一元一次方程的应用--行程问题

合集下载

一元一次方程应用题(很系统,附答案)

一元一次方程应用题(很系统,附答案)

一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1. 相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A 、B 两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000 x=22. 追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A 、B 两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问几分钟后乙能追上甲?直线追击 200x+1000=300x x=102. .甲乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多少小时后与慢车相遇? 40*1.5+40x+80x=3003. 汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?去 :上坡路程x 下坡路程y352860123528x y y x +=++ 回 :上坡路程y 上坡路程x3. 环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.1 王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的 200X+400=300X X=42 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6X X=2004X+400=6X X=200 200*4=800 800/400=2圈3 有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完 第一铁桥所需的时间为600x 分 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程得x=100∴2x-50=2×100-50=1504.·顺(逆)风(水)行驶问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。

一元一次方程的应用——行程问题

一元一次方程的应用——行程问题

一元一次方程的应用——路程问题
一、直线型相遇
1、某公路的干线上有相距108千米A.B两个车站,某日16时整,甲、乙两辆汽车分别从A、B两站同时出发,相向而行。

已知甲车速度为45千米/小时,乙车速度为36千米/小时,则两车相遇时间为()
A . 16时20分 B. 17时20分 C. 17时30分 D. 16时50分
2、甲乙两人骑自行车,同时从相距45千米的两地相向而行,经过2小时两人相遇,已知甲比乙每小时多走2.5千米,求两人每小时各走多少千米?
二、直线型追及
3、甲乙两人骑自行车和摩托车都从A地到B地,甲每小时行18千米,甲出发2小时后乙才出发,结果乙用了3小时追上甲,则乙每小时走_________________km.
4、某中学组织学生到校外参加义务植树活动。

一部分学生骑自行车先走,速度为9千米/小时;40分钟后其余学生乘汽车出发,速度为45千米/小时,结果他们同时到达目的地。

目的地距学校多少千米?
三、环形跑道型相遇与追及
5、一条环形跑道长400米,甲练习骑自行车,平均每分钟行550米,乙练习跑步,平均每分钟跑250米.两人同时同地出发。

(1)若两人背向而行,则他们经过多长时间首次相遇?
(2)若两人同向而行,则他们经过多长时间首次相遇?
四、列车型相遇与追及
6、甲列车长120米,车速为60千米/小时,乙列车长130米,车速为40千米/小时。

(1)两车同向而行,当甲列车车头追上乙列车车尾后又经过多长时间两车离开?
(2)两车相向而行,当两车相遇后又经过多长时间两车离开?。

一元一次方程应用题------行程问题

一元一次方程应用题------行程问题

基本的数量关系: 路程=速度×时间要特别注意:(1)路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)(2)在列方程时候,时间单位和路程单位一定要与速度单位一致1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。

6、时钟问题:⑴通常将时钟问题看作以整时整分为起点的同向追击问题来分析。

常用数据:① 时针的速度是0.5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)例题1:某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x例题2、一列火车匀速行驶,经过一条长300m 的隧道需要20s 的时间。

隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s ,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。

解:方法一:设这列火车的长度是x 米,根据题意,得1020300x x =+ x =300 答:这列火车长300米。

一元一次方程应用题——行程问题

一元一次方程应用题——行程问题

1. 某人从家里骑自行车到学校。

假设每小时行15千米,可比预定的时间早到15分钟;假设每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?2.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于多少分钟.3.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?4.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时40分钟,逆风飞行需要3小时,求两城市间距离?5.轮船在静水中的速度是20千米/小时,从甲港顺流到乙港需8小时,返航时行走了6小时在距甲港68千米处发生故障,求水流速度?6.甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站出发,每小时行驶80千米,问两车同时开出,相向而行,出发后多少小时相遇?7.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?8.甲、乙两人分别同时从相距300米的A、B两地相向而行,甲每分钟走15米,乙每分钟走13米,问几分钟后,两个相距20米?9.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再出发,问甲出发后几小时与乙相遇?10.小红和小军两人同时从各自的家里出发去找对方,两家的直线距离为1200米,小红每分走55米,两人最后用61小时在途中某点相遇,那么小军每分钟走多少米?11.A 、B 两地相距80米,甲从A 地出发,每秒走1米,乙从B 地出发每秒走1.5米,如甲先走15米,求乙出发后多少秒与甲相遇?12.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。

