耐干旱的植物有哪些特点

耐干旱的植物有哪些特点

耐干旱的植物有哪些特点

干旱由于其发生频率高、持续时间长,影响范围广、后延影响大,成为影响我国农业生产最严重的气象灾害。干旱是我国主要畜牧气象灾害,主要表现在影响牧草、畜产品和加剧草场退化和沙漠化。

植物适应干旱环境的特点:

1、从形态上说:根系发达而深扎,根/冠比大,这样能有效地利用土壤水分,特别是土壤深处的水分,并能保持水分平衡。叶片细胞小,叶脉致密,单位面积气孔数目多,加强蒸腾,有利吸水。

2、生理物特点:细胞液的渗透势低,能抗过渡脱水,在缺水情况下气孔关闭较晚,光合作用不立即停止,酶的合成活动仍占优势,即是保持一定水平的生理活动,合成大于分解。

仙人掌大多生长在干旱的环境里。有的呈柱形,高10多米,重量约两三万斤,巍然屹立,甚为壮观。一些长着棘刺的仙人球,有的寿命高达五百年仙人掌类植物还有一种特殊的本领,在干旱季节,

它可以不吃不喝地进入休眠状态,把体内的养料与水分的消耗降到最低程度。当雨季来临时,它们又非常敏感地“醒”过来,根系立刻活跃起来,大量吸收水分,使植株迅速生长并很快地开花结果。有些仙人掌类植物的根系变成胡萝卜状,可贮存七八十斤水分。曾经有人把一个仙人球包在干燥的纸袋里放了两年多,尽管有些皱缩,但一种到盆里,浇水后又很快长出了新根,并恢复生长。仙人掌以它那奇妙的结构,惊人的耐旱能力和顽强的生命力,受到人类的赏识。

植物对干旱胁迫的响应及其研究进展

植物对干旱胁迫的响应及其研究进展 学院:班级: 姓名:学号: 摘要:植物在经受干旱胁迫时,通过细胞对干旱信号的感知和传导,调节基因表达,产生新蛋白质,从而引起大量形态、生理和生化上的变化.干旱胁迫对植物在细胞、器官、个体、群体等水平的形态指标有显著影响,也会影响其光合作用、渗透调节、抗氧化系统等生理生化指标.植物对干旱胁迫分子响应较复杂,包括合成一些新的基因如NCED、Dehydrin基因和CBF、DREB等转录因子.另外,干旱胁迫还能造成蛋白质组学的变化. 关键词干旱胁迫;生态响应;生理机制;研究进展干旱作为影响作物生长发育、基因表达、分布以及产量品质的重要因素之一,严重限制了作物的大面积扩展。植物对干旱的适应能力不仅与干旱强度、速度有关,而且更受其自身基因的调控。在一定干旱阀值(drought threshold)胁迫范围内,很多植物能够进行相关抗旱基因的表达,随之产生一系列生理、生化及形态结构等方面的变化,从而显现出抗旱性的综合性状。因此,从植物本身出发,深入研究植物的抗旱机理,揭示其抗旱特性,提高植物品种的抗旱耐旱能力,以降低作物栽培的用水量,同时最大程度提高作物的产量和品质,科学选育适宜广大干旱、半干旱地区种植的优良作物品种,已成为国内外专家学者们所特别关注和研究的热点问题,对于水资源的合理利用和生态环境的改善均有着重要的意义。 目前,生存资源、环境与农业可持续发展之间的矛盾日益突出,这就要求人们更应高度重视农业综合开发过程中作物逆境生物学的基础研究。 一、植物抗旱基因工程研究新进展 (一)与干旱胁迫相关的转录因子研究 通过转化调节基因来提高植物脱水胁迫的耐性是一条十分诱人的途径.由于在逆境条件下,这些逆境相关的转录因子,能与顺式作用重复元件结合,从而调节这些功能基因的表达和信号转导,它们在转基因植物中的过量表达会激活许多抗逆功能基因的同时表达.胁迫诱导基因能增强胁迫反应的耐力,不同的转录因子参与胁迫诱导基因的调控.遗传研究已经鉴

