电磁场理论期末复习题
电磁场与电磁波期末考试复习试题4套(部分含答案)

电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。
2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。
3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。
4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。
5.已知球坐标系中单位矢量 。
6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。
7.点电荷q 在自由空间任一点r 处电场强度为 。
8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。
9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
10.已知任意一个矢量场A ,则其旋度的散度为 。
11.真空中静电场的基本方程的微分形式为 、 、 。
12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。
13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。
14.任意一个标量场u ,则其梯度的旋度为 。
15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。
16.介质中静电场的基本方程的积分式为 , , 。
17.介质中恒定磁场的基本方程的微分形式为 、 、 。
18.介质中恒定磁场的基本方程的积分式为 , , 。
19.静电场中两种介质分界面的边界条件是 , 。
20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。
21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。
22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。
(完整word)西安电子科技大学电磁场期末试卷()

ee 《电磁场理论》期末考试题(120分钟 )一、 概念题。
(5⨯8=40分)1 写出电介质中静电场基本方程的微分形式和积分形式;2 写出磁感应强度B和磁矢位A 的关系式,并写出有源及无源空间磁矢位A 满足的方程; 3 写出时变电磁场的边界条件的矢量形式;4 写出麦克斯韦方程组和电流连续性方程的瞬时值微分形式;5 写出正弦电磁场的复坡印亭矢量S和复坡印亭定理;6 写出电磁波极化的定义以及平面电磁波的极化形式;7 对于非磁性介质,写出斜入射的均匀平面波产生全反射的条件; 对于非磁性介质,斜入射的均匀平面波产生全反射的条件是:8 计算长度λ10.=dl 的电基本振子的辐射电阻以及电流振幅值为mA 2时的辐射功率。
二、 一个半径为a 的均匀带电圆盘,电荷面密度为s ρ,求轴线上任意一点的电位.(10分)第二题用图三、内、外半径分别为a 、b 的无限长空心圆柱中均匀分布着轴向电流I ,求柱内外的磁感应强度。
(10 分)ab=l第三题用图四、一个截面如图所示的长槽,向y 方向无限延伸,两侧边的电位为零,槽内∞→y ,0=ϕ,底部电位为00U x =),(ϕ,求槽内电位。
(12分)=ϕ第四题用图五、从麦克斯韦方程组出发,推导各向同性、均匀、无耗介质中,无源区正弦电磁场的波动方程。
六.已知均匀平面电磁波的电场强度为)cos(ˆ)sin(ˆkz t E a kz t E aE y x i -+-=ωω00,将其作为入射波由空气向理想介质平面(0=z )垂直入射,坐标系如图(a )所示,介质的电磁参数为02029μμεε==,,计算:1、反射电磁波电场强度r E 和透射电磁波电场强度t E的复数值表达式;2、反射电磁波磁场强度r H 和透射电磁波磁场强度t H 的瞬时值表达式),(t z H r 和),(t z H t;3、判断入射电磁波、反射电磁波和透射电磁波是何种极化波;4、计算反射功率的时间平均值r av S , 和透射功率的时间平均值t av S ,;5、如果在理想介质分界面处加入厚度为d 的电磁介质如图(b )所示,试求交界面(0=z )无反射时,插入介质层的厚度d 以及相对介电常数r ε。
电磁场期末考试复习题及参考答案-专升本

