纳米颗粒作为涂层的抗磨效果

合集下载

利用纳米颗粒改善金属涂层耐蚀性能研究进展

利用纳米颗粒改善金属涂层耐蚀性能研究进展

利用纳米颗粒改善金属涂层耐蚀性能研究进展纳米颗粒材料具有独特的物理和化学特性,可以被广泛应用于各个领域。

在金属涂层的研究中,纳米颗粒材料被广泛应用于改善金属涂层的耐蚀性能。

本文将综述利用纳米颗粒改善金属涂层耐蚀性能的研究进展。

一、纳米颗粒对金属涂层耐蚀性能的影响1.1 纳米颗粒增强金属涂层的抗腐蚀能力纳米颗粒能够与金属基体形成均匀的分散体系,并在涂层表面形成更致密的保护膜。

这种保护膜可以阻止外界腐蚀介质的侵入,提高金属涂层的抗腐蚀性能。

研究表明,添加纳米颗粒可以显著提高金属涂层的耐腐蚀性能,延长金属涂层的使用寿命。

1.2 纳米颗粒提高金属涂层的耐磨性能纳米颗粒可以有效地填充金属涂层中的缺陷和孔隙,提高涂层的致密性和硬度。

同时,纳米颗粒的形成还可以提高金属涂层的耐磨性能,减少摩擦损失。

因此,添加纳米颗粒可以有效地改善金属涂层的耐磨性能,延长涂层的使用寿命。

1.3 纳米颗粒改善金属涂层的耐氧化性能纳米颗粒可以形成致密的氧化层,并提供额外的保护作用,减少氧化介质对金属涂层的侵蚀。

研究发现,添加纳米颗粒可以显著提高金属涂层的耐氧化性能,防止金属涂层因氧化而失效。

这对于金属涂层在高温、高氧化介质下的应用具有重要意义。

二、利用纳米颗粒改善金属涂层耐蚀性能的方法2.1 纳米颗粒的表面修饰为了提高纳米颗粒与金属基体之间的相容性,常常需要对纳米颗粒进行表面修饰。

表面修饰可以使纳米颗粒与金属基体形成更牢固的结合,提高涂层的耐蚀性能。

常用的表面修饰方法包括硅化、钝化、改性等。

2.2 纳米颗粒的复合应用为了进一步提高金属涂层的耐蚀性能,可以将不同类型的纳米颗粒进行复合应用。

例如,可以将具有不同功能的纳米颗粒相互结合,形成复合纳米颗粒,同时改善金属涂层的抗腐蚀性能、耐磨性能和耐氧化性能。

2.3 纳米颗粒的结构调控通过调控纳米颗粒的形状、尺寸和组分,可以进一步改善纳米颗粒对金属涂层耐蚀性能的影响。

研究表明,纳米颗粒的形态特征对金属涂层的性能有着重要影响。

纳米陶瓷涂层作用

纳米陶瓷涂层作用

纳米陶瓷涂层作用全文共四篇示例,供读者参考第一篇示例:纳米陶瓷涂层是一种新型的表面涂层技术,具有超强的抗磨损、耐腐蚀、耐高温和导热性能。

纳米陶瓷涂层的制备过程中采用了纳米材料,使其具有良好的机械性能和导热性能。

它广泛应用于汽车、航空航天、电子、建筑等领域,为人们的生活和生产提供了便利。

本文将对纳米陶瓷涂层的作用进行详细介绍。

一、纳米陶瓷涂层的作用1.抗磨损:纳米陶瓷涂层具有非常高的硬度和耐磨性,能有效地减少表面磨损,延长使用寿命。

特别是在汽车行业中,纳米陶瓷涂层可以保护车身表面不受划伤和颜色褪色的影响,使车辆更加美观和耐用。

2.耐腐蚀:纳米陶瓷涂层具有很强的耐腐蚀性能,可以有效地防止金属和其他材料受到酸碱和化学腐蚀的侵蚀。

在海洋、化工、航空航天等行业中,纳米陶瓷涂层被广泛应用于金属件的防护,保证设备的正常运行。

3.耐高温:纳米陶瓷涂层具有良好的耐高温性能,可以在高温环境下保持稳定的性能。

它不仅可以保护材料不受高温氧化、热膨胀等影响,还可以有效地提高材料的使用温度,扩大其应用范围。

4.导热性能:纳米陶瓷涂层具有较高的导热性能,可以有效地提高材料的导热效果,降低材料的热阻。

在电子和通讯领域,纳米陶瓷涂层被广泛应用于散热器和导热器件中,提高设备的稳定性和性能。

1.溶胶-凝胶法:溶胶-凝胶法是一种较为简单且成本较低的制备方法,通过对可溶性金属盐和有机物进行混合,形成溶胶,然后再通过加热脱溶,形成凝胶,最后进行烧结处理,形成纳米陶瓷涂层。

