2020年高考数学二轮优化提升18 直线与圆(1)(学生版)
2020届高考数学二轮复习全程方略课件:专题五 解析几何 (1) 直线与圆 Word版含答案

直线 l 的方程为( )
A.x-y+1=0
B.x-y=0
C.x+y+1=0
D.x+y=0
第十页,编辑于星期日:一点 五分。
解析:(1)“l1⊥l2”的充要条件是“m(m-3)+1×2= 0⇔m=1 或 m=2”,因此“m=1”是“l1⊥l2”的充分不 必要条件.
(2)由直线 l 与直线 PQ 垂直, 所以 kl=-k1PQ=-4-1 2=1.
第二十一页,编辑于星期日:一点 五分。
-4+(-2) (2)由已知,知圆心的纵坐标为 2 =-3, 所以圆心为(2,-3), 则半径 r= (2-0)2+[(-3)-(-2)]2= 5, 故所求圆的标准方程为(x-2)2+(y+3)2=5. 答案:(1)(x-1)2+(y-1)2=2 (2)(x-2)2+(y+3)2=5
第二十七页,编辑于星期日:一点 五分。
命题视角 2 圆的弦长问题 [例 3-2] (2017·全国卷Ⅲ)在直角坐标系 xOy 中, 曲线 y=x2+mx-2 与 x 轴交于 A,B 两点,点 C 的坐标 为(0,1).当 m 变化时,解答下列问题:@ (1)能否出现 AC⊥BC 的情况?说明理由; (2)证明过 A,B,C 三点的圆在 y 轴上截得的弦长为 定值.
第二十九页,编辑于星期日:一点 五分。
(2)证明:BC 的中点坐标为x22,12,可得 BC 的中垂 线方程为 y-12=x2x-x22.
由(1)可得 x1+x2=-m,
所以 AB 的中垂线方程为 x=-m2 .
x=-m2 ,
①
联立y-12=x2x-x22, ②
第三十页,编辑于星期日:一点 五分。
第二十八页,编辑于星期日:一点 五分。
(1)解:不能出现 AC⊥BC 的情况.理由如下: 设 A(x1,0),B(x2,0),则 x1,x2 满足 x2+mx-2=0, 所以 x1x2=-2. 又点 C 的坐标为(0,1), 故 AC 的斜率与 BC 的斜率之积为-x11·-x21=-12, 所以不能出现 AC⊥BC 的情况.
(新课标)2020版高考数学二轮复习专题五解析几何第1讲直线与圆练习文新人教A版

第1讲 直线与圆一、选择题1.若直线ax +2y +1=0与直线x +y -2=0互相垂直,则a 的值等于( ) A .1 B .-13C .-23D .-2解析:选D.直线ax +2y +1=0的斜率k 1=-a2,直线x +y -2=0的斜率k 2=-1,因为两直线相互垂直,所以k 1·k 2=-1,即(-a2)·(-1)=-1,所以a =-2.2.半径为2的圆C 的圆心在第四象限,且与直线x =0和x +y =22均相切,则该圆的标准方程为( )A .(x -1)2+(y +2)2=4 B .(x -2)2+(y +2)2=2 C .(x -2)2+(y +2)2=4 D .(x -22)2+(y +22)2=4解析:选C.设圆心坐标为(2,-a )(a >0),则圆心到直线x +y =22的距离d =|2-a -22|2=2,所以a =2,所以该圆的标准方程为(x -2)2+(y +2)2=4,故选C.3.已知直线l :y =x +1平分圆C :(x -1)2+(y -b )2=4的周长,则直线x =3与圆C 的位置关系是( )A .相交B .相切C .相离D .不能确定解析:选B.由已知得,圆心C (1,b )在直线l :y =x +1上,所以b =1+1=2,即圆心C (1,2),半径为r =2.由圆心C (1,2)到直线x =3的距离d =3-1=2=r 知,此时直线与圆相切.4.(2019·重庆市七校联合考试)两圆x 2+y 2+4x -4y =0和x 2+y 2+2x -8=0相交于M ,N 两点,则线段MN 的长为( )A.355 B .4 C.655D.1255解析:选D.两圆方程相减,得直线MN 的方程为x -2y +4=0,圆x 2+y 2+2x -8=0的标准方程为(x +1)2+y 2=9,所以圆x 2+y 2+2x -8=0的圆心为(-1,0),半径为3,圆心(-1,0)到直线MN 的距离d =35,所以线段MN 的长为232-⎝ ⎛⎭⎪⎫352=1255.故选D.5.(一题多解)在平面直角坐标系xOy 中,设直线x +y -m =0与圆O :x 2+y 2=8交于不同的两点A ,B ,若圆上存在点C ,使得△ABC 为等边三角形,则实数m 的值为( )A .±1B .±2C .±2 2D .±2 3解析:选B.通解:由题意知,点C 和圆心O 在直线AB 的同侧,且圆心O 在线段AB 的垂直平分线上,设线段AB 的中点为D ,圆O 的半径r =22,则|CD |=|OD |+r =32|AB |.因为|OD |=|m |2,|AB |=28-m 22,所以|m |2+22=32×28-m 22,解得m =±2.优解:设圆O 的半径为r ,则r =22,由圆周角∠ACB =60°,得圆心角∠AOB =120°,则圆心O 到直线x +y -m =0的距离d =12r =2,所以|m |2=2,解得m =±2.6.已知P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 分别是切点,若四边形PACB 的面积的最小值是2,则k 的值为( )A .1 B. 2 C. 3D .2解析:选D.由题意知,圆C 的圆心为C (0,1),半径r =1,四边形PACB 的面积S =2S △PBC ,若四边形PACB 的面积的最小值是2,则S △PBC 的最小值为1.而S △PBC =12r |PB |=12|PB |=1,则|PB |的最小值为2,此时|PC |取得最小值,而|PC |的最小值为圆心到直线的距离,所以|5|k 2+1=12+22=5,即k 2=4,由k >0,解得k =2. 二、填空题7.已知直线l :x +my -3=0与圆C :x 2+y 2=4相切,则m =________.解析:因为圆C :x 2+y 2=4的圆心为(0,0),半径为2,直线l :x +my -3=0与圆C :x 2+y 2=4相切,所以2=31+m2,解得m =±52. 答案:±528.(2019·广州市调研测试)若点P (1,1)为圆C :x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为______.解析:由圆的方程易知圆心C 的坐标为(3,0),又P (1,1),所以k PC =0-13-1=-12.易知MN ⊥PC ,所以k MN ·k PC =-1,所以k MN =2.由弦MN 所在的直线经过点P (1,1),得所求直线的方程为y -1=2(x -1),即2x -y -1=0.答案:2x -y -1=09.已知圆C :(x -2)2+y 2=4,直线l 1:y =3x ,l 2:y =kx -1.若直线l 1,l 2被圆C 所截得的弦的长度之比为1∶2,则k 的值为______.解析:依题意知,圆C :(x -2)2+y 2=4的圆心为C (2,0),半径为2.圆心C 到直线l 1:y =3x 的距离为232=3,所以直线l 1被圆C 所截得的弦长为2×4-3=2.圆心C 到直线l 2:y =kx -1的距离d =|2k -1|1+k2,所以直线l 2被圆C 所截得的弦长为24-d 2,由题意知2∶(24-d 2)=1∶2,解得d =0,故直线l 2过圆心C .所以2k -1=0,解得k =12.答案:12三、解答题10.已知点P (0,5)及圆C :x 2+y 2+4x -12y +24=0.(1)若直线l 过点P 且被圆C 截得的线段长为43,求l 的方程; (2)求过P 点的圆C 的弦的中点的轨迹方程. 解:(1)如图所示,|AB |=43,将圆C 方程化为标准方程即(x +2)2+(y -6)2=16, 所以圆C 的圆心坐标为(-2,6),半径r =4,设D 是线段AB 的中点,则CD ⊥AB ,所以|AD |=23,|AC |=4,C 点坐标为(-2,6). 在Rt △ACD 中,可得|CD |=2. 若直线l 的斜率存在,设为k , 则直线l 的方程为y -5=kx , 即kx -y +5=0.由点C 到直线AB 的距离公式为|-2k -6+5|k 2+(-1)2=2,得k =34.故直线l 的方程为3x -4y +20=0.直线l 的斜率不存在时,也满足题意,此时方程为x =0. 所以所求直线l 的方程为x =0或3x -4y +20=0. (2)设过P 点的圆C 的弦的中点为D (x ,y ), 则CD ⊥PD ,即CD →·PD →=0,所以(x +2,y -6)·(x ,y -5)=0,化简得所求轨迹方程为x 2+y 2+2x -11y +30=0.11.(2018·高考全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16. 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.12.已知半径为5的圆的圆心在x 轴上,圆心的横坐标是整数,且与直线4x +3y -29=0相切.(1)设直线ax -y +5=0与圆相交于A ,B 两点,求实数a 的取值范围;(2)在(1)的条件下,是否存在实数a ,使得过点P (-2,4)的直线l 垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.解:(1)设圆心为M (m ,0)(m ∈Z ).因为圆与直线4x +3y -29=0相切,且圆的半径为5, 所以|4m -29|42+32=5,即|4m -29|=25. 因为m 为整数,所以m =1. 所以圆的方程是(x -1)2+y 2=25. 将ax -y +5=0变形为y =ax +5,并将其代入圆的方程,消去y 并整理,得(a 2+1)x 2+2(5a -1)x +1=0. 由于直线ax -y +5=0交圆于A ,B 两点, 故Δ=4(5a -1)2-4(a 2+1)>0,即12a 2-5a >0, 解得a <0或a >512.所以实数a 的取值范围是(-∞,0)∪⎝ ⎛⎭⎪⎫512,+∞. (2)设符合条件的实数a 存在. 由(1)得a ≠0,则直线l 的斜率为-1a.所以直线l 的方程为y =-1a(x +2)+4,即x +ay +2-4a =0.因为直线l 垂直平分弦AB , 所以圆心M (1,0)必在直线l 上. 所以1+0+2-4a =0, 解得a =34.因为34∈⎝ ⎛⎭⎪⎫512,+∞, 所以存在实数a =34,使得过点P (-2,4)的直线l 垂直平分弦AB .。
2020年高考数学理科二轮复习考情分析与核心整合课件:6.1直线 圆

解析:设圆 C 的圆心坐标为(0,b),
则线段 CM 的中点坐标为32,b2, 因为直线 2x-y-1=0 经过线段 CM 的中点,
所以 2×32-b2-1=0,解得 b=4, 所以圆 C 的圆心坐标为(0,4), 半径 r=|CM|= 0-32+4-02=5, 所以圆 C 的标准方程是 x2+(y-4)2=25, 故选 C. 答案:C
|aa+2+bb| 2≤ 2,所以直线与圆相交或相切,故选 C. 答案:C
6.[2019·江苏南师大附中期中]在平面直角坐标系 xOy 中,已 知圆 C 过点 A(0,-8),且与圆 x2+y2-6x-6y=0 相切于原点, 则圆 C 的方程为________________.