《电磁场》复习题一、填空题1. 在两种均匀导体的界面上,电流密度 j 的切线分量是否连续? ;电流密度 j 的法线分量是否连续? 。
2、某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的 形式3、两个同性电荷之间的作用力是 。
4、根据电磁波在波导中的传播特点,波导具有 滤波器的特点。
(HP ,LP ,BP 三选一)5、矢量z y x e e eA ˆˆˆ++= 的大小为 。
6、从场角度来讲,电流是电流密度矢量场的 。
7、一个微小电流环,设其半径为a 、电流为I ,则磁偶极矩矢量的大小为 。
8、电介质中的束缚电荷在外加 作用下,完全脱离分子的内部束缚力时,我们把这种现象称为击穿。
9、法拉第电磁感应定律的微分形式为10、电场强度可表示为_ __的负梯度。
11、一个回路的自感为回路的_ _与回路电流之比。
12、电流连续性方程的积分形式为13、反映电磁场中能量守恒与转换规律的定理是14、一个微小电流环,设其半径为a 、电流为I ,则磁偶极矩矢量的大小为 。
15、电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。
16、法拉第电磁感应定律的微分形式为17、由相对于观察者静止的,且其电量不随时间变化的电荷所产生的电场称为 。
18、若电磁波的电场强度矢量的方向随时间变化所描绘的轨迹是直线,则波称为 。
19、从矢量场的整体而言,无散场的 不能处处为零。
二、选择题1、静电场是 ( )A.无散场B.旋涡场C.无旋场D.既是有散场又是旋涡场2、图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下面那方面内容(E 为电场强度的大小,U 为静电势) ( )A 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系C 、半径为R 的均匀带正电球体电场的U-r 关系D 、半径为R 的均匀带正电球面电场的U-r 关系3、导体在静电平衡下,其内部电场强度 ( )∞orA.为零B.为常数C.不为零D.不确定4、已知一高斯面所包围的体积内电量代数和0=∑i q ,则可肯定( )A 、高斯面上各点场强均为零B 、穿过整个高斯面的电通量为零C 、穿过高斯面上每一面元的电通量为零D 、以上说法都不对5、下列说法正确的是 ( )A 、 闭合曲面上各点场强为零时,面内必没有电荷B 、闭合曲面的电通量为零时,面上各点场强必为零C 、闭合曲面内总电量为零时,面上各点场强必为零D 、通过闭合曲面的电通量仅决定于面内电荷6、电位移矢量与电场强度之间的关系为( )A.0D E ε=B.0E D ε=C.D E σ=D.E D σ=7、导体在静电平衡下,其内部电场强度( )A.为常数B.为零C.不为零D.不确定8、矢量磁位的旋度是( )A.磁场强度B.电位移矢量C.磁感应强度D.电场强度9、平行板电容器极板间电介质有漏电时,则在其介质与空间分界面处( )A.E 连续B. D 连续C. J 的法线分量连续D. J 连续10、如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为( )A 、 2021r 4Q Q πε+B 、+πε2101R 4Q 2202R 4Q πε C 、201r4Q πε D 、0 三、简述题1、坡印廷定理2、试简述唯一性定理,并说明其意义3、位移电流的表达式,它的提出有何意义4、试推导静电场的泊松方程。
电磁场与电磁波期末复习题

电磁场与电磁波模拟题一、选择题1. 已知:e e e e e e z y x z y x B A 432;543++=++=;计算:A⃗×B ⃗⃗= ( A ) A. e x ⃗⃗⃗⃗+2e y ⃗⃗⃗⃗⃗(10−12)+e z ⃗⃗⃗⃗ B. 4e x ⃗⃗⃗⃗⃗⃗⃗+2e y ⃗⃗⃗⃗⃗⃗⃗+e z ⃗⃗⃗⃗ C. 6e x ⃗⃗⃗⃗−12e y ⃗⃗⃗⃗⃗+20e z ⃗⃗⃗⃗D. 6e x ⃗⃗⃗⃗+12e y ⃗⃗⃗⃗⃗(A y B z −A z B y )+20e z ⃗⃗⃗⃗2. E ⃗⃗=e x ⃗⃗⃗⃗(x 2+bxz )+e y ⃗⃗⃗⃗⃗(xy 2+ay )+e z ⃗⃗⃗⃗(z −z 2+czx −2xyz )为无源场,求a ,b ,c 的值分别为:( B )A. a=3,b=3,c=1B. a=-1,b=2,c=-2C. a= -2 b=2 ,c=1D. a=1 ,b=2 ,c=-2 3. 