2.物理气相沉积法:物理气相沉积法是一种高温高压下进行涂层制备的方法,采用真空蒸发、溅射等技术,将纳米陶瓷颗粒沉积在基材表面,形成均匀、致密的纳米陶瓷涂层。

3.化学气相沉积法:化学气相沉积法是一种在高温高压下进行化学反应,在基材表面形成纳米陶瓷涂层的方法,具有成本低、环境友好等优点,被广泛应用于工业生产领域。

1.汽车行业:纳米陶瓷涂层可以应用在汽车车身和零部件表面,提高车辆的抗磨损、耐腐蚀性能,增强车辆的外观和使用寿命。

纳米陶瓷涂层技术

纳米陶瓷涂层技术

纳米陶瓷涂层技术纳米陶瓷涂层技术是指利用纳米技术制备的陶瓷涂层,主要应用于金属、玻璃、塑料等材料表面,能够提供优异的耐磨、耐腐蚀、耐高温等性能。

本文将从纳米陶瓷涂层的基本原理、制备方法、应用领域及发展前景等方面进行探讨,以期对读者有所帮助。

一、基本原理纳米陶瓷涂层是指由纳米级陶瓷颗粒组成的薄膜,在表面涂覆于物体表面。

与普通涂层相比,纳米陶瓷涂层具有优异的耐磨、耐腐蚀、耐高温等性能,主要原理如下:1.纳米级陶瓷颗粒具有较高的硬度和抗磨损性能,能够有效增强涂层的耐磨损性能。

2.纳米级陶瓷颗粒对外界腐蚀介质具有较强的抵抗能力,能够有效提高涂层的防腐蚀性能。

3.纳米级陶瓷颗粒具有较高的热稳定性和耐高温性能,能够有效提高涂层的耐高温性能。

基于以上原理,纳米陶瓷涂层能够为物体表面提供优异的保护效果,广泛应用于汽车、航空航天、医疗器械等领域。

二、制备方法纳米陶瓷涂层的制备方法多种多样,常见的有物理气相沉积、化学气相沉积、溶胶-凝胶法、电沉积法等。

下面将分别对几种常见的制备方法进行介绍:1.物理气相沉积法物理气相沉积法是利用物质的物理性质在真空或低压环境下进行涂层制备的一种方法。

具体步骤包括蒸发源的加热、蒸发源的蒸发、蒸发物质的传输和沉积在衬底表面等过程。

通过控制沉积条件和衬底温度,可以制备出具有优异性能的纳米陶瓷涂层。

2.化学气相沉积法化学气相沉积法是利用气相化学反应在衬底表面进行涂层制备的一种方法。

具体步骤包括气相前驱体的裂解、反应产物的沉积和涂层的形成等过程。

通过选择合适的前驱体和反应条件,可以制备出具有优异性能的纳米陶瓷涂层。

3.溶胶-凝胶法溶胶-凝胶法是利用溶胶和凝胶过程在衬底表面进行涂层制备的一种方法。

具体步骤包括制备溶胶、溶胶成型、凝胶和烧结等过程。

通过控制溶胶的成分和制备条件,可以制备出具有优异性能的纳米陶瓷涂层。

4.电沉积法电沉积法是利用电化学反应在电极表面进行涂层制备的一种方法。

具体步骤包括电解液的选择、电极的处理、电沉积过程和电沉积后的处理等过程。

纳米颗粒在涂层材料中的应用研究

纳米颗粒在涂层材料中的应用研究

纳米颗粒在涂层材料中的应用研究近年来,纳米技术在各个领域中得到了广泛的应用,其中包括涂层材料领域。

纳米颗粒具有优异的特性,如高度可控性、增强的机械性能和化学性能等,使得它们成为涂层材料中的理想候选。

本文将探讨纳米颗粒在涂层材料中的应用研究,并展望未来的发展趋势。

首先,纳米颗粒作为涂层材料的添加剂能够显著改善涂层的性能。

常见的纳米颗粒,如二氧化硅、二氧化钛和氧化铝等,可以提供强化和增塑效果,使涂层具有更好的抗磨损和耐腐蚀性能。

相比传统的涂层材料,添加了纳米颗粒的涂层能够在极端条件下保持稳定,延长使用寿命。

其次,纳米颗粒的表面特性使得它们能够用于改善涂层的光学性能。

以银纳米颗粒为例,它们可以在涂层中形成特殊的表面等离激元共振效应,具有优异的光学透过性和抗紫外线性能,因此被广泛应用于太阳能电池和光学镜片等领域。

此外,纳米颗粒的表面形貌可以实现光的散射和吸收,提高涂层的隐私保护性能。

另外,纳米颗粒还具有催化性能,可以用于改善涂层的化学特性。

例如,钯纳米颗粒可以用作催化剂,促进涂层中有机物的降解和氧气的还原,从而提高涂层的自清洁性能。

此外,纳米颗粒还可以通过催化反应来实现涂层中有机溶剂的有效去除,减少对环境的污染。

此外,纳米技术在涂层材料中也可以实现多功能性能。

通过在涂层中引入磁性纳米颗粒,可以使涂层具有磁性,实现磁控制和磁传感等功能。

还可以通过添加热敏纳米颗粒,实现涂层的温度响应性能,用于温度调控和显示。

这些多功能性能使得涂层材料在智能传感、生物医学和电子器件等领域具有更广阔的应用前景。

