″.2.用计算器辅助解决含三角函数值计算的实际问题.。

1.3 三角函数的计算(课件)-2023-2024学年九年级数学下册(北师大版)

1.3 三角函数的计算(课件)-2023-2024学年九年级数学下册(北师大版)
∠CAB=25°,∠CBA=45°.因城市规划的需要,将在A、B两地之间修
建一条笔直的公路.
(1)求改直后的公路AB的长;
(2)问公路改直后该段路程比原来缩短了多少千米(精确到0.1)?
二、自主合作,探究新知
(1)求改直后的公路AB的长;
解:(1)过点C作CD⊥AB于点D,
∵AC=10千米,∠CAB=25°,
根据正弦的定义,得sinβ= ,即sin

∴DE=BDsin β°=200sin42°(m).

42°= ,

E
二、自主合作,探究新知
探究二:利用计算器由三角函数值求角度
想一想:为了方便行人推自行车过某天桥,市政府在10m高的天桥两端修
建了40m长的斜道(如图).这条斜道的倾斜角是多少?
在Rt△ABC中,sinA=
屏幕显示结果cos 72°=0.309 016 994.

键.
也有的计算器是
先输入角度再按
函数名称键.
二、自主合作,探究新知
3.求 tan30°36'.
方法一: 第一步:按计算器
键,
第二步:输入角度值30,分值36 (可以使用
键),
屏幕显示答案:0.591 398 351;
方法二: 第一步:按计算器
北师大版 数学 九年级下册
第一章 直角三角形的边角关系
3
三角函数的计算
学习目标
1.学会利用计算器求三角函数值并进行相关计算.
(重点)
2.学会利用计算器根据三角函数值求锐角度数并计算.
(难点)
复习回顾
30°,45°,60°角的三角函数值:

角函
角α
三角函数

1.3 三角函数的有关计算(1)A


tan
sin
.
8
.
5
. .
=
8
0.743 144 825 11.430 052 3 =
0.954 450 312
7 2
2
DMS
DMS 3 . . 5 DMS
讨论、更正、点拨1(2分钟)
2. 用计算器求三角函数值时,结果一般有 10个数位.本书约定,如无特别声明,计算 结果一般精确到万分位. 3.对于本节一开始提出的问题,利用科 学计算器可以求得: BC=ABsin160 ≈200×0.2756≈55.12.
(2)-0.2432
3、 大厦高约为105.2 m. 4、 4 2cm 2( 2 6 )cm
4(1 3)cm2
5、 2(1 3)cm
(5)1.0000
(6)4.7544
讨论、更正、点拨(共8分钟,本页3分钟)
1.用科学计算器求锐角的三角 函数值,要用到三个键:
按键的顺序 Sin160 Cos420 tan850 sin720 38′25″ sin cos 1 4 6 2 = =
sin
cos
tan
显示结果 0.275 637 355
2.求图中避雷针CD 的长度(结果精确 到0.01m).
自学检测答案
1.上高约242.8m 2.CD约等于5.82m
讨论、更正、点拨3(2分钟)
1、直角三角形中的三大关系
三边的关系: 勾股定理 a2+b2=c2. 两锐角的关系:两锐角互余 ∠A+∠B=900. A 边与角之间的关系:锐角三角函数
§1. 3 三角函数的有关计算
(第1课时)
学习目标(1分钟)
1.会用计算器由角度求三角函数值。