自由空间中毕澳-萨伐卡定律表述正确的是:( A ) A. B ⃗⃗=μ04π∫J ⃗×R ⃗⃗R 3dV V B. B ⃗⃗=μ04π∮Idl ⃗×R ⃗⃗R 3 S C. B ⃗⃗=μ02π∮Idl ⃗×R ⃗⃗R 2 CD. B ⃗⃗=μ02π∫J S ⃗⃗⃗⃗⃗×R ⃗⃗R 3dS S4.对于线性及各向同性的媒质,电磁场的电场强度、电位移矢量、磁场强度、磁感应强度本构关系不正确的是( D )A. D⃗⃗=εE ⃗⃗ B. B ⃗⃗=μH ⃗⃗ C. J ⃗=σE ⃗⃗ D. H ⃗⃗=μB ⃗⃗ 5.静电场中电场能量存在于整个电场空间中,和电场强度及电位移矢量相关,下面正确的是:(A )A. W e =12∮φD ⃗⃗∙dS ⃗S +12∫E ⃗⃗∙D ⃗⃗dV V B. W e =12∮φD ⃗⃗∙dl ⃗C +12∫E ⃗⃗∙D ⃗⃗dV VC. W e =12∮φD ⃗⃗∙dS ⃗ S +12∮E ⃗⃗∙D ⃗⃗dlCD. W e =12∮φD ⃗⃗∙dl ⃗C +12∮E ⃗⃗∙D ⃗⃗dl C6. 恒定磁场中磁场能量存在于整个磁场空间中,下面正确的是:(A )A. W m =12∫J ⃗∙A ⃗dVV =12∫H ⃗⃗∙B ⃗⃗dV VB. W e =12∫H ⃗⃗∙B ⃗⃗dVVC. W e =12∫J ⃗∙A ⃗dVV =12∫H ⃗⃗∙B ⃗⃗dV V D. W m =12∫J ⃗∙A ⃗dV V +12∫H ⃗⃗∙B ⃗⃗dV V7. 设点电荷2q 在球坐标系中(d ,0,0)处,接地导体球半径为a,的球心在z=0处,两者组成系统中,在r>a处的电位函数为:()A. φ=q4πε[√22d√r2+(a2d)2−2r a2dcosθ]B. φ=q2πε[d√r2+(2d)2−2r2dcosθ]C. φ=q4πε[d√r2+(d)2−2rdcosθ]D. φ=q2πε[√d√r2+(2d)2−2r2dcosθ]8.无界空间中,媒质为线性及各向同性材料,电磁波传播满足的波动方程为:()A. ∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt+∇∙ρε;∇2H⃗⃗−μεð2H⃗⃗ðt2=∇×J⃗B. ∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt+∇∙ρε;∇2H⃗⃗+μεð2H⃗⃗ðt2=∇×J⃗C. ∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt−∇∙ρε;∇2H⃗⃗−μεð2H⃗⃗ðt2=∇∙J⃗D. ∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt−∇∙ρε;∇2H⃗⃗+μεð2H⃗⃗ðt2=∇∙J⃗9.空间区域中电磁能守恒的坡印廷定理为:()A. −ddt ∫wdVV=∫J⃗∙VE⃗⃗dV+∮S⃗∙dS S⃗⃗⃗⃗S SB. ddt ∫wdVV=∫J⃗∙VE⃗⃗dV−∮S⃗∙dS S⃗⃗⃗⃗S SC. ddt ∫wdVV=∫J⃗∙VE⃗⃗dV+∮S⃗∙dS S⃗⃗⃗⃗S SD. −ddt ∫wdVV=∫J⃗∙VE⃗⃗dV−∮S⃗∙dS S⃗⃗⃗⃗S S10.均匀平面波在两种媒质都为理想介质中传播时,其反射系数和透射系数为:()A. Γ=E rmE im =η2−η1η2+η1;τ=E tmE im=1+Γ=2η2η2+η1B. Γ=E rmE im =η2+η1η2−η1;τ=E tmE im=1+Γ=2η2η2+η1C. Γ=E rmE im =η2−η1η2+η1;τ=E tmE im=1+Γ=2η2η2−η1D. Γ=E rmE im =η2+η1η2−η1;τ=E tmE im=1+Γ=2η2η2−η111.计算:e n⃗⃗⃗⃗⃗(A⃗⃗∙B⃗⃗)+ A⃗×B⃗⃗=( )A. e n⃗⃗⃗⃗⃗A⃗B⃗⃗(cosθ−sinθ)B. e n⃗⃗⃗⃗⃗A⃗B⃗⃗(cosθ+sinθ)C. e n⃗⃗⃗⃗⃗AB(cosθ+sinθ)D. e n⃗⃗⃗⃗⃗AB(cos θ−sin θ) 12. 计算:∫∇∙F ⃗dV V +∫∇×F ⃗∙dS ⃗S = (A ) A .∮F ⃗∙dS ⃗+∮F ⃗∙dl ⃗C S B .∮F ⃗×dS ⃗+∮F ⃗×dl ⃗C S C .∮∇×F ⃗∙dS ⃗S D .∮∇×F ⃗∙dl ⃗c13.真空中库伦定律的公式,正确的是:( B )A.E r ⃗⃗⃗⃗⃗=12πε0∫ρS R ⃗⃗⃗R 3dS S B.E r ⃗⃗⃗⃗⃗=14πε0∫ρl R⃗⃗⃗R 3dl l C.E r ⃗⃗⃗⃗⃗=14πε0∫ρR ⃗⃗⃗R 2dV V D. E r ⃗⃗⃗⃗⃗=12πε0∫ρR⃗⃗⃗R 3dV V 14.