然而,纳米颗粒在涂层材料中的应用也面临着一些挑战和风险。

首先,纳米颗粒的制备和添加过程需要严格控制,以避免其对环境和人体产生负面影响。

其次,纳米颗粒的长期稳定性和可持续性仍然需要进一步研究和改进。

此外,纳米颗粒的成本也是一个考虑因素,其制造和应用所需的成本可能会限制其大规模应用。

综上所述,纳米颗粒在涂层材料中的应用研究具有巨大的潜力和前景。

纳米喷涂工艺技术研究

纳米喷涂工艺技术研究

纳米喷涂工艺技术研究纳米喷涂工艺技术研究纳米喷涂工艺技术是一种先进的表面涂装技术,通过喷涂材料中的纳米颗粒,能够在材料表面形成一层均匀、致密、高效的涂层。

这种涂层具有优异的物理性能和化学性能,可以显著提高材料的耐磨性、耐腐蚀性和耐高温性能等。

纳米喷涂工艺技术的研究对于提高材料的功能性和延长材料的使用寿命具有重要的意义。

首先,纳米喷涂工艺技术可以显著提高材料的耐磨性能。

喷涂纳米颗粒可以填充材料表面的微孔,增加涂层的致密性,从而有效地防止外界因素的侵蚀,减缓材料的磨损速度。

此外,纳米颗粒在涂层中的分布均匀性也会影响材料的耐磨性能。

研究表明,通过优化纳米颗粒的尺寸、形状和浓度等参数,可以使涂层中的纳米颗粒分布更加均匀,从而提高材料的耐磨性。

其次,纳米喷涂工艺技术还可以提高材料的耐腐蚀性能。

纳米颗粒在涂层中的分散性和稳定性对涂层的耐腐蚀性能有着重要影响。

研究发现,通过控制纳米颗粒的表面性质和涂层的成分比例,可以提高纳米颗粒在涂层中的分散性和稳定性,从而有效增强涂层防止腐蚀物质侵蚀的能力。

此外,纳米颗粒的尺寸和形状也会影响涂层的耐腐蚀性能。

研究发现,较小尺寸和较规则形状的纳米颗粒可以提供更多的活性位点,增强涂层对于腐蚀物质的吸附和反应,从而更好地保护材料不被腐蚀。

最后,纳米喷涂工艺技术还可以提高材料的抗高温性能。

纳米颗粒具有较高的比表面积和较好的热导性能,可以有效提高涂层的热传导能力,从而增强材料的散热性能。

此外,纳米颗粒在材料表面的分散状态和尺寸也会影响涂层的高温稳定性。

研究表明,通过选择合适的纳米颗粒和优化涂层的制备工艺,可以获得具有较高热稳定性和较低热分解温度的纳米涂层,从而有效提高材料的抗高温性能。

总之,纳米喷涂工艺技术的研究对于提高材料的功能性和延长材料的使用寿命具有重要的意义。

通过研究纳米颗粒在喷涂涂层中的作用机制和优化制备工艺,可以进一步提高材料的耐磨性、耐腐蚀性和耐高温性能等关键性能,从而满足不同领域对于材料性能的要求。

纳米颗粒及其在润滑油脂中的应用

纳米颗粒及其在润滑油脂中的应用

纳米颗粒及其在润滑油脂中的应用纳米颗粒是指具有纳米级尺寸的固体颗粒,其尺寸通常在1到100纳米之间。

由于其小尺寸和特殊性质,纳米颗粒在润滑油脂中有着广泛的应用。

首先,纳米颗粒可以用作润滑油脂的增稠剂。

传统的润滑油脂增稠剂往往会导致黏度增加,从而降低润滑效果。

而纳米颗粒作为增稠剂,则可以在极低的添加量下提高润滑油脂的黏度,保持较低的摩擦系数和较高的润滑性能。

纳米颗粒的小尺寸和表面活性也使其能够有效地分散在润滑油脂中,确保其均匀分布。

其次,纳米颗粒还可以用作润滑油脂的抗磨剂和极压剂。

纳米颗粒具有较大的比表面积和高表面能量,能够在摩擦表面形成一层保护膜,减少金属之间的直接接触和磨损。

此外,纳米颗粒还可以填充金属表面微小的凸起,形成光滑的摩擦表面,降低摩擦系数和磨损。

此外,纳米颗粒还可以用于改善润滑油脂的抗氧化性能和耐高温性能。

纳米颗粒具有高的化学稳定性和热稳定性,可以增强润滑油脂的抗氧化能力,延长其使用寿命。

同时,纳米颗粒的小尺寸和高比表面积也使其能够有效地降低润滑油脂的挥发性和蒸发损失,在高温环境下保持较稳定的性能。

总之,纳米颗粒在润滑油脂中的应用具有诸多优势,包括增稠剂、抗磨剂、极压剂、抗氧化剂和耐高温剂等方面。

随着纳米科技的不断发展和润滑技术的不断改进,纳米颗粒在润滑油脂中的应用前景将更加广阔。

此外,纳米颗粒还可以利用其特殊的表面性质和独特的生物活性,为润滑油脂赋予新的功能。

例如,纳米颗粒可以具有自修复能力,能够填补润滑油脂中的微小裂缝和孔隙,提高其密封性和润滑效果。

纳米颗粒还可以改善润滑油脂的乳化性能,使其能够在水和油之间形成更稳定的乳液,应用于润滑油脂乳化液中。

另外,纳米颗粒还可以通过控制其形状和表面功能化处理,用于润滑油脂中的荧光标记和追踪。