1.3 三角函数的计算

1.3 三角函数的计算教学目标(一)教学知识点1.经历用计算器由三角函数值求相应锐角的过程,进一步体会三角函数的意义.2.能够利用计算器进行有关三角函数值的计算.3.能够运用计算器辅助解决含三角函数值计算的实际问题.(二)能力训练要求1.借助计算器,解决含三角函数的实际问题,提高用现代工具解决实际问题的能力.2.发现实际问题中的边角关系,提高学生有条理地思考和表达能力.(三)情感与价值观要求1.积极参与数学活动,体会解决问题后的快乐.2.形成实事求是的严谨的学习态度.教学重点1.用计算器由已知三角函数值求锐角.2.能够用计算器辅助解决含三角函数值计算的实际问题.教学难点用计算器辅助解决含三角函数值计算的实际问题.教具方法探究——引导——发现.教学准备计算器多媒体演示教学过程Ⅰ.创设问题情境,引入新课[师]随着人民生活水平的提高,农用小轿车越来越多,为了交通安全,某市政府要修建 10 m高的天桥,为了方便行人推车过天桥,需在天桥两端修建 40m长的斜道.(如图所示,用多媒体演示)这条斜道的倾斜角是多少?[生]在Rt△ABC中,BC= 10 m,AC= 40 m,sinA=.可是我求不出∠A.[师]我们知道,给定一个锐角的度数,这个锐角的三角函数值都唯一确定.给定一个锐角的三角函数值,这个锐角的大小也唯一确定吗?为什么?[生]我们曾学习过两个直角三角形的判定定理——HL定理.在上图中,斜边AC和直角边BC是定值,根据HL定理可知这样的直角三角形形状和大小是唯一确定的,当然∠A 的大小也是唯一确定的.[师]这位同学能将前后知识联系起来很有条理地解释此问题,很不简单.我们知道了sinA=时,锐角A是唯一确定的.现在我要告诉大家的是要解决这个问题,我们可以借助于科学计算器来完成.这节课,我们就来学习如何用科学计算器由锐角三角函数值求相应锐角的大小.Ⅱ.讲授新课1.用计算器由锐角三角函数值求相应锐角的大小.[师]已知三角函数求角度,要用到、键的第二功能、、”和键.键的第二功能“sin-1,cos-1,tan -1”和键例如:已知sinA=0.9816,求锐角A,已知cosA=0.8607,求锐角A;已知tanA:0.1890,求锐角A;已知tanA=56.78,求锐角A.按键顺序如下表.(多媒体演示)上表的显示结果是以“度”为单位的.再按键即可显示以“度、分、秒”为单位的结果.(教学时,给学生以充分交流的时间和空间,教师要引导学生根据自己使用的计算器,探索具体操作步骤)[师]你能求出上图中∠A的大小吗?[生]sinA==0.25.按键顺序为,显示结果为14.47751219°,再按键可显示14°28′39″.所以∠A=14°28′39″.[师]很好.我们以后在用计算器求角度时如果无特别说明,结果精确到1″即可.你还能完成下列已知三角函数值求角度的题吗?1.根据下列条件求锐角θ的大小:(1)tanθ=2.9888;(2)sinθ=0.3957;(3)cosθ=0.7850;(4)tanθ=0.8972;(5)sinθ=;(6)cosθ=;(7)tanθ=22.3;(H)tanθ=;(9)sinθ=0.6;(10)cosθ=0.2.2.某段公路每前进 100米,路面就升高 4米,求这段公路的坡角.(请同学们完成后,在小组内讨论、交流.教师巡视,对有困难的学生予以及时指导)[生]1.解:(1)θ=71°30′2″;(2)θ=23°18′35″;(3)θ=38°16′46″;(4)θ=41°53′54″;(5)θ=60°;(6)θ=30°;(7)θ=87°25′56″;(8)θ=60°;(9)θ=36°52′12″;(10)θ=78°27′47″.2.解:设坡角为α,根据题意,sinα==0.04,α=2°17′33″.所以这段公路的坡角为2°17′33″.2.运用计算器辅助解决含三角函数值计算的实际问题.[例]如图,工件上有-V形槽.测得它的上口宽加 20 mm深 19.2mm。

第1章1.3三角函数的计算(教案)2023-2024学年九年级下册数学(教案)(北师大版)

3.三角函数的计算公式:介绍正弦、余弦、正切的计算公式及其应用。
4.三角函数的值域:让学生了解正弦、余弦函数的值域,并能解决相关问题。
5.解决实际问题:运用三角函数知识解决生活中的实际问题,如测量物体的高度等。
二、核心素养目标
《第1章1.3三角函数的计算》核心素养目标如下:
1.培养学生的逻辑推理能力,通过三角函数定义、性质及计算方法的推导,使学生在解决问题的过程中形成严密的逻辑思维。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对三角函数任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在这次《三角函数的计算》的教学中,我发现学生们对三角函数的概念和应用有了初步的认识,但在实际操作和深入理解上还存在一些问题。让我来谈谈我在教学过程中的体会和反思。
(3)角度制与弧度制的转换:在实际应用中,角度制与弧度制的转换是学生容易混淆的地方。
举例:在计算三角函数值时,如何将角度制转换为弧度制,以及如何将弧度制转换为角度制。
(4)三角函数的复合应用:在解决复杂问题时,学生可能难以将多个三角函数综合运用。
举例:在求解多边形内角和或复杂图形的面积时,如何运用多个三角函数知识进行求解。
(2)三角函数的计算公式:熟练掌握正弦、余弦、正切的计算公式,并能运用这些公式解决相关问题。
举例:如sin30°=1/2,cos45°=√2/2等特殊角的三角函数值,以及利用计算公式求解一般角度的三角函数值。
(3)三角函数的值域:了解正弦、余弦函数的值域,并能应用于实际问题。
举例:正弦、余弦函数的值域均为[-1,1],解释在实际问题中,如物体运动、波形图等,这些值域的意义。