从宏观效应来分析,在电磁场的作用下,媒质会发生极化、磁化和传导三种现象,对应媒质的三种特性的参数分别是: ( A ) A.介电系数ε、磁导率μ、电导率σ B.介电系数σ、磁导率ε、电导率μ C.介电系数μ、磁导率σ、电导率ε D.介电系数μ、磁导率ε、电导率σ15.静电场中,对于点电荷、线电荷、面电荷、体电荷,电位函数与求解公式正确的是:( A )A. φ=14πε∑qiR in i=1+cB. φ=14πε∫ρl dl R 2l +cC. φ=14πε∫ρS dS R 2S+cD. φ=14πε∫ρ dV R 2V+c16.由电流元Idl ⃗产生的恒定磁场,其矢量磁位的公式正确的是:( B ) A. A ⃗=μ4π∫Idl ⃗R 2l +C ⃗ B. A ⃗=μ4π∫Idl ⃗Rl +C ⃗; C.A⃗=μ2π∫Idl⃗R 2 l +C ⃗D. A⃗=μ2π∫Idl⃗Rl +C⃗; 17. 设点电荷2q 在直角坐标系中(0,0,h )处,在z=0处有无限大接地导体,两者组成系统中,在z >0处的电位函数为:( ) A.φ=q2πε[√x 2+y 2+(z−h)2−√x 2+y 2+(z+h)2] B.φ=q 4πε[222−222] C.φ=q2πε[222−222] D.φ=q4πε[222−222]18.无界空间里为线性及各向同性材料,电磁波传播满足的波动方程为:( )A. ∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt+1ε∇ρ∇2H⃗⃗−μεð2H⃗⃗ðt2=∇×j⃗B.∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt+1ε∇ρ∇2H⃗⃗+μεð2H⃗⃗ðt2=∇×j⃗C.∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt−1ε∇ρ∇2H⃗⃗−μεð2H⃗⃗ðt2=∇×j⃗D.∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt−1ε∇ρ∇2H⃗⃗+μεð2H⃗⃗ðt2=∇×j⃗19.无界空间里媒质为线性及各向同性材料,电磁波传播满足的达朗贝尔方程为:( A)A. ∇2A⃗−μεð2A⃗ðt2=−μJ⃗ ; ∇2φ−μεð2φðt2=−ρεB.∇2A⃗−μεð2A⃗ðt2=μJ⃗ ; ∇2φ−μεð2φðt2=ρεC.∇2A⃗+μεð2A⃗ðt2=−μJ⃗ ; ∇2φ+μεð2φðt2=−ρεD. ∇2A⃗+μεð2A⃗ðt2=μJ⃗ ; ∇2φ+μεð2φðt2=ρε20. E⃗⃗⃗=e x⃗⃗⃗⃗⃗E xm cos(ωt−kz+ϕx)+e y⃗⃗⃗⃗⃗E ym sin(ωt−kz+ϕy)复矢量:(A)A. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz+ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz+ϕy−π2)B. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz+ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz+ϕy+π2)C. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz−ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz−ϕy)D. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz−ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz−ϕy)二、填空题1.矢量函数A⃗⃗通量的密度称为散变 ,即div A⃗⃗= ;2.自由电荷在其周边空间中形成的电场称为电磁场,为无旋场;恒定电流在其周边空间形成的磁场称为恒定磁场,为无散场。
大学电磁场考试题及答案