纳米颗粒具有独特的光学性质和信号发射能力,可以作为标记物在润滑油脂中进行追踪和监测。

这为润滑油脂的使用和维护提供了新的手段和方法。

需要注意的是,在纳米颗粒应用于润滑油脂中时,应仔细考虑其对环境的影响和可能的生态风险。

纳米涂层材料的特点

纳米涂层材料的特点一、引言纳米涂层材料是一种具有特殊性质的新型材料,其应用范围非常广泛。

本文将详细介绍纳米涂层材料的特点。

二、纳米涂层材料的定义纳米涂层材料是以纳米颗粒为基础制成的一种涂层材料。

其具有普通涂层所不具备的特殊性质。

三、纳米涂层材料的特点1.高硬度由于纳米颗粒极小,因此可以使得涂层表面更加光滑,从而提高了硬度。

2.高耐磨性由于纳米颗粒可以填充涂层表面的微孔和裂缝,因此可以有效地提高了耐磨性。

3.高防腐性由于纳米颗粒能够形成一种致密的保护膜,因此可以有效地防止氧化和腐蚀。

4.高温稳定性由于纳米颗粒具有较高的热稳定性,因此可以在高温环境下保持较好的稳定性。

5.高透明度由于纳米颗粒的尺寸非常小,因此可以使得涂层具有较高的透明度,从而可以应用于透明材料的涂层。

6.高导电性由于纳米颗粒具有良好的导电性,因此可以制成具有良好导电性能的涂层材料。

7.环保性由于纳米颗粒可以减少涂层使用量,从而减少了对环境的污染。

四、纳米涂层材料的应用1.汽车行业纳米涂层材料可以应用于汽车表面的保护和装饰,提高了汽车表面的硬度和耐磨性。

2.建筑行业纳米涂层材料可以应用于建筑物表面的防水和防污处理,提高了建筑物表面的耐久性和美观度。

3.电子行业纳米涂层材料可以制成具有良好导电性能的电子器件,并且还可以用于光学薄膜等方面。

4.医药行业纳米涂层材料可以应用于医药领域中,例如制成新型药物载体等方面。

五、总结综上所述,纳米涂层材料具有高硬度、高耐磨性、高防腐性、高温稳定性、高透明度、高导电性和环保等特点。

其应用范围非常广泛,可以应用于汽车行业、建筑行业、电子行业和医药行业等方面。

纳米技术在汽车涂料创造中的应用技巧

纳米技术在汽车涂料创造中的应用技巧汽车涂料是保护车辆表面、提升外观的重要组成部分。

近年来,随着科技的不断进步,纳米技术在汽车涂料创造中逐渐发挥了重要的作用。

纳米技术利用纳米级别的材料和结构,能够改善涂层的性能,并提供更持久、更高效的防护。

纳米技术在汽车涂料中的应用可改善涂层的硬度和耐磨性。

传统汽车涂层容易受到外界环境的磨损,例如颗粒和化学物质的侵蚀。

纳米技术可以通过添加纳米材料,如硅氧烷纳米涂层,来创建更坚硬、更耐磨的涂层。

这些纳米材料能够填充涂层中的微小孔隙,提高其密实性和硬度,从而使涂层具有更强的抗磨损性能。

纳米技术在汽车涂料创造中还可以提供更好的防护效果。

纳米颗粒的特殊结构使其具有较大的表面积和较强的吸附能力。

通过添加纳米材料,涂层表面的纳米颗粒可以形成一层密集的保护膜,阻挡外界因素的侵蚀。

这种保护膜可以有效防止紫外线、酸雨、盐雾等有害物质对涂层的侵害,延长涂层的使用寿命。

第三,纳米技术的应用还可以提升汽车涂层的光泽和耐污性。

纳米颗粒具有较高的反射和折射作用,因此涂层中添加纳米材料可以使涂层表面更光滑、更亮丽。

这些纳米材料还具有自洁功能,能够阻止灰尘、油污等污染物的附着,使涂层表面更易清洁。

这也能够减少对车辆外观的损害,并减轻车主的维护负担。

除了上述应用技巧,纳米技术在汽车涂料创造中还有其他创新应用值得关注。

例如,利用纳米技术可以实现多层涂层的一体化设计,以提高涂层的粘附力和稳定性。

纳米技术还可用于创造具有特殊功能的涂层,如热敏涂层、防射线涂层等,以满足特定的应用需求。

总而言之,纳米技术在汽车涂料创造中的应用技巧不仅提升了涂层的硬度和耐磨性,还提供了更好的防护效果、光泽和耐污性。

随着纳米材料和纳米技术的不断发展,相信在未来纳米技术将在汽车涂料创造中发挥更加重要的作用。

汽车制造商和涂料厂商应密切关注纳米技术的发展趋势,并将其应用于实际生产中,以不断提高汽车涂料的性能和使用寿命,为用户带来更好的驾驶体验。

纳米材料在防腐涂层中的应用技巧

纳米材料在防腐涂层中的应用技巧引言:随着工业化的快速发展和人类对高效、持久、环保的防腐需求的不断提高,纳米材料作为一种具有特殊性能的新材料,正在被广泛应用于防腐涂层领域。