解析:由 x2+y2-6x-6y=0 得(x-3)2+(y-3)2=18,则该圆 的圆心为(3,3),半径为 3 2.由于两个圆相切于原点,所以两圆的圆 心连线必过切点,故圆 C 的圆心在直线 y=x 上.由于圆 C 过点(0,0), (0,-8),所以其圆心也在直线 y=-4 上,易得圆心坐标为(-4, -4),又点(-4,-4)到原点的距离为 4 2,所以圆 C 的方程为(x +4)2+(y+4)2=32,即 x2+y2+8x+8y=0.
(2)[2019·江西师范大学附中期末]已知对任意实数 m,直线 l1: 3x+2y=3+2m 和直线 l2:2x-3y=2-3m 分别与圆 C:(x-1)2+ (y-m)2=1 相交于 A,C 和 B,D,则四边形 ABCD 的面积为( )
A.1 B.2 C.3 D.4
【解析】 (1)本题主要考查圆的标准方程及直线与圆的位置关 系,考查考生的推理论证能力、运算求解能力,考查的核心素养是 逻辑推理、数学运算.
2020届高考数学大二轮复习层级二专题五解析几何第1讲直线与圆课时作业

第1讲 直线与圆限时40分钟 满分80分一、选择题(本大题共11小题,每小题5分,共55分)1.(2020·成都二诊)设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线sin A ·x +ay -c =0与bx -sin B ·y +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:C [由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin Aa,bx -sin B ·y +sin C =0的斜率k 2=b sin B ,故k 1k 2=-sin A a ·b sin B =-1,则直线sin A ·x +ay -c =0与直线bx -sin B ·y +sinC =0垂直,故选C.]2.(2020·杭州质检)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34解析:D [点(-2,-3)关于y 轴的对称点为(2,-3),故可设反射光线所在直线的方程为y +3=k (x -2),∵反射光线与圆(x +3)2+(y -2)2=1相切,∴圆心(-3,2)到直线的距离d =|-3k -2-2k -3|k 2+1=1,化简得12k 2+25k +12=0,解得k =-43或-34.]3.(2020·广州模拟)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上运动,则AB 的中点M 到原点的距离的最小值为( )A. 2 B .2 2 C .3 2D .4 2解析:C [由题意知AB 的中点M 的集合为到直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线,则点M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据两平行线间的距离公式得,|m +7|2=|m +5|2,即|m +7|=|m +5|,所以m =-6,即l :x +y -6=0,根据点到直线的距离公式,得点M 到原点的距离的最小值为|-6|2=3 2.]4.(2020·河南六校联考)已知直线x +y =a 与圆x 2+y 2=1交于A ,B 两点,O 是坐标原点,向量OA →,OB →满足|OA →+OB →|=|OA →-OB →|,则实数a 的值为( )A .1B .2C .±1D .±2解析:C [由OA →,OB →满足|OA →+OB →|=|OA →-OB →|,得OA →⊥OB →, 因为直线x +y =a 的斜率是-1, 所以A ,B 两点在坐标轴上并且在圆上;所以(0,1)和(0,-1)两点都适合直线的方程,故a =±1.]5.(2020·怀柔调研)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:B [圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=1-12+-2-02=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.] 6.(2020·温州模拟)已知圆C :(x -2)2+y 2=2,直线l :y =kx ,其中k 为[-3,3]上的任意一个实数,则事件“直线l 与圆C 相离”发生的概率为( )A.33B.34C.14D.3-33解析:D [当直线l 与圆C 相离时,圆心C 到直线l 的距离d =|2k |k 2+1>2,解得k >1或k <-1,又k ∈[-3,3],所以-3≤k <-1或1<k ≤3,故事件“直线l 与圆C 相离”发生的概率P =3-1+-1+323=3-33,故选D.] 7.(2019·潍坊三模)已知O 为坐标原点,A ,B 是圆C :x 2+y 2-6y +5=0上两个动点,且|AB |=2,则|OA →+OB →|的取值范围是( )A .[6-23,6+23]B .[3-3,3+3]C .[3,9]D .[3,6]解析:A [圆C :x 2+(y -3)2=4,取弦AB 的中点M ,连接CM ,CA ,在直角三角形CMA 中,|CA |=2,|MA |=1,则|CM |=|CA |2-|MA |2=3,则点M 的轨迹方程为x 2+(y -3)2=3,则|OA →+OB →|=2|OM →|∈[6-23,6+23].]8.(多选题)直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点的一个充分不必要条件是( )A .0<m <1B .m <1C .-2<m <1D .-3<m <1解析:AC [本题主要考查直线与圆的位置关系的判断.圆x 2+y 2-2x -1=0的圆心为(1,0),半径为 2.因为直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点,所以直线与圆相交,因此圆心到直线的距离d =|1+m |1+1<2,所以|1+m |<2,解得-3<m <1,求其充分条件,即求其子集,故由选项易得AC 符合.故选AC.]9.(2020·合肥质检)已知圆C 1:(x +2)2+(y -3)2=5与圆C 2相交于A (0,2),B (-1,1)两点,且四边形C 1AC 2B 为平行四边形,则圆C 2的方程为( )A .(x -1)2+y 2=5 B .(x -1)2+y 2=92C.⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=5 D.⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=92解析:A [通解 (常规求解法)设圆C 2的圆心坐标为(a ,b ),连接AB ,C 1C 2.因为C 1(-2,3),A (0,2),B (-1,1),所以|AC 1|=|BC 1|=5,所以平行四边形C 1AC 2B 为菱形,所以C 1C 2⊥AB 且|AC 2|= 5.可得⎩⎪⎨⎪⎧3-b -2-a ×1-2-1-0=-1,a 2+b -22=5,解得⎩⎪⎨⎪⎧a =1,b =0或⎩⎪⎨⎪⎧a =-2,b =3,则圆心C 2的坐标为(1,0)或(-2,3)(舍去).因为圆C 2的半径为5,所以圆C 2的方程为(x -1)2+y 2=5.故选A.优解 (特值验证法)由题意可知,平行四边形C 1AC 2B 为菱形,则|C 2A |=|C 1A |=22+2-32=5,即圆C 2的半径为5,排除B ,D ;将点A (0,2)代入选项A ,C ,显然选项A 符合.故选A.]10.(2020·惠州二测)已知圆C :x 2+y 2-2ax -2by +a 2+b 2-1=0(a <0)的圆心在直线3x -y +3=0上,且圆C 上的点到直线3x +y =0的距离的最大值为1+3,则a 2+b 2的值为( )A .1B .2C .3D .4解析:C [化圆C :x 2+y 2-2ax -2by +a 2+b 2-1=0(a <0)为标准方程得C :(x -a )2+(y -b )2=1,其圆心为(a ,b ),故3a -b +3=0,即b =3a +3,(a ,b )到直线3x +y =0的距离d =|3a +b |3+1=|3a +b |2=|3a +3a +3|2,因为圆C 上的点到直线3x +y =0的距离的最大值为1+3,故d +1=32|2a +1|+1=1+3,得到|2a +1|=2,解得a =-32或a =12(舍去),故b =3×⎝ ⎛⎭⎪⎫-32+3=-32,故a 2+b 2=⎝ ⎛⎭⎪⎫-322+⎝ ⎛⎭⎪⎫-322=3.选C.]11.(2019·烟台三模)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B 使得MA ⊥MB ,则实数t 的取值范围是( )A .[-2,6]B .[-3,5]C .[2,6]D .[3,5]解析:C [当MA ,MB 是圆C 的切线时,∠AMB 取得最大值,若圆C 上存在两点A ,B 使得MA ⊥MB ,则MA ,MB 是圆C 的切线时,∠AMB ≥90°,∠AMC ≥45°,且∠AMC <90°,如图,所以|MC |=5-12+t -42≤10sin 45°=20,所以16+(t -4)2≤20,所以2≤t ≤6,故选C.]二、填空题(本大题共5小题,每小题5分,共25分)12.(双空填空题)在平面直角坐标系xOy 中,已知圆C 过点A (0,-8),且与圆x 2+y 2-6x -6y =0相切于原点,则圆C 的方程为___________________________________________,圆C 被x 轴截得的弦长为________.解析:本题考查圆与圆的位置关系.将已知圆化为标准式得(x -3)2+(y -3)2=18,圆心为(3,3),半径为3 2.由于两个圆相切于原点,连心线过切点,故圆C 的圆心在直线y =x 上.由于圆C 过点(0,0),(0,-8),所以圆心又在直线y =-4上.联立y =x 和y =-4,得圆心C 的坐标(-4,-4).又因为点(-4,-4)到原点的距离为42,所以圆C 的方程为(x +4)2+(y +4)2=32,即x 2+y 2+8x +8y =0.圆心C 到x 轴距离为4,则圆C 被x 轴截得的弦长为2×422-42=8.答案:x 2+y 2+8x +8y =0 813.