一元一次方程常见应用题型及解法

一元一次方程常见应用题型及解法

一元一次方程常见应用题:
一、行程问题:路程=速度×时间
1:相遇问题:甲路程+乙路程=总路程
2:追及问题:a、不同时同地出发:快者(追者)走的路程=慢者(前者)走的路程
b、同时不同地出发:慢者走的路程+两者距离=快者走的路程
3、水流问题:顺水行的路程=逆水行的路程
提前写出:顺水速度=静水速度+水流速度
逆水速度=静水速度-水流速度
二、工程问题:工作总量=工作效率×工作时间工作效率与单独工作的时间互为倒数
各部分工作量之和=1
三、利润率、销售问题:
商品利润=商品售价-商品进价=商品进价×商品利润率
商品利润率=商品利润/商品进价×100%
售价=进价×(1+利润率)
注:进价
售价=实际销售价格
标价=定价=原价=预计售价=原销售价
四、数字问题:
设一个两位数的十位上的数字和个位上的数字分别为a、b,则这个两位数表示为10a+b 五、按比例分配问题:
甲:乙:丙=a:b:c 全部数量=各种成分的数量之和(设一份为χ)
六、配套问题
“加工的两种物品成比例”
七、分配问题
“总量不变”
八、积分问题
比赛总场数=胜场总数+平场总数+负场总数
比赛总积分=胜场总积分+平场总积分+负场总积分九、规律问题
●3个规律数字:设中间的数为χ
●月历中的问题
月历中每一行上相邻的两数,右边的数比左边的数大1;
月历中的每一列上相邻的两数,下边的数比上边的数大7 十、方案决策问题
选择最优的方案就要把每种方案的结果算出来,进行比较。

一元一次方程的应用之行程问题

一元一次方程的应用之行程问题

一元一次方程的应用--行程问题【知识点】1路程=时间×速度2路程差=追及时间×速度差3路程和=相遇时间×速度和【练习题】1.甲乙两站的路程为500千米,慢车和快车都是从甲站开出,慢车每小时行驶65千米,快车每小时行驶85千米,若慢车先出发1小时,设慢车出发x小时后,快车可追上慢车,则可列方程2.甲乙两站的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米,若辆车同时开出,相向而行,设x 小时可以相遇,则可列方程3.一队学生去郊外军事野营训练,他们以5千米/时的速度行进,走了18分钟的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追去,设通讯员用x小时可以追上学生队伍,则可列方程4.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为5.A、B两地相距60千米,甲乙两人分别同时从A、B两地出发,相向而行,甲每小时比乙多行4千米,经过3小时相遇,则设乙的速度为x千米/时,则可列方程6.甲乙两站相距480千米,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里,若两车同时开出同向而行,快车在慢车的后面,设x小时后,快车追上慢车,则可列方程7.甲、乙两站间的路程为360km,一列快车从乙站开出,每小时行驶72千米,一列慢车从甲站开出,每小时行驶48千米。

两列火车同时开出,相向而行,经过多少小时相遇?8.一条环形跑道长400米,甲每分钟跑550米,乙每分钟跑250米,若甲、乙两人同时同地反向出发,则多少分钟后他们首次相遇?9.甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇,甲比乙每小时多骑了2.5千米,则乙的速度为多少?10.王涵和王萌同学练习赛跑,王涵每秒跑7m,王萌每秒跑6.5m,王涵让王萌先跑5m,则多少秒后王涵可追上王萌?11.一条环形跑道长400米,甲、乙两人练习赛跑,甲每分钟跑350米,乙每分钟跑450米,若两人同时同地同向而行,则多少分钟后两人首次相遇?12.甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过秒可以追上乙?13.甲乙两船航行于A、B两地之间,甲船由A到B的航速为35km/h,乙船由B到A的航速为25km/h,若甲船先行2小时,两船在距B地120km处相遇,则两地距离为多少?14.甲、乙两人同时从A地出发去B地,甲骑自行车,骑行速度为10km/h,乙步行,行走速度为6km/h,当甲到达B地时,乙距B地还有8km,甲走了多少小时?A、B两地的距离是多少?15.某人计划骑车以12千米/时的速度由A地到B地,这样便恰好在规定时间到达B地,但他因事将原计划出发时间推迟了20分钟,便以15千米/时的速度骑行,结果比规定时间早4分钟到达B地,则A、B两地之间的距离为多少千米?16.已知甲、乙两人在一条200米的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲、乙两人分别从A,C两处同时相向出发(如图所示),请回答:(1)多少秒后两人首次相遇?并说出此时他们在跑道上的具体位置.(2)首次相遇后,又经过多长时间他们再次相遇?(3)他们第10次相遇时,在哪一段跑道上?答案1.6585(1)x x =- 2.6585450x x +=3.1851460x x ⎛⎫+= ⎪⎝⎭ 4.240x =150x +150×125.33(4)60x x ++=6.14090480x x -=7.7248360x x +=;38.550250400x x +=;0.59.2( 2.5)265x x ++=;1510.(7 6.5)5x -=;1011.450350400x x -=;412.()7 6.51x x =+;1313.12012035225x ⎛⎫-=⨯+ ⎪⎝⎭;35814.10x =6x +8;2015.20412156060x x =++;2416.10;离B 点10米;20;AD。