大学电磁场考试题及答案一、选择题(每题2分,共20分)1. 电磁场中,电场与磁场的相互作用遵循以下哪个定律?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 洛伦兹力定律答案:D2. 在真空中,电磁波的传播速度是多少?A. 100,000 km/sB. 300,000 km/sC. 1,000,000 km/sD. 3,000,000 km/s答案:B3. 一个点电荷产生的电场强度与距离的平方成什么关系?A. 正比B. 反比C. 对数关系D. 线性关系答案:B4. 以下哪种介质不能支持电磁波的传播?A. 真空B. 空气C. 玻璃D. 金属答案:D5. 麦克斯韦方程组中描述变化电场产生磁场的方程是?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 安培环路定律答案:C6. 一个均匀带电球壳内部的电场强度是多少?A. 零B. 与球壳内的电荷分布有关C. 与球壳外的电荷分布有关D. 与球壳的总电荷量成正比答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率越大,波长越小答案:B8. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,其受到的力的方向与什么因素有关?A. 粒子的速度B. 磁场的方向C. 粒子的电荷D. 所有上述因素答案:D9. 电磁波的偏振现象说明电磁波是横波,这是因为?A. 电磁波的振动方向与传播方向垂直B. 电磁波的振动方向与传播方向平行C. 电磁波的传播不需要介质D. 电磁波在真空中传播速度最快答案:A10. 一个闭合电路中的感应电动势遵循以下哪个定律?A. 欧姆定律B. 基尔霍夫电压定律C. 法拉第电磁感应定律D. 安培环路定律答案:C二、填空题(每题2分,共20分)11. 电磁波的传播不需要______,因此它可以在真空中传播。
答案:介质12. 根据麦克斯韦方程组,电荷守恒定律可以表示为:∇⋅ E =______。
电磁场期末试题

电磁场与电磁波期末测验题一、判断题:(对的打√,错的打×,每题2分,共20分)1、标量场在某一点梯度的大小等于该点的最大方向导数。
(√)2、真空中静电场是有旋矢量场。
(×)3、在两种介质形成的边界上,电场强度的切向分量是不连续的。
(×)4、当导体处于静电平衡状态时,自由电荷只能分布在导体的表面。
(√)5、在理想导体中可能存在恒定电场。
(×)6、真空中恒定磁场通过任一闭合面的磁通为零。
(√)7、时变电磁场是有旋有散场。
(√)8、非均匀平面波一定是非TEM 波。
(×)9、任意取向极化的平面波可以分解为一个平行极化波与一个垂直极化波的合成 (√)10、真空波导中电磁波的相速大于光速。
(√)二、简答题(10+10=20分)1、简述静电场中的高斯定律及方程式。
答:真空中静电场的电场强度通过任一闭合曲面的电通等于该闭合曲面所包围的电荷量与真空介电常数之比。
⎰=⋅S S E 0d εq2、写出麦克斯韦方程的积分形式。
答:S D J l H d )(d ⋅∂∂+=⋅⎰⎰S l t S B l E d d ⋅∂∂-=⋅⎰⎰S lt 0d =⋅⎰S S Bq S=⋅⎰ d S D三、计算题(8+8+10+10+12+12)1 若在球坐标系中,电荷分布函数为⎪⎩⎪⎨⎧><<<<=-b r b r a a r 0, ,100 ,03ρ试求b r a a r <<<< ,0及b r >区域中的电通密度D 。
解 作一个半径为r 的球面为高斯面,由对称性可知r e D s D 24d rq q s π=⇒=⋅⎰ 式中q 为闭合面S 包围的电荷。
那么在a r <<0区域中,由于q = 0,因此D = 0。
在b r a <<区域中,闭合面S 包围的电荷量为()3333410d a r v q v -⨯==-⎰πρ 因此, ()r e D 2333310r a r -=- 在b r >区域中,闭合面S 包围的电荷量为()3333410d a b v q v -⨯==-⎰πρ 因此, ()r e D 2333310r a b -=- 2 试证位于半径为a 的导体球外的点电荷q 受到的电场力大小为222302232)(4)2(a f f a f a q F ---=πε 式中f 为点电荷至球心的距离。
电磁场期末考试试题