纳米材料的应用可以提高涂层的物理和化学性能,增强其耐候性、耐腐蚀性等特性,为工业设备和建筑物的长期使用提供更好的保护。

一、纳米材料在防腐涂层中的作用机制纳米材料具有相较于传统材料更大的比表面积、优异的结构和性质。

在防腐涂层中,纳米材料主要通过以下作用机制发挥作用:1. 增加物理屏障:纳米材料通常呈现出纳米尺寸和多孔结构的特点,这使得纳米材料可以充分填充涂层中的微观缺陷和孔洞,形成一层致密的物理屏障,有效阻隔了化学物质和湿气的进入,减少涂层被腐蚀的可能性。

2. 增强阻滞效果:纳米材料的尺寸和形状能够与涂层中的多孔结构形成良好的亲和力,使纳米材料能够填充孔隙并堵塞涂层中的微小裂缝,提高阻滞效果,从而防止涂层腐蚀介质的渗透。

3. 催化反应:纳米材料本身可以作为催化剂,在阻碍涂层被腐蚀的同时促进涂层中抗腐蚀剂的反应,增强涂层对腐蚀介质的保护能力。

例如,纳米银在防腐涂层中的应用可以促进硫化物的氧化反应,减少涂层的腐蚀。

二、纳米材料的种类与选择目前,市场上常见的纳米材料主要包括纳米二氧化硅、纳米钛白粉、纳米氧化锌、纳米纤维素等。

选择合适的纳米材料主要根据涂层所面临的具体腐蚀环境、防腐效果的要求以及纳米材料本身的性质来确定。

1. 纳米二氧化硅:该材料具有良好的耐腐蚀性和高温稳定性,可用于玻璃、陶瓷等基材的防腐涂层中,提高涂层的硬度和耐磨性。

此外,纳米二氧化硅还具有良好的光学性能,可以改善涂层的透明性和外观质量。

2. 纳米钛白粉:作为一种常见的颜料材料,纳米钛白粉不仅可以用于调整涂层的颜色和光泽度,还具有优异的耐腐蚀性能。

其纳米级的颗粒尺寸有助于涂层的分散性和覆盖性,提高防腐涂层的耐候性。

3. 纳米氧化锌:纳米氧化锌具有良好的抗UV性能,可有效防止太阳紫外线的照射,减缓涂层老化速度,并保护涂层中的防腐剂不受光分解。

纳米涂层材料成分

纳米涂层材料成分
纳米涂层材料可以包含多种成分,取决于其应用和所需性能。

以下是一些常见的纳米涂层材料成分:
1. 纳米颗粒:纳米颗粒是纳米涂层的主要成分之一。

常见的纳米颗粒包括金属颗粒(如银、铜、钛等)、氧化物颗粒(如二氧化钛、氧化铝等)、碳纳米管等。

纳米颗粒的选择取决于涂层的特定应用和所需性能。

2. 聚合物:聚合物在纳米涂层中可以起到增强和稳定纳米颗粒的作用。

常见的聚合物材料包括丙烯酸酯、聚乙烯醇、聚苯乙烯等。

聚合物还可以提供涂层的柔韧性和耐磨性。

3. 溶剂:溶剂是纳米涂层的基础,用于分散纳米颗粒和聚合物,形成均匀的涂层。

常见的溶剂包括甲醇、乙醇、丙酮、二甲基甲酰胺等。

4. 附加剂:为了增强纳米涂层的性能,可以添加一些附加剂。

例如,可以添加成膜剂、增稠剂、消泡剂等,以改善涂层的附着力、流变性和表面质量。

需要注意的是,纳米涂层的成分可以根据不同的制备方法和应用目标而有所不同。

此外,纳米涂层的成分还可能包括某些特定的功能性添加剂,如光催化剂、抗菌剂、抗腐蚀剂等,以满足特定的应用要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Materials Science and Engineering A426(2006)59–65Investigation of the tribological properties of polyfluo wax/polyurethane composite coatingfilled with nano-SiC or nano-ZrO2Hao-Jie Song a,b,Zhao-Zhu Zhang a,∗a State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou730000,PR Chinab Graduate School,Chinese Academy of Sciences,Beijing100039,PR ChinaReceived25October2005;accepted23March2006AbstractEffect of nano-SiC or nano-ZrO2on the friction and wear behaviors of the polyfluo wax(PFW)/polyurethane(PU)composite coating was studied using a ring-on-block wear tester under dry friction condition,and the worn surfaces of the PFW/PU composite coating and the transfer films formed on the surface of the counterpart ring were investigated by SEM and optical microscope,respectively.The structural changes of the PFW/PU coatingfilled with nano-ZrO2during the friction process were investigated with a Fourier transform infrared microscope.It was found that nano-SiC or nano-ZrO2as thefillers contributed to improve the friction-reducing and anti-wear abilities of the PFW/PU coating.Especially, the anti-wear ability of thefilled coating is the most effective when content of nano-ZrO2is5.0wt.%.Furthermore,we studied the effect of curing temperature,sliding speed and applied load on the friction and wear behaviors of the PFW/PU coatingfilled with5.0wt.%nano-SiC or5.0wt.% nano-ZrO2.The results showed that the friction and wear behaviors of all coatings were much better in lower curing temperature than those in higher curing temperature.The friction coefficient of the composite coatings reinforced with differentfillers decreased with increasing sliding speed and applied load,and the anti-wear behavior of the coatingfilled with5.0wt.%ZrO2was the best under420N and at a speed of2.56m/s. The investigations of the frictional surfaces showed that thefillers of nano-SiC or nano-ZrO2were able to enhance the adhesion of the transfer films of the PFW/PU coating to the surface of counterpart ring,so they significantly reduced the wear of the PFW/PU coating.FTIR analyses indicated that the occurrence of the tribochemical changes during friction process mainly involved disordering and partial decomposition of the polyurethane binder.©2006Elsevier B.V.All rights reserved.Keywords:Polyfluo wax;Polyurethane;Nano-SiC or nano-ZrO2;Composite coatings;Tribological properties1.IntroductionThe concomitant decrease of both friction and wear is not systematically required.In some applications,such as coated tools,the challenge is to increase the wear resistance to extend the lifetime of the components.In other applications,a strong reduction of the friction in the0.01ranges is paramount to save energy[1].Composite coatings,made of a matrix and particles with low friction coefficient have been developed to obtain coat-ings for bearing application[2].Recently,nano-particles have been considered for fabrication of the wear-resistant polymer composites since less abrasive action during frictional sliding and greater surface area will contribute to improving the tribo-logical performance[3–9].Many types of composite coatings ∗Corresponding author.Tel.:+869314968098;fax:+869314968098.E-mail address:zzzhang@(Z.-Z.Zhang).are prepared by nanocale particles incorporation to enhance the anti-wear and mechanical properties.Zhang et al.[10]reported that the PEEK composite coating with7wt.%nano-SiC exhib-ited better wear resistance in most test conditions.Jung-Yeob Lee et al.