(2019·哈尔滨二模)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为________________.解析:当直线l 的斜率不存在时,直线l 的方程为x =0,联立方程得⎩⎪⎨⎪⎧x =0,x 2+y 2-2x -2y -2=0.得⎩⎨⎧x =0,y =1-3或⎩⎨⎧x =0,y =1+3,∴|AB |=23,符合题意.当直线l 的斜率存在时,设直线l的方程为y =kx +3,∵圆x 2+y 2-2x -2y -2=0,即(x -1)2+(y -1)2=4,其圆心为C (1,1),圆的半径r =2,圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,∵d 2+⎝ ⎛⎭⎪⎫|AB |22=r 2,∴k +22k 2+1+3=4,解得k =-34,∴直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0.答案:x =0或3x +4y -12=014.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为|-5|a 2+4a2=5a(a >0).故222-⎝⎛⎭⎪⎫5a 2=22, 解得a 2=52,因为a >0,所以a =102. 答案:10215.(2018·江苏卷)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为________.解析:∵AB 为直径 ∴AD ⊥BD∴BD 即B 到直线l 的距离 |BD |=|0-2×5|12+22=2 5. ∵|CD |=|AC |=|BC |=r ,又CD ⊥AB . ∴|AB |=2|BC |=210 设A (a,2a ) |AB |=a -52+4a 2=210⇒a =-1或3(-1舍去)答案:316.(2020·厦门模拟)为保护环境,建设美丽乡村,镇政府决定为A ,B ,C 三个自然村建造一座垃圾处理站,集中处理A ,B ,C 三个自然村的垃圾,受当地条件限制,垃圾处理站M 只能建在与A 村相距5 km ,且与C 村相距31 km 的地方.已知B 村在A 村的正东方向,相距3 km ,C 村在B 村的正北方向,相距3 3 km ,则垃圾处理站M 与B 村相距________km.解析:以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系(图略),则A (0,0),B (3,0),C (3,33). 由题意得垃圾处理站M 在以A (0,0)为圆心,5为半径的圆A 上,同时又在以C (3,33)为圆心,31为半径的圆C 上,两圆的方程分别为x 2+y 2=25和(x -3)2+(y -33)2=31.由⎩⎨⎧x 2+y 2=25,x -32+y -332=31,解得⎩⎪⎨⎪⎧x =5,y =0或⎩⎪⎨⎪⎧x =-52,y =532,∴垃圾处理站M 的坐标为(5,0)或⎝ ⎛⎭⎪⎫-52,532,∴|MB |=2或|MB |=⎝ ⎛⎭⎪⎫-52-32+⎝ ⎛⎭⎪⎫5322=7, 即垃圾处理站M 与B 村相距2 km 或7 km. 答案:2或7。
2020高考数学大二轮专题突破文科通用直线与圆圆锥曲线精选试题及答案解析(10页)

2020高考数学大二轮专题突破文科通用直线与圆圆锥曲线精选试题1.(节选)已知圆M:x2+y2=r2(r>0)与直线l1:x-y+4=0相切,设点A为圆上一动点,AB⊥x轴于B,且动点N满足=2,设动点N的轨迹为曲线C.(1)求曲线C的方程;(2)略.2.(2019甘肃武威第十八中学高三上学期期末考试)已知圆C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.(1)求证:圆C1和圆C2相交;(2)求圆C1和圆C2的公共弦所在直线的方程和公共弦长.3.已知圆O:x2+y2=4,点A(,0),以线段AB为直径的圆内切于圆O,记点B的轨迹为Γ.(1)求曲线Γ的方程;(2)直线AB交圆O于C,D两点,当B为CD的中点时,求直线AB的方程.4.(2019全国卷1,理19)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.5.(2019天津河北区高三二模)已知椭圆C:=1(a>b>0)过点P(2,1),且短轴长为2.(1)求椭圆C的方程;(2)过点P作x轴的垂线l,设点A为第四象限内一点且在椭圆C上(点A不在直线l上),点A关于l的对称点为A',直线A'P与椭圆C交于另一点B.设O为坐标原点,判断直线AB与直线OP的位置关系,并说明理由.6.(2019天津第一中学高三下学期第五次月考)已知椭圆C1:=1(a>b>0)的左、右焦点为F1,F2,F2的坐标满足圆Q方程(x-)2+(y-1)2=1,且圆心Q满足|QF1|+|QF2|=2a.(1)求椭圆C1的方程;(2)过点P(0,1)的直线l1:y=kx+1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆Q于C,D两点,M为线段CD中点,若△MAB的面积为,求k的值.参考答案专题突破练24直线与圆及圆锥曲线1.解(1)设动点N(x,y),A(x0,y0),因为AB⊥x轴于B,所以B(x0,0).已知圆M的方程为x2+y2=r2,由题意得r==2,所以圆M的方程为x2+y2=4.由题意,=2,所以(0,-y0)=2(x0-x,-y),即将A(x,2y)代入圆M:x2+y2=4,得动点N的轨迹方程为+y2=1.(2)略.2.(1)证明圆C1的圆心C1(1,3),半径r1=,圆C2的圆心C2(5,6),半径r2=4, 两圆圆心距d=|C1C2|=5,r1+r2=+4,|r1-r2|=4-,所以|r1-r2|<d<r1+r2.所以圆C1和C2相交.(2)解将圆C1和圆C2的方程相减,得4x+3y-23=0,所以两圆的公共弦所在直线的方程为4x+3y-23=0.因为圆心C2(5,6)到直线4x+3y-23=0的距离为d==3,故两圆的公共弦长为2-=2.3.解(1)设AB的中点为M,切点为N,连接OM,MN,则|OM|+|MN|=|ON|=2,|AB|=|ON|-(|OM|-|MN|)=2-|OM|+|AB|,即|AB|+2|OM|=4.取A关于y轴的对称点A',连接A'B,则|A'B|=2|OM|,故|AB|+2|OM|=|AB|+|A'B|=4.所以点B的轨迹是以A',A为焦点,长轴长为4的椭圆.其中a=2,c=,b=1,则曲线Γ的方程为+y2=1.(2)因为B为CD的中点,所以OB⊥CD,则.设B(x0,y0),则x0(x0-)+=0.又=1,解得x0=,y0=±.则k OB=±,k AB=∓,则直线AB的方程为y=±(x-),即x-y-=0或x+y-=0.4.解设直线l:y=x+t,A(x1,y1),B(x2,y2).(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,则x1+x2=--.从而--,得t=-.所以l的方程为y=x-.(2)由=3可得y1=-3y2.由可得y2-2y+2t=0.所以y1+y2=2.从而-3y2+y2=2,故y2=-1,y1=3.代入C的方程得x1=3,x2=.故|AB|=.5.解(1)由题意得解得∴椭圆C的方程为=1.(2)直线AB与直线OP平行,证明如下:由题意知,直线PA的斜率存在且不为零.PA,PA'关于l:x=2对称,则直线PA与PA'斜率互为相反数.设直线PA:y-1=k(x-2),PB:y-1=-k(x-2).设A(x1,y1),B(x2,y2).由消去y得(4k2+1)x2-(16k2-8k)x+16k2-16k-4=0, -∴2x1=--.∴x1=--.同理,x2=-.∴x1-x2=-.∵y1=k(x1-2)+1,y2=-k(x2-2)+1,∴y1-y2=k(x1+x2)-4k=-.∵A在第四象限,∴k≠0 且A不在直线OP上,∴k AB=-.-又k OP=,∴k AB=k OP.故直线AB与直线OP平行.6.解(1)因为F2的坐标满足圆Q方程(x-)2+(y-1)2=1,故当y=0时,x=,即F2(,0),故c=.因为圆心Q满足|QF1|+|QF2|=2a,所以点Q(在椭圆上,故有=1.联立方程组解得所以椭圆方程为=1.(2)因为直线l2交圆Q于C,D两点,M为线段CD的中点,所以QM与直线l2垂直.又因为直线l1与直线l2垂直,所以QM与直线l1平行.所以点M到直线AB的距离即为点Q到直线AB的距离.即点M到直线AB的距离为d=.设点A(x1,y1),B(x2,y2).联立方程组解得(1+2k2)x2+4kx-2=0,Δ=b2-4ac=16k2+8(2k2+1)=32k2+8>0,由韦达定理可得--则|x1-x2|=----.所以AB=|x1-x2|=.所以△MAB的面积为.所以.即·|k|=,两边同时平方,化简得,28k4-47k2-18=0,解得k2=2或k2=-(舍).故k=±.此时l2:y=±x+1.圆心Q到l2的距离h=-<1成立.综上所述,k=±.。
(全国通用)2020版高考数学二轮复习第二层提升篇专题五解析几何第1讲直线与圆讲义