一元一次方程应用题公式大全

一元一次方程应用题公式大全

一元一次方程应用题公式大全一、行程问题。

1. 基本公式。

- 路程 = 速度×时间(s = vt)。

- 速度=s÷ t,时间=s÷ v。

2. 相遇问题。

- 公式:s_总=v_1t + v_2t=(v_1+v_2)t(s_总表示总路程,v_1、v_2分别表示两者的速度,t表示相遇时间)。

- 例题:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲的速度是3千米/小时,乙的速度是2千米/小时,几小时后两人相遇?- 解析:设t小时后两人相遇。

根据相遇问题公式s_总=(v_1+v_2)t,这里s_总 = 20千米,v_1=3千米/小时,v_2=2千米/小时。

则(3 + 2)t=20,5t = 20,解得t = 4小时。

3. 追及问题。

- 公式:s_追及=v_1t - v_2t=(v_1-v_2)t(s_追及表示追及路程,v_1表示快者速度,v_2表示慢者速度,t表示追及时间)。

- 例题:甲、乙两人相距5千米,甲以6千米/小时的速度追赶乙,乙以4千米/小时的速度逃跑,甲几小时能追上乙?- 解析:设甲t小时能追上乙。

根据追及问题公式s_追及=(v_1-v_2)t,这里s_追及=5千米,v_1=6千米/小时,v_2=4千米/小时。

则(6 - 4)t=5,2t = 5,解得t = 2.5小时。

二、工程问题。

- 工作总量 = 工作效率×工作时间(W = p× t)。

- 工作效率=W÷ t,工作时间=W÷ p。

通常把工作总量看成单位“1”。

2. 合作问题。

- 公式:1=(p_1+p_2)t(p_1、p_2分别表示两者的工作效率,t表示合作时间)。

- 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要几天完成?- 解析:设两人合作需要t天完成。

甲的工作效率p_1=(1)/(10),乙的工作效率p_2=(1)/(15)。

根据合作问题公式1 = ((1)/(10)+(1)/(15))t,(1)/(10)+(1)/(15)=(3 +2)/(30)=(1)/(6),则(1)/(6)t = 1,解得t = 6天。

初一数学一元一次方程的应用——行程问题

初一数学一元一次方程的应用——行程问题

初一数学一元一次方程的应用——行程问题行程问题与一元一次方程的联系行程问题,属于一类所谓的“线性优化问题”,是一元一次方程的一种特殊应用。

基本的行程问题涉及求解一趟行程的最短时间,最短路径或者最少的花费,有时候它还要考虑动态的变化因素。

一元一次方程系统也可以用来求解行程问题,例如每一段路径的路程量,行驶时间和费用等信息。

行程问题是一类让人们在最短的时间内从一个地方到达另外一个地方的问题。

使用一元一次方程为基础,可以寻求一条比较理想的行程,并且它的路程总耗费也最少。

例如,有一位旅行者从广州出发,要到深圳终点,当用一元一次方程来研究其中的路途,就会发现它可以比较快地确定一条比较最优的行程。

因此,一元一次方程可以应用在行程问题上,可以让游客比较容易地求得一条有效最优行程。

接下来就看到一元一次方程在行程问题上有什么具体的应用案例:首先,当有一个普通的行程问题时,比如,要求从一个地点去往另一个地点的最短路程,可以将信息用一元一次方程来表达,再建立一个诸如“最大效益函数”之类的函数表达式,对于代价和时间权衡,求出一个最优目标点,以期获得最小耗费(或者各项费用权衡)和最短时间,使得游客可以以最快的时间内到达终点。

其次,在遇到一些动态变化的问题时,也可以利用一元一次方程来解决,比如,要在一段固定的时间里走最短的路径,可以先计算出各个路径的距离所花的费用,然后根据当前时速求解出走每一条路径所花的时间,再综合考虑各种因素,推算出一条最短的行程。