电磁场期末考试试题一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是多少?A. 299,792,458 m/sB. 3.0 x 10^8 m/sC. 1.0 x 10^8 m/sD. 9.0 x 10^7 m/s2. 麦克斯韦方程组中描述磁场变化产生电场的方程是:A. ∇ × E = -∂B/∂tB. ∇ × B = ∂E/∂tC. ∇ × E = ∂B/∂tD. ∇ × B = -∂E/∂t3. 在静电场中,电场强度与电势的关系是:A. E = -∇VB. E = ∇VC. E = ∇×VD. E = -∇×V4. 以下哪个不是电磁波的类型?A. 无线电波B. 可见光C. X射线D. 声波5. 根据洛伦兹力公式,一个带电粒子在磁场中运动时受到的力是:A. F = qvBC. F = qB × vD. F = q × (v × B)6. 以下哪个是描述电磁波的偏振性质的?A. 频率B. 波长C. 振幅D. 方向7. 电磁波在介质中的传播速度与真空中相比:A. 总是更大B. 总是更小C. 取决于介质的折射率D. 无法确定8. 一个闭合电路中的感应电动势与磁通量变化的关系由以下哪个定律描述?A. 欧姆定律B. 法拉第电磁感应定律C. 基尔霍夫电压定律D. 基尔霍夫电流定律9. 在电磁场理论中,以下哪个不是电磁波的属性?A. 频率B. 波长C. 质量D. 能量10. 以下哪个是描述电磁波在介质中传播时波速变化的公式?A. v = c/nC. v = c + nD. v = n/c二、简答题(每题5分,共20分)1. 简述麦克斯韦方程组的四个基本方程及其物理意义。
2. 解释什么是电磁波的色散现象,并给出一个例子。
3. 说明什么是电磁感应,并给出一个实际应用的例子。
4. 描述电磁波在不同介质中的传播特性。
电磁场期末考试题及答案

电磁场期末考试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是()。
A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 电场强度的定义式为E=()。
A. F/qB. F/QC. Q/FD. F/C答案:A3. 磁场强度的定义式为B=()。
A. F/IB. F/iC. F/qD. F/Q答案:B4. 根据麦克斯韦方程组,变化的磁场会产生()。
A. 电场B. 磁场C. 电势D. 电势差答案:A5. 电磁波的波长、频率和波速之间的关系是()。
B. λ = f/cC. λ = c*fD. λ = f^2/c答案:A6. 两个点电荷之间的静电力与它们之间的距离的平方成()。
A. 正比B. 反比C. 无关D. 一次方答案:B7. 根据洛伦兹力公式,带电粒子在磁场中运动时,受到的力与磁场强度的关系是()。
A. 正比C. 无关D. 一次方答案:A8. 电容器的电容与两极板之间的距离成()。
A. 正比B. 反比C. 无关D. 一次方答案:B9. 根据楞次定律,当线圈中的磁通量增加时,感应电流产生的磁场方向是()。
A. 增加磁通量B. 减少磁通量D. 增加或减少磁通量答案:B10. 根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率的关系是()。
A. 正比B. 反比C. 无关D. 一次方答案:A二、填空题(每题2分,共20分)1. 电场中某点的电势为V,将单位正电荷从该点移到无穷远处,电场力做的功为________。
2. 两个点电荷q1和q2之间的静电力常数为k,它们之间的距离为r,则它们之间的静电力大小为________。
答案:k*q1*q2/r^23. 磁场中某点的磁感应强度为B,将单位电流元i放置在该点,电流元与磁场方向垂直时,受到的磁力大小为________。
答案:B*i4. 根据麦克斯韦方程组,变化的电场会产生________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场理论期末复习题(附答案)一填空题1.静止电荷所产生的电场,称之为静电场;电荷Q在某点所受电场力为F,则该点电场强度的大小为QFE=。
2. 可以用电位的负梯度来表示电场强度;当电位的参考点选定之后,静电场中各点的电位值是唯一确定的。
3.__电荷_____的规则运动形成电流;将单位正电荷从电源负极移动到正极,非静电力__所做的功定义为电源的电动势4.由恒定电流或永磁体产生的磁场不随时间变化,称为恒定磁场。
5.磁感应强度B是无散场,它可以表示为另一个矢量场A的旋度,称A为矢量磁位,为了唯一地确定A,还必须指定A的散度为零,称为库仑规范。
6.静电场的边界条件,即边值问题通常分为三类:第一类为给定整个边界上的位函数值;第二类为给定边界上每一点位函数的法向导数值;第三类为给定一部分边界上每一点的位函数值,同时给定另一部分边界上每一点的位函数的法向导数值。
7.位移电流扩大了电流的概念,它由电场的变化产生,相对于位移电流我们称由电荷规则运动形成的电流为传导电流和运流电流。
8. 在电磁波传播中,衰减常数α的物理意义为表示电磁波每传播一个单位的距离,其振幅的衰减量,相位常数β的物理意义为表示电磁波每传播一个单位距离相位偏移量。