第1讲 直线与圆[全国卷3年考情分析](1)圆的方程近几年成为高考全国课标卷命题的热点,需重点关注.此类试题难度中等偏下,多以选择题或填空题形式呈现.(2)直线与圆的方程偶尔单独命题,单独命题时有一定的深度,有时会出现在第11题或第15题位置,难度较大,对直线与圆的方程(特别是直线)的考查主要体现在圆锥曲线的综合问题上.[例1] (1)已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与坐标轴围成一个四边形,则使这个四边形面积最小的k 的值为( )A.18 B.12 C.14D.2(2)若直线l 1:y =kx -k +2与直线l 2关于点(2,1)对称,则直线l 2过定点( ) A.(3,1) B.(3,0) C.(0,1)D.(2,1)[解析] (1)直线l 1,l 2恒过点P (2,4),直线l 1在y 轴上的截距为4-k ,直线l 2在x 轴上的截距为2k 2+2,因为0<k <4,所以4-k >0,2k 2+2>0,所以四边形的面积S =12×2×(4-k )+12×4×(2k 2+2)=4k 2-k +8=4⎝ ⎛⎭⎪⎫k -182+12716,故当k =18时,面积最小.(2)∵y =kx -k +2=k (x -1)+2,∴l 1:y =kx -k +2过定点(1,2).设定点(1,2)关于点(2,1)对称的点的坐标为(x ,y ),则⎩⎪⎨⎪⎧1+x2=2,2+y 2=1,得⎩⎪⎨⎪⎧x =3,y =0,∴直线l 2过定点(3,0).故选B.[答案] (1)A (2)B[解题方略]1.两直线的位置关系问题的解题策略求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即斜率相等且纵截距不相等或斜率互为负倒数.若出现斜率不存在的情况,可考虑用数形结合的方法去研究或直接用直线的一般式方程判断.2.轴对称问题的两种类型及求解方法[跟踪训练]1.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( )A.423B.4 2C.823D.2 2解析:选C 因为l 1∥l 2,所以1a -2=a 3≠62a,解得a =-1,所以l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2的距离d =⎪⎪⎪⎪⎪⎪6-232=823.2.在平面直角坐标系内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2=( )A.102B.10C.5D.10解析:选D 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴MP ⊥MQ ,∴|MP |2+|MQ |2=|PQ |2=9+1=10,故选D.[例2] (1)已知点A 是直角三角形ABC 的直角顶点,且A (2a ,2),B (-4,a ),C (2a +2,2),则三角形ABC 外接圆的方程是( )A.x 2+(y -3)2=5 B.x 2+(y +3)2=5 C.(x -3)2+y 2=5D.(x +3)2+y 2=5(2)圆心在直线y =-4x 上,并且与直线l :x +y -1=0相切于点P (3,-2)的圆的方程为________________.[解析] (1)∵AB ―→=(-4-2a ,a -2),AC ―→=(2,0),∴AB ―→·AC ―→=-8-4a =0,解得a =-2.∴A (-4,2),B (-4,-2),C (-2,2),|BC |=25,又BC 的中点坐标为(-3,0),∴三角形ABC 外接圆的圆心为(-3,0),半径为|BC |2=5,∴三角形ABC 外接圆的方程为(x +3)2+y 2=5.(2)设圆心M 为(x ,-4x ),k MP =2-4xx -3,k l =-1,所以k MP ·k l =-1,所以x =1,所以M (1,-4),所以r =|MP |=(1-3)2+(-4+2)2=2 2所以所求圆的方程为(x -1)2+(y +4)2=8. [答案] (1)D (2)(x -1)2+(y +4)2=8[解题方略] 求圆的方程的2种方法[跟踪训练]1.已知圆C 1:(x +2)2+(y -3)2=5与圆C 2相交于A (0,2),B (-1,1)两点,且四边形C 1AC 2B 为平行四边形,则圆C 2的方程为( )A.(x -1)2+y 2=5 B.(x -1)2+y 2=92C.⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=5 D.⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=92解析:选A 法一:(常规求解法)设圆C 2的圆心坐标为(a ,b ),连接AB ,C 1C 2.因为C 1(-2,3),A (0,2),B (-1,1),所以|AC 1|=|BC 1|=5,所以平行四边形C 1AC 2B 为菱形,所以C 1C 2⊥AB 且|AC 2|= 5.可得⎩⎪⎨⎪⎧3-b -2-a ×1-2-1-0=-1,a 2+(b -2)2=5,解得⎩⎪⎨⎪⎧a =1,b =0或⎩⎪⎨⎪⎧a =-2,b =3,则圆心C 2的坐标为(1,0)或(-2,3)(舍去).因为圆C 2的半径为5,所以圆C 2的方程为(x -1)2+y 2=5.故选A.法二:(特值验证法)由题意可知,平行四边形C 1AC 2B 为菱形,则|C 2A |=|C 1A |=22+(2-3)2=5,即圆C 2的半径为5,排除B 、D ;将点A (0,2)代入选项A 、C ,显然选项A 符合.故选A.2.若不同两点P ,Q 的坐标分别为(a ,b ),(3-b ,3-a ),则线段PQ 的垂直平分线l 的斜率为________,圆(x -2)2+(y -3)2=1关于直线l 对称的圆的方程为____________.解析:k PQ =3-a -b3-b -a=1,故直线l 的斜率为-1,由点斜式可知l 的方程为y =-x +3,圆心(2,3)关于直线y =-x +3的对称点为(0,1),故所求圆的方程为x 2+(y -1)2=1.答案:-1 x 2+(y -1)2=1考点三直线与圆的位置关系题型一 圆的切线问题[例3] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A.3x +4y -4=0 B.4x -3y +4=0 C.x =2或4x -3y +4=0D.y =4或3x +4y -4=0(2)设点M (x 0,y 0)为直线3x +4y =25上一动点,过点M 作圆x 2+y 2=2的两条切线,切点为B ,C ,则四边形OBMC 面积的最小值为________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆心O 到直线3x +4y =25的距离d =259+16=5, 则|OM |≥d =5,所以切线长|MB |=|OM |2-2≥d 2-2=23, 所以S 四边形OBMC =2S △OBM ≥2×12×23×2=46.[答案] (1)C (2)46[变式1] 本例(2)变为:过点A (1,3),作圆x 2+y 2=2的两条切线,切点为B ,C ,则四边形OBAC 的面积为________.解析:由相切可得S 四边形OBAC =2S △OBA ,因为△OAB 为直角三角形,且|OA |=10,|OB |=2, 所以|AB |=22,即S △OBA =12×22×2=2,所以S 四边形OBAC =2S △OBA =4. 答案:4[变式2] 本例(2)变为:设点M (x 0,y 0)为直线3x +4y =25上一动点,过点M 作圆x 2+y 2=2的两条切线l 1,l 2,则l 1与l 2的最大夹角的正切值是________.解析:设一个切点为B ,圆心O 到直线3x +4y =25的距离为d =259+16=5,则tan ∠OMB =|OB ||MB |≤223,所以tan2∠OMB =2tan ∠OMB1-tan 2∠OMB =21tan ∠OMB-tan ∠OMB≤24621.故所求最大夹角的正切值为24621. 答案:24621[解题方略] 直线与圆相切问题的解题策略直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.题型二 圆的弦长问题[例4] 已知圆C 经过点A (-2,0),B (0,2),且圆心C 在直线y =x 上,又直线l :y =kx +1与圆C 相交于P ,Q 两点.(1)求圆C 的方程;(2)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M ,N 两点,求四边形PMQN 面积的最大值.[解] (1)设圆心C (a ,a ),半径为r ,因为圆C 经过点A (-2,0),B (0,2),所以|AC |=|BC |=r ,即(a +2)2+(a -0)2=(a -0)2+(a -2)2=r , 解得a =0,r =2,故所求圆C 的方程为x 2+y 2=4.(2)设圆心C 到直线l ,l 1的距离分别为d ,d 1,四边形PMQN 的面积为S . 因为直线l ,l 1都经过点(0,1),且l 1⊥l , 根据勾股定理,有d 21+d 2=1.又|PQ |=2×4-d 2,|MN |=2×4-d 21, 所以S =12|PQ |·|MN |,即S =12×2×4-d 2×2×4-d 21=216-4(d 21+d 2)+d 21d 2=212+d 21d 2≤212+⎝ ⎛⎭⎪⎫d 21+d 222=212+14=7,当且仅当d 1=d 时,等号成立, 所以四边形PMQN 面积的最大值为7.[解题方略] 求解圆的弦长的3种方法[跟踪训练]1.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点,若|MN |=255,则直线l 的方程为________.解析:直线l 的方程为y =kx +1,圆心C (2,3)到直线l 的距离d =|2k -3+1|k 2+1=|2k -2|k 2+1,由r 2=d 2+⎝ ⎛⎭⎪⎫|MN |22,得1=(2k -2)2k 2+1+15,解得k =2或12,故所求直线l 的方程为y =2x +1或y =12x +1.答案:y =2x +1或y =12x +12.(2019·山东枣庄期末改编)若点P (1,1)为圆x 2+y 2-6x =0中弦AB 的中点,则弦AB 所在直线的方程为________________,|AB |=________.解析:圆x 2+y 2+6x =0的标准方程为(x -3)2+y 2=9.又因为点P (1,1)为圆中弦AB 的中点,所以圆心与点P 所在直线的斜率为1-01-3=-12,故弦AB 所在直线的斜率为2,所以直线AB 的方程为y -1=2(x -1),即2x -y -1=0.圆心(3,0)与点P (1,1)之间的距离d =5,圆的半径r =3,则|AB |=2r 2-d 2=4.答案:2x -y -1=0 43.已知从圆C :(x +1)2+(y -2)2=2外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,则当|PM |取最小值时点P 的坐标为________.解析:如图所示,连接CM ,CP .由题意知圆心C (-1,2),半径r = 2.因为|PM |=|PO |,所以|PO |2+r 2=|PC |2,所以x 21+y 21+2=(x 1+1)2+(y 1-2)2,即2x 1-4y 1+3=0.要使|PM |的值最小,只需|PO |的值最小即可.当PO 垂直于直线2x -4y +3=0时,即PO 所在直线的方程为2x +y =0时,|PM |的值最小,此时点P 为两直线的交点,则⎩⎪⎨⎪⎧2x -4y +3=0,2x +y =0,解得⎩⎪⎨⎪⎧x =-310,y =35,故当|PM |取最小值时点P 的坐标为⎝ ⎛⎭⎪⎫-310,35.