总而言之,一元一次方程可以用来求解行程问题,这样可以使游客更快地到达目的地,节省时间和金钱,也增加了出行的便利性。

希望大家再出游时多多利用一元一次方程来搜索最优行程,让出行更有效率,轻松愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s 先 s甲 s乙 s 总
一、追及问题的基本题型
1、不同地点同时出发 2、同地点不同时出发 二、追及问题的等量关系
1、追及时快者行驶的路程-慢者行驶的路程=相距的 路程 2、追及时快者行驶的路程=慢者行驶的路程或 慢者所用时间=快者所用时间+多用时间
若明明以每小时4千米的速度行驶, 半小时后哥哥骑车以每小时10千米 追赶,同时明明怕迟到速度增加1 千米。 问哥哥需要多长时间才可以送到作业? 解:设哥哥要X小时才可以送到作业
2、甲、乙两人环绕周长是400米的跑道散步,如果两人从 同一地点背道而行,那么经过2分钟他们两人就要0分钟两人相 遇。 如果甲的速度比乙的速度快,求两人散步的速度? 解:设甲的速度为每分钟x 米,则乙的速度为每分钟 2 米。甲20分钟走了20x米,乙20分钟走了 2 0 ( 4 0 0 2 x ) 米 等量关系:甲行的路程-乙行的路程=环形周长 依题意得: 2 0 x
检验:两地相距28公里,在两地之间,小亮追不上小明 答:在两地之间,小亮追不上小明

某连队从驻地出发前往某地执行任务,行军速度是 6千米/小时,18分钟后,驻地接到紧急命令,派遣 通讯员小王必须在一刻钟内把命令传达到该连队, 小王骑自行车以14千米/小时的速度沿同一路线追赶 连队,问是否能在规定时间内完成任务? 解:设小王追上连队需要x小时,则小王行驶的路程为 14x千米,连队所行路程是 (6 1 8 6 x ) 千米

一列客车和一列货车在平行的轨道上同向行驶, 客车的长是200米,货车的长是280米,客车的 速度与货车的速度比是5 :3,客车赶上货车的 交叉时间是1分钟,求各车的速度;若两车相向 行驶,它们的交叉时间是多少分钟? 解:设客车的速度是5x米/分, 则货车的速度是3x米/分。 依题意得: 5x – 3x = 280 + 200
2)顺速 – 逆速 = 2水速;顺速 + 逆速 = 2船速
• 列车问题:1、在双轨铁道上,有两
列火车,都是250m长,其中快车速 度45km/h,慢车速度30km/h. • (1)相向而行,那么这两车车头相 遇到最后一节车厢的车尾相离一共 需要多少秒? • (2)同向而行,那么快车的车头与 慢车的车尾相遇直到完全错开一共 需要多少秒?
x=240 5x = 1200,3x = 720 设两车相向行驶的交叉时间为y分钟。 依题意得: 1200y+720y= 280 + 200 y=0.25
小结: 行程问题包括相遇、追击和飞行、航行的速度问题 其基本关系是:路程=时间×速度 相遇问题的等量关系:甲行距离+乙行距离=总路程 追击问题的等量关系: 1)同时不同地 : 慢者行的距离+两者之间的距离=快者行的距离 2)同地不同时: 甲行距离=乙行距离 或 慢者所用时间=快者所用时间+多用时间 顺水逆水的问题的等量关系: 1)顺水的路程 = 逆水的路程
5)两车同时同向而行(快车在后面),几小时后快车
可以追上慢车? 6)两车同时同向而行(慢车在后面),几小时后两车相 距200公里?
敌军在早晨5时从距离我军7 千米的驻地开始逃跑,我军发现 后立即追击,速度是敌军的1.5倍, 结果在7时30分追上,我军追击速 度是多少?
运动场一圈为400米,张 森和丁烁然一同参加学校运动 会的长跑比赛。已知丁烁然平 均每分钟跑230米,张森每分 钟跑150米,两人从同一处听 枪同向起跑,问经过多长时间 两人可以首次相遇?
20(400 2 x ) 2
2
400 2 x
400
x=110
答:甲速为每分钟110米,乙速为每分钟90米。 注:同时同向出发: 快车走的路程-环行跑道周长=慢车走的路程(第一次相遇) 同时反向出发: 甲走的路程+乙走的路程=环行周长(第一次相遇)
练习:1、两地相距28公里,小明以15公里/小时的速度。小 亮以30公里/小时的速度,分别骑自行车和开汽车从同一 地 前往另一地,小明先出发1小时,小亮几小时后才能 追上小明? 解:设小亮开车x 小时后才能追上小明,则小亮所行路 程为30x公里,小明所行路程为15(x+1) 等量关系:小亮所走路程=小明所走路程 依题意得:30x=15(x+1) x=1 则小明共走了2小时,共走了2×15=30公里
10X = 5X + 4×0.5 解得 X = 0.4
答:哥哥要0.4小时才可以把作业送到