1.3 三角函数的诱导公式


)
B.-2 2 D. 3
π sin2+θ-cosπ+θ cosθ+cosθ 解析: = π cosθ-sinθ sin 2-θ -sinπ-θ
2 2 = = =-2.故选 B. 1-tanθ 1-2
答案:B
sinkπ-α· cos[k-1π-α] (理)化简 = ______(k ∈ sin[k+1π+α]· coskπ+α Z).
2sinα 2cosα = · |cosα| |sinα|
4 = -4
α在第一、三象限时, α在第二、四象限时.
点评:注意变形的技巧,对于
1+sinα .我们可以 1-sinα
分子、分母同乘以 1+sinα,也可以分子、分母同乘以 1 -sinα,但分母变为“单项式”更方便些,故选择同乘以 1+sinα.

2 ⇒ 2 2tan α - 2tanα - 2 2 = 0. 解得 tanα =- 或 2
2
2. 1- 2 π π 又 <α< ,∴tanα= 2.原式= =-3+2 2.故 4 2 2+ 1 选 C.
答案:C
一、选择题 1 . (2010· 全国卷Ⅰ理, 2) 设 cos( - 80° ) = k ,那么 tan100° =( 1-k2 A. k k C. 1-k2 ) 1-k2 B.- k k D.- 1-k2
解析:∵f(2009)=asin(2009π+α)+bcos(2009π+α)= -asinα-bcosα=5, ∴asinα+bcosα=-5.∴f(2010)=asinα+bcosα=-5.
答案:C
(文)已知 A.2 C.0
π sin2+θ-cosπ+θ tanθ=2,则 =( π sin2-θ-sinπ-θ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

王庄中学九年级数学(下)导学案
§1.3三角函数的有关计算(1)
【学习目标】已知直角三角形的某一个锐角,利用三角函数值求距离;能够运用计算器辅助解决含三角函数值计算的实际问题,提高用现代工具解决实际问题的能力。

;发现实际问题中的边角关系,提高学生有条理地思考和表达的能力。

【学习重点】1、用计算器求已知锐角的三角函数值;2、能够用计算器辅助解决含三角函数值计算的实际问题
BC
AC
∴ BC= .
2、在Rt△BED中,已知,∠
DE
对子间等级评定:
对子间提出的问题:
展示提升环节
1、用计算器计算下列各式的值
(1)sin53° (2)sin40°49′ (3) cos50° (4)tan19°
(5)tan46°38′47″ (6)sin15°+cos54°+tan36°
2、我们发现sin30°=cos60°=12
,cos30°=sin60°
=2,如图:在Rt △ABC 中,∠C=90° (1)sinA=cosB 吗?cosA=sinB 吗?为什么?
(2)互余的两个角的正弦与余弦有什么关系?
(3)比较sin20°与cos20°的大小,比较cos50°与sin40°的大小。

3、如图,在Rt △ABC 中,∠C=90°等式sin tan cos A
A A
=
,22sin cos 1A A +=成立吗?如果成立,请说明理由。

b
a
4、 如图,一勘测人员从B 点出发,沿坡角为15°的坡面以5千米/时的速度行至D 处,用了12分钟,然后沿坡角为20°的坡面以3千米/时的速度到达山顶A 点处,用了10 分钟,求山高(即AC 的长度)及A,B 两点间的水平距离(即BC 的长)(精确到0.01千米)
今天我知道了:
我发现了: 我学会了:
【教师寄语】《新课堂,我展示,我快乐,我成功》-------
B
20︒
D
A
15︒
C
E b
a。

相关文档
最新文档