答案:⎝ ⎛⎭⎪⎫-310,35数学建模——直线与圆最值问题的求解[典例] 已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,则当△OPQ 的面积最大时,直线l 的方程为( )A.x -y -3=0或7x -y -15=0B.x +y +3=0或7x +y -15=0C.x +y -3=0或7x -y +15=0D.x +y -3=0或7x +y -15=0[解析] 当直线l 的斜率不存在时,l 的方程为x =2,则P (2,5),Q (2,-5),所以S △OPQ =12×2×25=25,当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝ ⎛⎭⎪⎫k ≠12,则圆心到直线l 的距离d =|1-2k |1+k2,所以|PQ |=29-d 2,S △OPQ =12×|PQ |×d =12×29-d 2×d =(9-d 2)d 2≤9-d 2+d 22=92,当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92,因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92,解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0,故选D.[答案] D [素养通路]本题考查了直线与圆的最值问题,结合题目的条件,设元、列式、建立恰当的函数,利用基本不等式模型解决相关的最值问题.考查了数学建模这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.“ab =4”是“直线2x +ay -1=0与直线bx +2y -2=0平行”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件D.既不充分也不必要条件解析:选C 因为两直线平行,所以斜率相等,即-2a =-b2,可得ab =4,又当a =1,b =4时,满足ab =4,但是两直线重合,故选C.2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A.相离 B.相交 C.外切D.内切解析:选B 圆O 1:x 2+y 2-2x =0,即(x -1)2+y 2=1,圆心是O 1(1,0),半径是r 1=1, 圆O 2:x 2+y 2-4y =0,即x 2+(y -2)2=4, 圆心是O 2(0,2),半径是r 2=2,因为|O 1O 2|=5,故|r 1-r 2|<|O 1O 2|<|r 1+r 2| 所以两圆的位置关系是相交.3.已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A.(3,3)B.(2,3)C.(1,3)D.⎝ ⎛⎭⎪⎫1,32 解析:选C 直线l 1的斜率k 1=tan30°=33,因为直线l 2与直线l 1垂直,所以直线l 2的斜率k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x-2),联立⎩⎪⎨⎪⎧y =33(x +2),y =-3(x -2),解得⎩⎨⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).4.(2019·江苏徐州期末)若圆(x +1)2+y 2=m 与圆x 2+y 2-4x +8y -16=0内切,则实数m 的值为( )A.1B.11C.121D.1或121解析:选D 圆(x +1)2+y 2=m 的圆心坐标为(-1,0),半径为m ;圆x 2+y 2-4x +8y -16=0,即(x -2)2+(y +4)2=36,故圆心坐标为(2,-4),半径为6.由两圆内切得32+42=|m -6|,解得m =1或m =121.故选D.5.在平面直角坐标系中,O 为坐标原点,直线x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM ―→=OA ―→+OB ―→,若点M 在圆C 上,则实数k 的值为( )A.-2B.-1C.0D.1解析:选C 法一:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -ky +1=0,x 2+y 2=4得(k 2+1)y 2-2ky -3=0,则Δ=4k 2+12(k 2+1)>0,y 1+y 2=2k k 2+1,x 1+x 2=k (y 1+y 2)-2=-2k 2+1,因为OM ―→=OA ―→+OB ―→,故M ⎝ ⎛⎭⎪⎫-2k 2+1,2k k 2+1,又点M 在圆C 上,故4(k 2+1)2+4k 2(k 2+1)2=4,解得k =0.法二:由直线与圆相交于A ,B 两点,OM ―→=OA ―→+OB ―→,且点M 在圆C 上,得圆心C (0,0)到直线x -ky +1=0的距离为半径的一半,为1,即d =11+k2=1,解得k =0.6.(2019·广东省广州市高三测试)已知圆C :x 2+y 2=1,点A (-2,0)及点B (2,a ),若直线AB 与圆C 没有公共点,则a 的取值范围是( )A.(-∞,-1)∪(1,+∞)B.(-∞,-2)∪(2,+∞)C.⎝ ⎛⎭⎪⎫-∞,-433∪⎝ ⎛⎭⎪⎫433,+∞D.(-∞,-4)∪(4,+∞)解析:选C 由点A (-2,0)及点B (2,a ),得k AB =a 4,所以直线AB 的方程为y =a4(x +2),即ax -4y +2a =0.因为直线AB 与圆C 没有公共点,所以|2a |a 2+(-4)2>1,解得a >433或a <-433,所以a 的取值范围是⎝ ⎛⎭⎪⎫-∞,-433∪⎝ ⎛⎭⎪⎫433,+∞,故选C.二、填空题7.(2019·贵阳市第一学期监测)已知直线l 1:y =2x ,则过圆x 2+y 2+2x -4y +1=0的圆心且与直线l 1垂直的直线l 2的方程为________.解析:由题意,圆的标准方程为(x +1)2+(y -2)2=4,所以圆的圆心坐标为(-1,2),所以所求直线的方程为y -2=-12(x +1),即x +2y -3=0.答案:x +2y -3=08.已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则直线l 的方程为________________.解析:由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0得⎩⎪⎨⎪⎧x =1,y =2,所以直线l 1与l 2的交点为(1,2).显然直线x =1不满足P (0,4)到直线l 的距离为2.设直线l 的方程为y -2=k (x -1),即kx -y +2-k =0,因为P (0,4)到直线l 的距离为2,所以|-4+2-k |1+k 2=2,所以k =0或k =43.所以直线l 的方程为y =2或4x -3y +2=0.答案:y =2或4x -3y +2=09.(2019·广东六校第一次联考)已知点P (-1,2)及圆(x -3)2+(y -4)2=4,一光线从点P 出发,经x 轴上一点Q 反射后与圆相切于点T ,则|PQ |+|QT |的值为________.解析:点P 关于x 轴的对称点为P ′(-1,-2),如图,连接PP ′,P ′Q ,由对称性可知,P ′Q 与圆相切于点T ,则|PQ |+|QT |=|P ′T |.圆(x -3)2+(y -4)2=4的圆心为A (3,4),半径r =2,连接AP ′,AT ,则|AP ′|2=(-1-3)2+(-2-4)2=52,|AT |=r =2,所以|PQ |+|QT |=|P ′T |=|AP ′|2-|AT |2=4 3.答案:4 3 三、解答题10.已知圆(x -1)2+y 2=25,直线ax -y +5=0与圆相交于不同的两点A ,B . (1)求实数a 的取值范围;(2)若弦AB 的垂直平分线l 过点P (-2,4),求实数a 的值. 解:(1)把直线ax -y +5=0代入圆的方程, 消去y 整理,得(a 2+1)x 2+2(5a -1)x +1=0, 由于直线ax -y +5=0交圆于A ,B 两点, 故Δ=4(5a -1)2-4(a 2+1)>0, 即12a 2-5a >0,解得a >512或a <0,所以实数a 的取值范围是(-∞,0)∪⎝ ⎛⎭⎪⎫512,+∞. (2)由于直线l 为弦AB 的垂直平分线,且直线AB 的斜率为a ,则直线l 的斜率为-1a,所以直线l 的方程为y =-1a(x +2)+4,即x +ay +2-4a =0,由于l 垂直平分弦AB ,故圆心M (1,0)必在l 上,所以1+0+2-4a =0, 解得a =34,由于34∈⎝ ⎛⎭⎪⎫512,+∞, 所以a =34.11.在平面直角坐标系xOy 中,直线x -y +1=0截以原点O 为圆心的圆所得的弦长为 6. (1)求圆O 的方程;(2)若直线l 与圆O 相切于第一象限,且直线l 与坐标轴交于点D ,E ,当线段DE 的长度最小时,求直线l 的方程.解:(1)因为点O 到直线x -y +1=0的距离为12,所以圆O 的半径为⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫622=2, 故圆O 的方程为x 2+y 2=2.(2)设直线l 的方程为x a +yb=1(a >0,b >0),即bx +ay -ab =0, 由直线l 与圆O 相切,得|-ab |b 2+a 2=2,即1a 2+1b 2=12,则|DE |2=a 2+b 2=2(a 2+b 2)⎝ ⎛⎭⎪⎫1a 2+1b 2=4+2b 2a 2+2a2b2≥8,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.12.已知A (2,0),直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43,且P 为圆C 上任意一点.(1)求|PA |的最大值与最小值;(2)圆C 与坐标轴相交于三点,求以这三个点为顶点的三角形的内切圆的半径. 解:(1)∵直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43, ∴圆心到直线的距离d =|-12+3m +1|5=(13)2-(23)2=1.∵m <3,∴m =2,∴|AC |=(-3-2)2+(2-0)2=29,∴|PA |的最大值与最小值分别为29+13,29-13. (2)由(1)可得圆C 的方程为(x +3)2+(y -2)2=13, 令x =0,得y =0或4;令y =0,得x =0或-6,∴圆C 与坐标轴相交于三点M (0,4),O (0,0),N (-6,0),∴△MON 为直角三角形,斜边|MN |=213, ∴△MON 内切圆的半径为4+6-2132=5-13.B 组——大题专攻强化练1.