10.静电场是有势场,静电场中各点的电场与电位关系用公式表示是__Eφ=-∇_______。
13._____恒定电流________________产生的磁场,叫做恒定磁场。
14.库仑规范限制了矢量磁位A的多值性,但不能唯一确定A。
为了唯一确定A,还必须给定A的____散度为零________________________。
16.时变电磁场分析中,引入洛仑兹规范是为了解决动态位的____惟一性__________。
18.载流导体在磁场中会受到电磁力的作用,电磁力的方向由__左手_____定则确定。
二、选择题1.磁感应强度B与磁场强度H的一般关系为 ( B )A.H=μBB.B=μHC.H=μr BD.B=μ0H2 导体在静电平衡下,其内部电场强度( B )A.为常数B.为零C.不为零D.不确定3 真空中磁导率的数值为( C )A. 4π×10-5H/mB. 4π×10-6H/mC. 4π×10-7H/mD. 4π×10-8H/m4.磁通Φ的单位为( B )A.特斯拉B.韦伯C.库仑D.安匝5.矢量磁位的旋度是 ( A )A.磁感应强度B.磁通量C.电场强度D.磁场强度6.真空中介电常数ε0的值为 ( D )A.8.85×10-9F/mB.8.85×10-10F/mC.8.85×10-11F/mD.8.85×10-12F/m7.下面说法正确的是 ( A )A.凡是有磁场的区域都存在磁场能量B.仅在无源区域存在磁场能量C.仅在有源区域存在磁场能量D.在无源、有源区域均不存在磁场能量8 静电场中试验电荷受到的作用力大小与试验电荷的电量( C )A.成反比B.成平方关系C.成正比D.无关9.平板电容器的电容量与极板间的距离 ( B )A.成正比B.成反比C.成平方关系D.无关10.在磁场B中运动的电荷会受到洛仑兹力F的作用,F与B的空间位置关系 ( B )A.是任意的B.相互垂直C.同向平行D.反向平行2.高斯定理的积分形式描述了 B 的关系;A.闭合曲面内电场强度与闭合曲面内电荷之间的关系B. 闭合曲面的电场强度通量与闭合曲面内电荷之间的关系C.闭合曲面内电场强度与闭合曲面外电荷之间的关系D. 闭合曲面的电场强度通量与闭合曲面附近电荷之间的关系13.以下阐述中,你认为正确的一项为 D ;A. 可以用电位的函数的梯度表示电场强度B. 感应电场是保守场,其两点间线积分与路径无关C.静电场是无散场,其在无源区域的散度为零D.静电场是无旋场,其在任意闭合回路的环量为零14. 以下关于电感的阐述中,你认为错误的一项为 C ;A.电感与回路的几何结构有关B. 电感与介质的磁导率有关C.电感与回路的电流有关D.电感与回路所处的磁场强度无关17.若电介质中的极化强度矢量和电场强度成正比关系,则称这种电介质为 BC ;A.均匀的B.各向同性的C.线性的D.可极化的18. 均匀导电媒质是指其电导率无关于 B ;A.电流密度B.空间位置C.时间D.温度19.关于镜像法,以下不正确的是 B ;A.它是解静电边值问题的一种特殊方法B.用假想电荷代替原电荷C.假想电荷位于计算区域之外D.假想电荷与原电荷共同作用满足原边界条件20. 交变电磁场中,回路感应电动势与回路材料电导率的关系为 D ;A.电导率越大,感应电动势越大B.电导率越小,感应电动势越大C.电导率越大,感应电动势越小D.感应电动势大小与导电率无关22.相同尺寸和匝数的空心线圈的电感系数与铁心线圈的电感系数之比( C )A.大于1B.等于1C.小于1D.无确定关系24.真空中均匀平面波的波阻抗为 A ;A.377ΩB.237ΩC.277ΩD.337Ω25. 在磁场B 中运动的电荷会受到洛仑兹力F 的作用,F 与B 的空间位置关系 B ; A.是任意的 B.相互垂直 C.同向平行 D.反向平行三、简答题1.什么是接地电阻?其大小与哪些因素有关?答:接地设备呈现出的总电阻称之为接地电阻;其大小与土壤电导率和接地体尺寸(等效球半径)成反比2.写出微分形式的麦克斯韦的数学表达式。
说明它揭示了哪些物理量含义?)3.电偶极子答:一对相距很近的正、负电荷称之为电偶极子4.体电流密度答:垂直于电荷运动方向单位面积上通过的电流5.介质中的磁场强度(用公式定义)6.磁场能量密度答:单位体积内的磁场能量7.传导电流、位移电流、运流电流是如何定义的?各有什么特点?答:传导电流是导体中电荷运动形成的电流;位移电流是变化的电场产生的等效电流;运流电流是不导电空间内电荷运动形成的电流四、分析计算题1、如图所示,真空中有电荷以体密度为ρ均匀分布于一半径为R 的球中,如图所示。