[11]reported that nano-diamond particles were added up to4wt.%to PTFEfilm to improve the wear resistance and thermal stability.Toshifumi Sugama and Keith Gawlik[12]also studied the effect of nano-scale boehmitefiller on corrosion-and wear-resistant behaviors of the PPS coating and found that the filler reduced markedly the rate of blasting wear and increased the PPS’s glass transition temperature and thermal decomposi-tion temperature.Polyurethane(PUR)elastomers are largely applied to indus-try and consumer products,particularly in thefields of heavy pressure,load,impact and wear because they possess excellent comprehensive properties such as high wear-,oil-and corrosion resistance,high elasticity and damping,good adhesion to other materials and so on[13].Polyfluo wax(PFW)is a new-style0921-5093/$–see front matter©2006Elsevier B.V.All rights reserved. doi:10.1016/j.msea.2006.03.10460H.-J.Song,Z.-Z.Zhang/Materials Science and Engineering A426(2006)59–65solid pared with the solid lubricant of PTFE,ithas lower melt point and is easy to disperse in solvent.In orderto meet the demand of engineering and design driven by eco-logical and economical reasons,some researches contributed toprepare PU coatings on lightweight metallic substrates recently[14–16].Ceramics or nano-composites of a matrix containing adispersion of second-phase particles usually have various novelproperties,such as dispersion hardening,self-lubrication,hightemperature inertness,good wear and corrosion resistance,andchemical and biological compatibility[17–21].In this work,nanometer SiC or ZrO2reinforced PFW/PU coatings have beenprepared by spray technique.Tribological performances of thecoatings under dry sliding condition were evaluated using anMHK-500ring-on-block wear tester.The influences of curingtemperature,applied load and sliding speed on friction and wearbehaviors of the coating were investigated.The present workwas expected to broaden the application of PFW/PU coating indry-sliding bearings.2.Experimental details2.1.MaterialsSteel45,a kind of medium carbon steels with0.42–0.50%C,0.17–0.37%Si,0.50–0.80%Mn,≤0.035%P,≤0.035%S,≤0.25%Cr,≤0.25%Ni,≤0.25%Cu and balance Fe,was used as substrate of the composite coatings.Single-component PU wasprovided by xinhua resin company of shanghai,the ash contentand the isocyanate content(NCO)were50and5–8wt.%,respec-tively.Polyfluo150wax(PFW)(density1.17g/cm3)in a diam-eter of approximately3–4m,were provided by MircopowderCompany of USA.The mixed acetone/xylene/cyclohexanone ina volume fraction of4:2:1was employed in the present work as asolvent.Nano-SiC(grit size about30–40nm,determined usinga TEM)and nano-ZrO2(grit size about20–30nm,determinedusing a TEM)were prepared at our lab.2.2.Coating preparationThe AISI1045block(12.7mm×12.7mm×19mm)waspolished with300grade water proof abrasive paper in turn andthen cleaned with acetone in an ultrasonic bath for5min.Thepowder of polyfluo150wax(PFW)were dispersed in the mixed solvent with ultrasonic stirring for5min,the quantity of the solid lubricant of PFW used was30%of PU mass.Prior to the PU, the nano-SiC and nano-ZrO2particles were dried at120◦C in vacuum for24h.For having an even dispersion of nano-SiC or nano-ZrO2particles in PU,both the binder and thefillers with desired proportion were carefully mixed by mechanical stirring and ultrasonic treatment before the lubricant additive(PFW) was added.The solution mixture was continuously stirred for 1h,and then subjected to an ultrasonic bath mixing until the liquid system became afine dispersion of solution.The coatings on blocks were prepared by spraying the coating precursors with 0.2MPa nitrogen gas.After solvent evaporation,a thinfilm was obtained on the substrate.It is then cured at60,120,180and 250◦C for2h,respectively.The thickness of the cured coatings was40–50m.2.3.Characterization of coatingFig.1shows the SEM pictures of the composite coatingfilled with5wt.%nano-ZrO2surfaces and sections.It is noted that the surfaces of the nano-ZrO2filled composite coating was quite smooth.The nanoparticlesfillers were seen to be well dispersed in the coating matrix.However,some cavities were apparent in the coating matrix,which may be caused by the solvent evapo-ration from the matrix and the poor adhesion between thefillers and the PU matrix.2.4.Evaluation of the tribological behaviors of the coatingsAn MHK-500ring-on-block wear tester(made by the Jinan Testing Machine Factory,China)was used to evaluate the fric-tion and wear behaviors of the bonded solid lubricant coatings. An AISI-C-52100steel ring of49.2mm in diameter and12mm thick(Hardness Hv850)was rotated against the PFW/PU coat-ingsfilled with nano-SiC or nano-ZrO2particles under dry friction conditions.Before each test,the steel ring was abraded with900grade water proof abrasive paper.Then the steel ring is cleaned with acetone followed by drying.The sliding distance was calculated from the product of the sliding speed and the sliding time.The wear life of the coatings was calculated after dividing the sliding distance by the corresponding coating thick-ness in micrometers.Thus,the wear life of the coatings took a unit of m/ m.All the friction and wear tests were carriedout Fig.1.The SEM photograph of the composite coatingfilled with5wt.