已知点M (-1,0),N (1,0),曲线E 上任意一点到点M 的距离均是到点N 的距离的3倍.(1)求曲线E 的方程;(2)已知m ≠0,设直线l 1:x -my -1=0交曲线E 于A ,C 两点,直线l 2:mx +y -m =0交曲线E 于B ,D 两点.当CD 的斜率为-1时,求直线CD 的方程.解:(1)设曲线E 上任意一点的坐标为(x ,y ), 由题意得(x +1)2+y 2=3·(x -1)2+y 2, 整理得x 2+y 2-4x +1=0,即(x -2)2+y 2=3为所求. (2)由题意知l 1⊥l 2,且两条直线均恒过点N (1,0).设曲线E 的圆心为E ,则E (2,0),设线段CD 的中点为P ,连接EP ,ED ,NP ,则直线EP :y =x -2.设直线CD :y =-x +t ,由⎩⎪⎨⎪⎧y =x -2,y =-x +t 解得点P ⎝ ⎛⎭⎪⎫t +22,t -22, 由圆的几何性质,知|NP |=12|CD |=|ED |2-|EP |2,而|NP |2=⎝ ⎛⎭⎪⎫t +22-12+⎝ ⎛⎭⎪⎫t -222,|ED |2=3,|EP |2=⎝ ⎛⎭⎪⎫|2-t |22,所以⎝ ⎛⎭⎪⎫t 22+⎝ ⎛⎭⎪⎫t -222=3-(t -2)22,整理得t 2-3t =0, 解得t =0或t =3,所以直线CD 的方程为y =-x 或y =-x +3. 2.已知点A (1,a ),圆x 2+y 2=4.(1)若过点A 的圆的切线只有一条,求a 的值及切线方程;(2)若过点A 且在两坐标轴上截距相等的直线被圆截得的弦长为23,求a 的值.解:(1)由过点A 的圆的切线只有一条,得点A 在圆上,故12+a 2=4,解得a =± 3. 当a =3时,A (1,3),根据直线的点斜式方程,易知所求的切线方程为x +3y -4=0;当a =-3时,A (1,-3),根据直线的点斜式方程,易知所求的切线方程为x -3y -4=0.综上所述,当a =3时,切线方程为x +3y -4=0;当a =-3时,切线方程为x -3y -4=0.(2)设直线方程为x +y =b ,由于直线过点A ,则1+a =b ,即a =b -1, 又圆心(0,0)到直线x +y =b 的距离d =|b |2.所以⎝ ⎛⎭⎪⎫|b |22+⎝ ⎛⎭⎪⎫2322=4,则b =±2,因此a =b -1=-1± 2.3.在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解:(1)因为圆心在直线l :y =2x -4上,也在直线y =x -1上,所以解方程组⎩⎪⎨⎪⎧y =2x -4,y =x -1,得圆心C (3,2),又因为圆的半径为1,所以圆的方程为(x -3)2+(y -2)2=1,又因为点A (0,3),显然过点A ,圆C 的切线的斜率存在, 设所求的切线方程为y =kx +3,即kx -y +3=0, 所以|3k -2+3|k 2+12=1,解得k =0或k =-34,所以所求切线方程为y =3或y =-34x +3,即y -3=0或3x +4y -12=0.(2)因为圆C 的圆心在直线l :y =2x -4上, 所以设圆心C 为(a ,2a -4), 又因为圆C 的半径为1,则圆C 的方程为(x -a )2+(y -2a +4)2=1.设M (x ,y ),又因为|MA |=2|MO |,则有x 2+(y -3)2=2x 2+y 2,整理得x 2+(y +1)2=4,其表示圆心为(0,-1),半径为2的圆,设为圆D , 所以点M 既在圆C 上,又在圆D 上,即圆C 与圆D 有交点,所以2-1≤a 2+(2a -4+1)2≤2+1,解得0≤a ≤125,所以圆心C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.4.在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12, 可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,x 22+mx 2-2=0可得⎩⎪⎨⎪⎧x =-m 2,y =-12. 所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。
2020届高考数学大二轮复习 第1部分 专题6 解析几何 第1讲 直线与圆练习
第一部分 专题六 第一讲 直线与圆A 组1.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( B ) A . 2 B .823C . 3D .833[解析] 由l 1∥l 2知3=a (a -2)且2a ≠6(a -2), 2a 2≠18,求得a =-1,∴l 1:x -y +6=0,l 2:x -y +23=0,两条平行直线l 1与l 2间的距离为d =|6-23|12+-12=823.故选B . 2.(文)直线x +y +2=0截圆x 2+y 2=4所得劣弧所对圆心角为( D ) A .π6B .π3C .2π3D .5π6[解析] 弦心距d =|2|2=1,半径r =2,∴劣弧所对的圆心角为2π3.(理)⊙C 1:(x -1)2+y 2=4与⊙C 2:(x +1)2+(y -3)2=9相交弦所在直线为l ,则l 被⊙O :x 2+y 2=4截得弦长为( D )A .13B .4C .43913D .83913[解析] 由⊙C 1与⊙C 2的方程相减得l :2x -3y +2=0. 圆心O (0,0)到l 的距离d =21313,⊙O 的半径R =2, ∴截得弦长为2R 2-d 2=24-413=83913. 3.已知圆C :x 2+(y -3)2=4,过A (-1,0)的直线l 与圆C 相交于P ,Q 两点.若|PQ |=23,则直线l 的方程为( B )A .x =-1或4x +3y -4=0B .x =-1或4x -3y +4=0C .x =1或4x -3y +4=0D .x =1或4x +3y -4=0[解析] 当直线l 与x 轴垂直时,易知x =-1符合题意;当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),由|PQ |=23,则圆心C 到直线l 的距离d =|-k +3|k 2+1=1,解得k =43,此时直线l 的方程为y =43(x+1),故所求直线l 的方程为x =-1或4x -3y +4=0.4.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( C ) A .2 6 B .8 C .4 6D .10[解析] 由已知得k AB =3-21-4=-13,k CB =2+74-1=3,所以k AB ·k CB =-1,所以AB ⊥CB ,即△ABC 为直角三角形,其外接圆圆心为(1,-2),半径为5,所以外接圆方程为(x -1)2+(y +2)2=25,令x =0,得y =±26-2,所以|MN |=46,故选C .5.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A 、B 两点,若弦AB 的中点为(-2,3),则直线l 的方程为( A )A .x -y +5=0B .x +y -1=0C .x -y -5=0D .x +y -3=0[解析] 设圆x 2+y 2+2x -4y +a =0(a <3)的圆心为C ,弦AB 的中点为D ,易知C (-1,2),又D (-2,3), 故直线CD 的斜率k CD =3-2-2--1=-1,则由CD ⊥l 知直线l 的斜率k l =-1k CD=1,故直线l 的方程为y -3=x +2,即x -y +5=0.6.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( D )A .-53或-35B .-32或-23C .-54或-45D .-43或-34[解析] 由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k ,则其直线方程为y +3=k (x -2),即kx -y -2k -3=0.∵光线与圆(x +3)2+(y -2)2=1相切,∴|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34.故选D .7.若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =2.[解析] 直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)交于A ,B 两点,O 为坐标原点,且∠AOB =120°,则圆心(0,0)到直线3x -4y +5=0的距离为12r ,即532+42=12r ,∴r =2. 8.一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.[解析] 设圆心为(a,0),则圆的方程为(x -a )2+y 2=r 2,依题意得a 2+22=4-a2,解得a =32, r2=254,所以圆的方程为⎝ ⎛⎭⎪⎫x -322+y 2=254. 9.已知定点M (0,2),N (-2,0),直线l :kx -y -2k +2=0(k 为常数). (1)若点M ,N 到直线l 的距离相等,求实数k 的值;(2)对于l 上任意一点P ,∠MPN 恒为锐角,求实数k 的取值范围. [解析] (1)∵点M ,N 到直线l 的距离相等, ∴l ∥MN 或l 过MN 的中点. ∵M (0,2),N (-2,0), ∴直线MN 的斜率k MN =1,MN 的中点坐标为C (-1,1).又∵直线l :kx -y -2k +2=0过定点D (2,2), ∴当l ∥MN 时,k =k MN =1; 当l 过MN 的中点时,k =k CD =13.综上可知,k 的值为1或13.(2)∵对于l 上任意一点P ,∠MPN 恒为锐角,∴l 与以MN 为直径的圆相离,即圆心到直线l 的距离大于半径, ∴d =|-k -1-2k +2|k 2+1>2,解得k <-17或k >1.10.已知点P (0,5)及圆C :x 2+y 2+4x -12y +24=0.(1)若直线l 过点P 且被圆C 截得的线段为43,求l 的方程; (2)求过P 点的圆C 的弦的中点的轨迹方程.