学校 追 及 地
若哥哥恰好准时 送到作业,(明 明的速度仍然为 4千米/时)
问:哥哥的速度 为多少?
例:甲、乙两地相距162公里,一列慢车从甲站开出,每 小时走48公里,一列快车从乙站开出,每小时走60公里 试问: 1)两列火车同时相向而行,多少时间可以相遇? 2)两车同时反向而行,几小时后两车相距270公里? 3)若两车相向而行,慢车先开出1小时,再用多少时间 两车才能相遇? 4)若两车相向而行,快车先开25分钟,快车开了几小时 与慢车相遇?
24
280 40 7,
40
x=240 x+40=280,
240 24 10
答:水路长240千米,公路长为280千米,车行时间为 7小时,船行时间为10小时
引例:从甲地到乙地,水路比公路近40千米,上午十 时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地 驶往乙地,结果同时到达终点。已知轮船的速度是每小时 24千米,汽车的速度是每小时40千米,求甲、乙两地水路、 公路的长,以及汽车和轮船行驶的时间? 解2 设汽车行驶时间为x小时,则轮船行驶时间为 (x+3)小时。 等量关系:水路-公路=40
依题意得: 40x -24(x+3)= 40 x=7
7+3=10
40×7=280
24 ×10=240
答:汽车行驶时间为7小时,船行时间为10小时, 公路长为280米,水路长240米。
一、相遇问题的基本题型
1、同时出发(两段) 2、不同时出发 (三段 ) 二、相遇问题的等量关系
s甲 s乙 s 总
• 跟踪练习1:甲、乙两列火车
的长分别为144m和180m,甲 车比乙车每秒多行4m,两列 车相向而行,从相遇到全部 错开需要9s,问两列车速度各 是多少?
• 能力提升2:甲乙两人分手后 ,沿着铁轨反向而行,此时 ,一列火车匀速地向甲迎面 驶来,列车在甲身旁开过用 了15秒,然后在乙身旁开过 用了17秒,已知两人步行速 度都是3.6km/h,这列火车多 长?
• 相遇问题:甲、乙两汽车从A 市出发,丙汽车从B市出发, 甲车每小时行驶40千米,乙 车每小时行驶45千米,丙车 每小时行驶50千米。如果三 辆汽车同时相向而行,丙车 遇到乙车后10分钟才能遇到 甲车,求A、B两市的距离。
用一元一次方程分析和 解决实 际问题的基本过程如下:
实际问题
抽象
数学问题
分析
实际问题答案
合理
已知量,未 知量,等量 关系
列出
解的合理性
验证
方程的解
求出
一元一次方程
一、明确行程问题中三个量的关系 三个基本量关系是:速度×时间=路程 引例:从甲地到乙地,水路比公路近40千米,上午十 时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地 驶往乙地,结果同时到达终点。已知轮船的速度是每小时 24千米,汽车的速度是每小时40千米,求甲、乙两地水路、 公路的长,以及汽车和轮船行驶的时间? 解:设水路长为x千米,则公路长为(x+40)千米 等量关系:船行时间-车行时间=3小时 1 x 40 依题意得: x 3
60
等量关系:小王所行路程=连队所行路程
1 依题意得: 4 x 6
9
18 60
6x
x
9 40
40 小 时 1 3 .5 分 钟 < 1 5 分 钟
答:小王能在指定时间内完成任务。
2.小明每天早上要在7:20之前赶到 距家1000米的学校上学,一天,小 明以80米/分的速度出发,5分后,小 明的爸爸发现他忘了带语文书,于 是,爸爸立即以180米/分的速度去 追小明,并且在途中追上了他。 (1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多 远?
运用方程解决实际问题的一般过程是什么? 1、审题:分析题意,找出题中的数量及 其关系;审 2、设元:选择一个适当的未知数用字母表 示(例如x); 设 3、列方程:根据相等关系列出方程; 列 4、解方程:求出未知数的值;解 5、检验:检查求得的值是否正确和符合 实际情形,并写出答案。验
6、答:把所求的答案答出来。 答
相关文档
最新文档