%nano-ZrO2surface and sections.H.-J.Song,Z.-Z.Zhang/Materials Science and Engineering A426(2006)59–6561at20–25◦C and a relative humidity of40–60%.The data pre-sented in the current word are the averages of three replicate measurements.3.Results and discussion3.1.Friction and wear behaviors of the PFW/PU coatingPresented in Fig.2is the effect of content of nano-ZrO2or nano-SiC on the friction and wear behaviors of the PFW/PU coating.It can be seen that the addition of nano-SiC or nano-ZrO2can greatly improve the friction and wear behaviors of the PFW/PU coating.The friction coefficients of the PFW/PU coating sharply decreased when nano-ZrO2is below1.0wt.% then gradually increased with further increasing content of nano-ZrO2with the exception of10.0wt.%.Furthermore,it is found that the friction coefficients of the PFW/PU coating slightly decreased with increasing content of nano-SiC up to 3.0wt.%.The lowest friction coefficient was obtained when con-tent of nano-SiC is5.0wt.%.Then the friction coefficient rapidly increased with further increasing content of nano-ZrO2.For the coatingfilled with nano-SiC,the wear life tended to increase with increasing content of nano-SiC up to5.0wt.%and then decreased as content of nano-SiC went unceasingly -pared with the wear life of the nano-SiCfilled coating,that of the coatingfilled with nano-ZrO2was similarly affected by the filling of nanometer ZrO2.Interestingly,the biggest wear life was observed atfiller of nano-SiC or nano-ZrO2mass fraction of5wt.%for the nano-SiC or nano-ZrO2filled the PFW/PU coating.3.2.Variations of the friction and wear life with curing temperatureFig.3shows the comparison of the friction coefficient and the wear life of the PFW/PU coatingfilled with5.0wt.%nano-SiC or5.0wt.%nano-ZrO2with varying curing temperature.It can be seen that the friction coefficient of the PFW/PU coating filled with nano-SiC sharply increased when curing temperature is below60◦C and then gradually increased with increasing cur-ing temperature.However,below120◦C,the friction coefficient of the coatingfilled with nano-ZrO2was almost not affected by the curing temperature in a monotonic way.The friction coef-ficient sharply increased from120to180◦C and arrived at a steady-state valuefinally.For the coatingfilled with nano-SiC, the wear life slightly increased with increasing curing temper-ature up to120◦C,but decreased from120to180◦C.With further increasing curing temperature,the friction coefficient kept a steady-state value.The wear life of the coatingfilled with nano-ZrO2initially decreased then slightly increased from60 to120◦C.As curing temperature went unceasingly up,the wear life lineally decreased.As a result,the anti-wear andreduction-Fig.2.Effect of content of the nano-SiC and nano-ZrO2on the friction coefficient and the wear life of the PFW/PU coatings(2.56m/s,320N).(a)Friction coefficient vs.filler content.(b)Wear life vs.fillercontent.Fig.3.Effect of curing temperature on the friction coefficients and the wear life of the PFW/PU coatingfilled with5.0wt.%nano-SiC or5.0wt.%nano-ZrO2(320N;2.56m/s).(a)Friction coefficient vs.curing temperature.(b)Wear life vs.curing temperature.62H.-J.Song,Z.-Z.Zhang /Materials Science and Engineering A 426(2006)59–65Fig.4.Effect of sliding speed on the friction coefficient and the wear life of the PFW/PU coating filled with 5.0wt.%nano-SiC or 5.0wt.%nano-ZrO 2under 320N.(a)Friction coefficient vs.sliding speed.(b)Wear life vs.sliding speed.friction properties of the PFW/PU coating filled with nano-ZrO 2were better than those of the coating filled with nano-SiC at low curing temperature.3.3.Effect of sliding speed and applied load on the friction and wear propertiesVariations of the friction coefficient and the wear life of the PFW/PU coating filled with 5.0wt.%nano-SiC or 5.0wt.