[解析] (1)如图所示,|AB |=43,将圆C 方程化为标准方程为(x +2)2+(y -6)2=16,所以圆C 的圆心坐标为(-2,6),半径r =4,设D 是线段AB 的中点,则CD ⊥AB ,所以|AD |=23,|AC |=4.C 点坐标为(-2,6).在Rt △ACD 中,可得|CD |=2.若直线l 的斜率存在,设为k ,则直线l 的方程为y -5=kx ,即kx -y +5=0. 由点C 到直线AB 的距离公式:|-2k -6+5|k 2+-12=2,得k =34.故直线l 的方程为3x -4y +20=0.直线l 的斜率不存在时,也满足题意,此时方程为x =0. 所以所求直线l 的方程为x =0或3x -4y +20=0.B 组1.(2018·南宁一模)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( A )A .π6或5π6B .-π3或π3C .-π6或π6D .π6[解析] 圆(x -2)2+(y -3)2=4的圆心为(2,3),半径r =2,圆心(2,3)到直线y =kx +3的距离d =|2k |k 2+1,因为直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,所以由勾股定理得r 2=d 2+(232)2,即4=4k2k 2+1+3,解得k =±33,故直线的倾斜角为π6或5π6. 2.设直线x -y -a =0与圆x 2+y 2=4相交于A ,B 两点,O 为坐标原点,若△AOB 为等边三角形,则实数a 的值为( B )A .± 3B .± 6C .±3D .±9[解析] 由题意知:圆心坐标为(0,0),半径为2,则△AOB 的边长为2,所以△AOB 的高为3,即圆心到直线x -y -a =0的距离为3,所以|-a |12+-12=3,解得a =± 6.3.已知点A (-2,0),B (0,2),若点C 是圆x 2-2ax +y 2+a 2-1=0上的动点,△ABC 面积的最小值为3-2,则a 的值为( C )A .1B .-5C .1或-5D .5[解析] 解法一:圆的标准方程为(x -a )2+y 2=1,圆心M (a,0)到直线AB :x -y +2=0的距离为d =|a +2|2,可知圆上的点到直线AB 的最短距离为d -1=|a +2|2-1,(S △ABC )min =12×22×|a +2|-22=3-2,解得a =1或-5.解法二:圆的标准方程为(x -a )2+y 2=1,设C 的坐标为(a +cos θ,sin θ),C 点到直线AB :x -y +2=0的距离为d =|a +cos θ-sin θ+2|2=|2sin θ-π4+a +2|2.△ABC 的面积为S △ABC =12×22×|2sin θ-π4+a +2|2=|2sin(θ-π4)+a +2|,当a ≥0时,a +2-2=3-2,解得a =1; 当-2≤a <0时,|a +2-2|=3-2,无解; 当a <-2时,|a +2+2|=3-2,解得a =-5.解法三:设与AB 平行且与圆相切的直线l ′的方程为x -y +m =0(m ≠2),圆心M (a,0)到直线l ′的距离d =1,即|a +m |2=1,解得m =±2-a ,两平行线l ,l ′之间的距离就是圆上的点到直线AB 的最短距离, 即|m -2|2=|±2-a -2|2,(S △ABC )min =12×22×|±2-a -2|2=|±2-a -2|.当a ≥0时,|±2-a -2|=3-2,解得a =1. 当a <0时,|±2-a -2|=3-2,解得a =-5. 故a =1或-5.4.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是原点,且有|OA →+OB →|≥33|AB →|,则k 的取值范围是( C )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22][解析] 本题考查直线与圆的位置关系、平面向量的运算.设AB 的中点为D ,则OD ⊥AB ,因为|OA →+OB →|≥33|AB →|,所以|2OD →|≥33|AB →|,|AB →|≤23|OD →|,又因为|OD →|2+14|AB →|2=4,所以|OD →|≥1.因为直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点,所以|OD →|<2,所以1≤⎪⎪⎪⎪⎪⎪-k 2<2,解得2≤k <22,故选C .5.两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线l 1:2x -y +a =0,l 2:2x -y +a 2+1=0和圆:x 2+y 2+2x -4=0相切,则a 的取值范围是( C )A .a >7或a <-3B .a >6或a <- 6C .-3≤a ≤-6或6≤a ≤7D .a ≥7或a ≤-3[解析] 本题主要考查直线和圆的位置关系、补集思想及分析、理解、解决问题的能力.两条平行线与圆都相交时,由⎩⎪⎨⎪⎧ |2-1+a |5<5|2-1+a 2+1|5<5得-6<a <6,两条直线都和圆相离时,由⎩⎪⎨⎪⎧|2-1+a |5>5|2-1+a 2+1|5>5得a <-3,或a >7,所以两条直线和圆“相切”时a 的取值范围-3≤a ≤-6或6≤a ≤7,故选C .6.过点P (-1,1)作圆C :(x -t )2+(y -t +2)2=1(t ∈R )的切线,切点分别为A ,B ,则PA →·PB →的最小值为214.[解析] 圆C :(x -t )2+(y -t +2)2=1的圆心坐标为(t ,t -2),半径为1, 所以PC =t +12+t -32=2t -12+8≥8,PA =PB =PC 2-1,cos ∠APC =APPC,所以cos ∠APB =2⎝ ⎛⎭⎪⎫AP PC2-1=1-2PC 2,所以PA →·PB →=(PC 2-1)(1-2PC 2)=-3+PC 2+2PC 2≥-3+8+14=214,所以PA →·PB →的最小值为214.7.过点C (3,4)作圆x 2+y 2=5的两条切线,切点分别为A ,B ,则点C 到直线AB 的距离为4.[解析] 以OC 为直径的圆的方程为(x -32)2+(y -2)2=(52)2,AB 为圆C 与圆O :x 2+y 2=5的公共弦,所以AB 的方程为x 2+y 2-[(x -32)2+(y -2)2]=5-254,化为3x +4y -5=0,C 到AB 的距离为d =|3×3+4×4-5|32+42=4.8.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若sin 2A +sin 2B =12sin 2C ,则直线ax -by +c =0被圆x 2+y 2=9所截得弦长为27.[解析] 由正弦定理得a 2+b 2=12c 2,∴圆心到直线距离d =|c |a 2+b2=c12c 2=2, ∴弦长l =2r 2-d 2=29-2=27.9.(2018·全国卷Ⅱ,19)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程.(2)求过点A ,B 且与C 的准线相切的圆的方程.[解析] (1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0).设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5. 设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,x 0+12=y 0-x 0+122+16.解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.10.(2017·全国卷Ⅲ,20)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由.(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. [解析] (1)不能出现AC ⊥BC 的情况.理由如下: 设A (x 1,0),B (x 2,0), 则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:BC 的中点坐标为(x 22,12),可得BC 的中垂线方程为y -12=x 2(x 2-x 22).由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2,y -12=x2x -x 22,又x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为(-m2,-12),半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-m22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。
2020年高考数学二轮优化提升专题训练考点19直线与圆(2)(解析版)
【答案】 x2+ y2= 81
【解析】 思路分析 圆 C 平分圆 C1 等价于:两圆的公共弦是圆 C1 的直径.
a- 4 2+ - 8 2+ 1= r2,
设圆 C 的圆心为 C(a,0),半径为 r ,则 r 2= CC21+ 1 且 r2= CC22+ 9,即 a- 6 2+ 62+ 9= r2,
|2+ 1- 4|= 2,因此 MQ = R2- d2=
2
2
1- 1= 2
2,C→P·C→Q=(C→M 2
+
M→P
)
→ ·(CM
+
M→Q
→ )= (CM
-M→Q
)
→ ·(CM
+
1
M→Q )= CM 2- MQ 2= 12-12= 0.
3、(2019 南京、盐城一模) 设 A ={(x ,y)|3x + 4y≥ 7} ,点 P∈ A ,过点 P 引圆 (x + 1) 2+ y2= r 2(r>0) 的两
由 PQ 为圆的直径可得 AP ⊥ AQ ,从而 k AP· k AQ =- 1,又 k AN · k AP= 1,所以 k AQ =- k AN ,故∠ QAO =∠ NAO. 又∠ QAO =∠ OQA ,设∠ QAO = α,则∠ NOA = 2α,则α+ 2α= 90°,得 α= 30° .故直线 PQ 的倾斜角为 60° .由对称性知, 直线 PQ 的倾斜角也可为 120°,所以 k PQ=± 3.所以直线 l 的方程为 y =± 3 x.