求球内、外的电场强度。
解:a<R 时,⎰S EdS =dv v ⎰0ερ ,即 24a E π⨯=3034a ⨯⨯περ,所以03ερa E =a>R 时,⎰S EdS =0εq ,即 24a E π⨯=3034a ⨯⨯περ,所以3023a R E ερ= 2、已知半径为a 的球内、 外的电场强度为求电荷分布。
解: ▽00ερερ=⇒=•→E ▽dr Er r d rq E ⎪⎭⎫ ⎝⎛⨯=•→→220 a r <=,0ρ⎪⎪⎭⎫ ⎝⎛-=→3200215215a r a E ερ 2.求半径为α的均匀带电球体在球内外产生的电位解:03,ερr E a r =< 2033,r a E a r ερ=> 取球心为参考点a r r Er <==,302ερϕ a r r a Er >==,303εϕϕ 3、设同轴线的内导体半径为a ,外导体的内半径为b ,外半径为c ,如图所示,设内外导体间分别流过反向电流I ,两导体之间介质的磁导率为μ,试求各区域的H ,B 。
解:选用圆柱坐标系()1R <ρa ≤≤ρ0,取安培还路的交链电流)(2325)(330220a r a r a r E e E a r r a E e E r r <⎪⎪⎭⎫ ⎝⎛-=>=222212aI a I I ρπρπ⨯=⨯=应用安培环路定理得, →→→=⇒=⇒=φφπρπρρπρe a I H a I u e B a I u B 212012201222 φφπρπρπρρ→→→=⇒=⇒=≤≤e I H I u e B I u B b a 222,20202πρρπρρρρφφ22,222322200322223→→⎪⎪⎭⎫ ⎝⎛---⇒⎪⎪⎭⎫ ⎝⎛---=⇒---=≤≤e b c b I I H e b c b I u I u B b c b I I I c b000,444=⇒=⇒=≤H B I c ρ 4.如图所示,设同轴线的内导体半径为a, 外导体的内半径为b ,内、 外导体间填充电导率为σ的导电媒质,如下图所示,求同轴线单位长度的漏电电导。
解: 介质中任一点的漏电密度等于πρρ2I e →,I 为通过半径为ρ的单πρσσρ2→→→→⇒=Ie E E J ,位长度同轴同圆柱面的漏电电流,则由于内外导体间电压πσ2ln 00a b I dl E U b ==⎰→ 漏电率ab U I G ln 2πσ== 5.半径为a 的无限长直导线,载有电流I ,计算导体内、外的磁感应强度。
解:当⎰=<oI Bdl a pc μ,, 由于1I =22/a I P , 则202022a II a B πρμπρρμ=*=当πρμμρ2,,00I B I dl B a c ==⋅>⎰则 6.如下图所示,一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,求球外任一点的电位。
8、同心球电容器的内导体半径为a ,外导体的内半径为b ,其间填充两种介质,上半部分的介电常数为1ε,下半部分的介电常数为2ε,如图所示,设内、外导体带电分别为q 和q -,分别求上、下两部分的电位移矢量和电场强度。
解:由边界边条可得 E E ==21E又由 q DdV D V =⋅∇⇒=⋅∇⎰ρ ∴q dV D dV D V V -=⋅∇+⋅∇⎰⎰21 q dS D dS D S S -=+⎰⎰21 qEdS dS E S S -=+⎰⎰21εε ∴))(())((22212221b a q E q a b E -+=⇒-=⋅-⋅+εεπππεε ∴))((2221111b a q E D -+==εεπεε ))((2221222b a q E D -+==εεπεε 9、半径为a 的无限长直导线,流过的电流为I ,试计算导体内、外的磁感应强度。
解:由于 J u B 0=⨯∇ ∴00I u Bdl l =⎰当r a >时 2202a r I u r B ••=πππ ∴)(220a r aIr u B <•=π当r a <时 I u r B 02=π ∴)(20a r r I u B >=π 10、求置于无限大接地平面导体上方,距导体面为h 处有一点电荷q ,在空间任一点产生的电位。
11、在聚苯乙烯(06.2εε=)与空气的分界面两边,聚苯乙烯中的电场强度为m V /2500,电场方向与分界面法线的夹角是020,如图所示。
试求:(1)空气中电场强度与分界面法线的夹角;(=020tan 0.363)(2)空气中的电场强度。
12、设同轴线的内导体半径为a ,外导体的内半径为b ,内、外导体间填充电导率为σ的导电媒质,如图所示,试求同轴线单位长度的漏电电导。