%nano-ZrO 2with sliding speed under the same load are shown in Fig.4.It can be seen that the coating filled with nano-SiC or nano-ZrO 2exhibited much higher friction coefficient and lower wear life at low sliding speed.With the increase of sliding speed,the friction coefficient of the coating filled with nano-SiC or nano-ZrO 2gradually decreased.This reduc-tion in the friction coefficient attributed to surface softening arising from frictional heating.At the same time,we find that the wear life of the coating filled with nano-ZrO 2significantly increased with increasing sliding speed when the sliding speed is below 2.56m/s.Especially,a sharp drop of the wear life was observed with increasing sliding speed from 2.56to 3.84m/s.For the coating filled with nano-SiC,the wear life increased with increasing sliding speed and arrived at a steady-state value finally.From the above analysis,it can be concluded that the coating filled with nano-SiC or nano-ZrO 2generally exhib-ited lower friction coefficient and higher wear life at moderate speed.The friction coefficient and the wear life of the PFW/PU coat-ing reinforced with 5.0wt.%nano-SiC or 5.0wt.%nano-ZrO 2under different applied load at a speed of 2.56m/s are shown in Fig.5.It can be seen that the friction coefficients of the filled coatings tended to decrease with the increase of applied load.For the coating filled with nano-SiC,the wear life little by little decreased with increasing applied load.Meanwhile,the coating filled with nano-ZrO 2exhibited a highest wear life at intermedi-ate applied load of 420N.With the increase of applied load,the anti-wear property of the coating filled with nano-ZrO 2become poor.The results indicated that applied load must be related to plastic deformation of the coating,which causes the transition to severe wear when applied load goes up.3.4.FTIR analysis of the PFW/PU coatingAs shown in Fig.6by Fourier transform infrared microscope of the PFW/PU coating filled with 5.0wt.%nano-ZrO 2at dif-ferent curing temperature.With increasing curing temperature,NCO was consumed by the OH and NH 2groups in matrix.This would be confirmed by the decrease of NCO peaks at 2272cm −1.NCO was greatly consumed when curing tempera-ture was around 250◦C,but slightly at 120◦C.Fig.5.Effect of applied load on the friction coefficient and the wear life of the PFW/PU coating filled with 5.0wt.%nano-SiC or 5.0wt.%nano-ZrO 2under 2.56m/s.(a)Friction coefficient vs.applied load.(b)Wear life vs.applied load.H.-J.Song,Z.-Z.Zhang/Materials Science and Engineering A426(2006)59–6563Fig.6.FTIR spectra of the PFW/PU coatingfilled with5.0wt.%nano-ZrO2at different curing temperature.The chemical reactions during the curing process of the coat-ings can be described as follows:R–NCO+H2O→[R–NH–COOH](1) [R–NH–COOH]→R–NH2+CO2(2) R–NCO+R –NH2→R–NH–CO–NH–R (3) Because the curing of PU was strongly dependent on the reac-tions between the NCO radical in the binder and the OH and NH2 radical originated from H2O in air and matrix,a certain relative curing temperature was essential for the curing chemical reac-tions[16].If the curing temperature was too high,the reaction would be too quick and accelerate the evaporation of the sol-vent or CO2from the coating,which leads to many holes on the surface of the coating and makes the anti-wear and mechanism properties of the coating poor.In order to investigate the structural changes of the PFW/PU coatingfilled with nano-ZrO2in the friction process,the struc-ture of the wear tracks of the coating was analyzed with a FTIR microscope.The original coating surfaces and the worn sur-faces were analyzed,and the results were shown in Fig.7.It can be seen that the strong absorption bands of OH,NH2,CH,Fig.7.FTIR spectra of the surface of PFW/PU coating with5.0wt.%nano-ZrO2 before and after the wear tests.(320N,2.56m/s).NCO and CO appeared on the original coatingfilled nano-ZrO2, and these bands were faded and disappear after the wear tests. This indicated that the occurrence of the tribochemical changes during friction process mainly involved disordering and partial decomposition of the polyurethane binder[22].In combination with the results of FTIR analysis at different curing temperature,it can be concluded that the structural change of the PFW/PUfilled with nano-ZrO2during the friction process was due to the friction heat,which caused disordering and partial decomposition of the polyurethane binder.3.5.SEM analysis of the frictional surfacesIn order to explore the wear-reducing mechanism of nano-SiC and nano-ZrO2and the effects of sliding speed and applied load on the friction and wear behaviors of the coatingfilled with 5.0wt.%nano-SiC or5.0wt.%nano-ZrO2,SEM(JSM-5600LV) and optical micrograph observations of the worn surfaces and the transferfilms were carried out.Fig.8shows the worn surfaces of the PFW/PU coatingfilled with different content of nano-SiC or nano-ZrO2under320N and at a speed of2.56m/s.It can be seen that obvious signsof Fig.8.SEM micrographs of the worn surfaces of the PFW/PU coatingfilled with different content of nano-SiC or nano-ZrO2(320N,2.56m/s):(a)with1.0wt.% nano-SiC;(b)with5.0wt.%nano-SiC;(c)with10.0wt.%nano-SiC;(d)with1.0wt.%nano-ZrO2;(e)with5.0wt.%nano-ZrO2;(f)with10.0wt.%nano-ZrO2.。

相关文档
最新文档