【解析】 思路分析 由 PQ 为圆的直径可得 AP ⊥AQ ,从而得圆中 kAP·k AQ =- 1,结合条件 kAN ·k AP= 1
得出 k AQ =- kAN ,从而得出角相等,围绕几何性质,解出本题.或者抓住
2020版高考数学二轮复习第二部分专题五解析几何第1讲直线与圆练习(含解析)
第1讲直线与圆[做真题]题型一圆的方程1.(2016·高考全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-43B.-错误!C.错误!D.2解析:选A。
由题可知,圆心为(1,4),结合题意得错误!=1,解得a=-错误!。
2.(2015·高考全国卷Ⅰ)一个圆经过椭圆x216+错误!=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为________.解析:由题意知a=4,b=2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x-m)2+y2=r2(0<m<4,r>0),则错误!解得错误!所以圆的标准方程为(x-错误!)2+y2=错误!。
答案:(x-错误!)2+y2=错误!3.(2018·高考全国卷Ⅱ)设抛物线C:y2=4x的焦点为F,过F 且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8。
(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解:(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).设A(x1,y1),B(x2,y2).由错误!得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=错误!.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=错误!。
由题设知错误!=8,解得k=-1(舍去),k=1。
因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5。
设所求圆的圆心坐标为(x0,y0),则错误!解得错误!或错误!因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y +6)2=144.题型二直线与圆、圆与圆的位置关系1.(2018·高考全国卷Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[错误!,3错误!]D.[2错误!,3错误!]解析:选A。
2020高考数学课标二轮:专题能力训练直线与圆含解析
因为圆N与x轴相切,与圆M外切,
所以0<y0<7,于是圆N的半径为y0,
从而7-y0=5+y0,解得y0=1.
因此,圆N的标准方程为(x-6)2+(y-1)2=1.
(2)因为直线l∥OA,所以直线l的斜率为 =2.
设直线l的方程为y=2x+m,即2x-y+m=0,
∴S△ABP= ·|AB|·d'= d',∴2≤S△ABP≤6.
4.已知实数a,b满足a2+b2-4a+3=0,函数f(x)=asinx+bcosx+1的最大值记为φ(a,b),则φ(a,b)的最小值是()
A.1B.2C. +1D.3
答案:B
解析:由题意知φ(a,b)= +1,且a,b满足a2+b2-4a+3=0,即点(a,b)在圆C:(a-2)2+b2=1上,圆C的圆心为(2,0),半径为1, 表示圆C上的动点(a,b)到原点的距离,最小值为1,所以φ(a,b)的最小值为2.故选B.
(1)证明由题设知,圆C的方程为(x-t)2+ =t2+ ,化简,得x2-2tx+y2- y=0.当y=0时,x=0或2t,则A(2t,0);当x=0时,y=0或 ,则B ,故S△AOB= |OA|·|OB|= |2t|· =4为定值.
(2)解∵|OM|=|ON|,∴原点O在MN的中垂线上.
设MN的中点为H,则CH⊥MN,
所以k的取值范围为 .
(2)设M(x1,y1),N(x2,y2).
将y=kx+1代入方程(x-2)2+(y-3)2=1,
整理得(1+k2)x2-4(1+k)x+7=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点18 直线与圆(1)
【知识框图】
【自主热身,归纳总结】
1、(2017镇江期末)圆心在直线y =-4x 上,且与直线x +y -1=0相切于点P (3,-2)的圆的标准方程为________.
2、(2017扬州期末) 已知直线l :x +3y -2=0与圆C :x 2+y 2=4交于A ,B 两点,则弦AB 的长度为________.
3、(2019苏州期末)在平面直角坐标系xOy 中,过点A(1,3),B(4,6),且圆心在直线x -2y -1=0上的圆的标准方程为________.
4、(2018苏州期末)在平面直角坐标系xOy 中,已知过点A(2,-1)的圆C 与直线x +y =1相切,且圆心在直线y =-2x 上,则圆C 的标准方程为________________.
5、(2018镇江期末)已知圆C 与圆x 2+y 2+10x +10y =0相切于原点,且过点A(0,-6),则圆C 的标准方程为________.
6、(2018苏北四市期末)在平面直角坐标系xOy 中,若圆C 1:x 2+(y -1)2=r 2(r>0)上存在点P,且点P 关于直线x -y =0的对称点Q 在圆C 2:(x -2)2+(y -1)2=1上,则r 的取值范围是________.
7(2017徐州六市联考)在平面直角坐标系xOy 中,过点P (-2,0)的直线与圆x 2+y 2=1相切于点T ,与圆(x -a )2+(y -3)2=3相交于点R ,S ,且PT =RS ,则正数a 的值为________. 8、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)在平面直角坐标系xOy 中,若动圆C 上的点都在不等式组⎩⎨⎧x≤3,x -3y +3≥0x +3y +3≥0
,表示的平面区域内,则面积最大的圆C 的标准方程为________. 9、(2018盐城三模)定义:点00(,)M x y 到直线:0l ax by c ++=的有向距离为0022ax by c
a b +++.已知点
(1,0)A -,(1,0)B ,直线m 过点(3,0)P ,若圆22(18)81x y +-=上存在一点C ,使得,,A B C 三点到直线m 的
【问题探究,变式训练】 题型一 圆内三角形的问题
知识点拨:圆与三角形相结合的问题,求有关参数,最终要转化为圆心到直线的距离问题,根据题目中隐含的条件挖掘圆心到直线的距离。
例1、(2017年苏州期末)已知圆C :(x -a )2+(y -a )2=1(a >0)与直线y =3x 相交于P ,Q 两点,则当△CPQ 的面积最大时,实数a 的值为________.
【变式1】(2016扬州期末) 已知直线l 过点P (1,2)且与圆C :x 2+y 2=2相交于A ,B 两点,△ABC 的面积为1,则直线l 的方程为________.
【变式2】(2017南通、泰州、扬州一调)在平面直角坐标系xOy 中,圆C 1:(x -1)2+y 2=2,圆C 2:(x -m )2+(y +m )2=m 2,若圆C 2上存在点P 满足:过点P 向圆C 1作两条切线P A ,PB ,切点为A ,B ,△ABP 的面积为1,则正数m 的取值范围是________.
【变式4】(2019苏锡常镇调研(二))过直线l :2y x =-上任意点P 作圆C :221x y +=的两条切线,
【变式5】(2019苏锡常镇调研(一))若直线l :ax +y -4a =0上存在相距为2的两个动点A,B,圆O :x 2+y 2=1上存在点C,使得△ABC 为等腰直角三角形(C 为直角顶点),则实数a 的取值范围为________.
【变式6】(2019通州、海门、启东期末) 在平面直角坐标系xOy 中,已知A(0,a),B(3,a +4),若圆x 2+y 2=9上有且仅有四个不同的点C,使得△ABC 的面积5,则实数a 的取值范围是________.
【关联1】(2018无锡期末)过圆x 2+y 2=16内一点P(-2,3)作两条相互垂直的弦AB 和CD,且AB =CD,则四边形ACBD 的面积为________.
【关联2】(2016南京、盐城、连云港、徐州二模) 已知圆O :x 2+y 2=4,点M (4,0),过原点的直线(不与 x 轴重合)与圆O 交于A ,B 两点,则△ABM 的外接圆的面积的最小值为________.
【关联3】(2016无锡期末)在平面直角坐标系xOy 中,已知点(3,0)P 在圆
222:24280C x y mx y m +--+-=内,动直线AB 过点P 且交圆C 于,A B 两点,若△ABC 的面积的最大值为16,
题型二 直线与圆的切线问题
知识点拨:本题考查圆的切线长的问题,主要考查了转化与化归的思想.切线长通常用勾股定理来求解,这样问题就转化为求圆外一点与圆上一点距离的最小值,而这种距离的最值问题,是圆的考查中常见的知识
点.
【变式1】(2019泰州期末)在平面直角坐标系xOy中,过圆C1:(x-k)2+(y+k-4)2=1上任一点P作圆C2:x2+y2=1的一条切线,切点为Q,则当线段PQ长最小时,k=________.
【变式2】(2018南通、泰州一调)在平面直角坐标系xOy中,已知点A(-4,0),B(0,4),从直线AB上一点P 向圆x2+y2=4引两条切线PC,PD,切点分别为C,D.设线段CD的中点为M,则线段AM长的最大值为________.
题型三、与圆有关的角度问题
知识点拨:与圆有关的角度问题,关键还是通过角度确定轨迹问题。
转化为直线与圆或者圆与圆的位置关系的问题。
例1、(2017南京三模)在平面直角坐标系xOy中,圆O:x2+y2=1,圆M:(x+a+3)2+(y-2a)2=1(a为
【变式1】.已知圆O:x2+y2=1,圆M:(x-a)2+(y-a+4)2=1.若圆M上存在点P,过点P作圆O的两条切线,切点为A,B,使得∠APB=60°,则实数a的取值范围为________.
【变式2】已知点A(0,2)为圆M:x2+y2-2ax-2ay=0(a>0)外一点,圆M上存在点T,使得∠MAT=45°,则实数a的取值范围是________.
【变式3】已知圆M:(x-1)2+(y-1)2=4,直线l:x+y-6=0,A为直线l上一点,若圆M上存在两点B,C,使得∠BAC=60°,则点A的横坐标的取值范围是________.
【关联1】在平面直角坐标系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的一个定点.若以AB为直径的圆与圆x2+(y-2)2=1相外切,且∠APB的大小恒为定值,则线段OP的长为________.【关联2】在平面直角坐标系xOy中,圆C的方程为(x-1)2+y2=4,P为圆C上一点.若存在一个定圆M,过点P作圆M的两条切线P A,PB,切点分别为A,B,当P在圆C上运动时,使得∠APB恒为60︒,则圆M的方程。