沙漠植物对干旱的适应策略

生存有道---沙漠植物对干旱的适应策略 沙漠地区的植物在地球上历尽沧桑,通过自然界选择、优胜劣汰,在长期的进化演替过程中,形成了适应特殊环境条件的能力,表现出对沙漠环境的多种适应方式和适应特性。沙漠植物适应沙漠特殊生境的一般规律表现在:适应能力强(除对气候干旱,高温、日灼等的适应外,许多植物对土壤贫瘠、盐碱,对风蚀、沙打沙割、沙埋等的适应和忍耐性能也很强);结实量大、易更新繁殖(繁殖材料可大量获得,包括有性繁殖和无性繁殖,或具根茎相互转化的功能、具有克隆或可平茬复壮的特性);枝叶特化、根系发育特殊(叶片小或退化以同化枝来进行光合作用,或多浆茎、叶储水保水;根系生长迅速,深根性或水平根发达),生长稳定,长寿或短时间完成生活史(短期生植物,亦称短命植物或短生植物)等。 根系发达、生长迅速 沙漠植物的根系在适应干旱环境的特征上有所不同,在荒漠、半荒漠地区,由于降水稀少,年平均降水多在200毫米以下,甚至小于50毫米,沙丘上干沙层很厚,这就迫使生物量大的木本植物的根系向深层发展,以求利用地下水,因此,深根性植物较多,如白梭梭和梭梭的垂直根深达5米以下,深深扎入地下水层,以吸收地下水。柽柳(红柳)的主、侧根都极发达,主根往往伸至地下水层,最深可达10余米。在吐鲁番的坎儿井的竖井中发现,骆驼刺的根系在离地表20米以下

可见。胡杨、沙拐枣属植物的根系多为水平分布,水平根可超过10米;但在地下水8~10米深的吐鲁番沙地上,沙拐枣的根系可垂直向下发展到5米左右,能深达地下水沿毛细管上升的区域;银沙槐水平根发达,垂直根深入沙层2米余,水平根交错盘诘,集中分布在30~50厘米沙层内,长可达10米以上此外,一年生幼苗主根深扎沙土层50厘米,三年的实生苗垂直根生90厘米,根幅约1.5米,银沙槐地上部分生长比根系发育缓慢,当年幼苗地下部分垂直方向的生长近5倍以地上部分的高生长。而我国东部草原地区降水较多,年平均降水量在250~400毫米,沙漠植物为了充分利用降水,以发展水平根系为主。如沙柳主根发育不明显,水平根极发达,密如蛛网,一丛四年生沙柳,株高3.5米,水平根幅达20余米,为地上部分的五倍多,黄柳垂直根可达3.5米,而向水平伸展常达20米以上。杨柴为浅根性灌木,主根一般深1~2米, 侧根多分布在深10~40厘米深的土层中,2年生侧根长达2.4米,成年植株可达10余米。花棒成年植株根幅可达10余米,最大根幅可达20~30米。分布于干草原地区的差巴嘎蒿垂直根下扎2米左右,水平根向四周强烈扩展,根幅达3米以上。白沙蒿无明显垂直根系,水平根极发达,5年生根幅为冠幅的7.5倍。油蒿虽属深根性半灌木,12龄的植株根深3.5米,但根幅达9.2米,侧根密布在0~130厘米的沙层内,在荒漠地区的沙坡头,油蒿主根深达4.5米。通常沙漠地表层为干沙层,30~40厘米以下为稳定湿沙层,植物发芽后,主根具有迅速延伸,以尽快达到稳定湿沙层的能力。沙漠植物就是利用自身发达的根系,在沙地土壤内或垂直或水平发展

水分胁迫

科技名词定义 中文名称:水分胁迫 英文名称:water stress 定义1:因土壤水分不足或外液的渗透压高,植物可利用水分缺乏而生长明显受到抑制的现象。 所属学科:生态学(一级学科);生理生态学(二级学科) 定义2:因土壤水分不足而明显抑制植物生长的现象。 所属学科:土壤学(一级学科);土壤物理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 1水分胁迫 water stress 水分胁迫(water stress)植物水分散失超过水分吸收,使植物组织含水量下降,膨压降低.正常代谢失调的现象。 植物除因土壤中缺水引起水分胁迫外,干旱、淹水、冰冻、高温或盐演条件等不良环境作用于植物体时,都可能引起水分胁迫。不同植物及品种对水分胁迫的敏感性不同,影响不一。在淹水条件下,有氧呼吸受抑制,影响水分吸收,也会导致细胞缺水失去膨压,冰冻引起细胞间隙结冰,特别是在严重冰冻后遇晴天,细胞间隙的冰晶体融化后又因燕腾大量失水,易引起水分失去平衡而姜蔫。高温及盐演条件下亦易引起植物水分代谢失去平衡,发生水分胁迫。干旱缺水引起的水分胁迫是最常见的,也是对植物产量影响最大的。水分胁迫对植物祝谢的影响在植物水分亏缺时,反应最快的是细胞伸长生长受抑制,因为细胞膨压降低就使细胞伸长生长受阻,因而叶片较小,光合面积减小;随着胁迫程度的增高,水势明显降低,且细胞内脱落酸(ABA)含量增高,使净光合率亦随之下降,另一方面,水分亏缺时细胞合成过程减弱而水解过程加强,淀粉水解为糖,蛋白质水解形成氨基酸,水解产物又在呼吸中消耗;水分亏缺初期由于细胞内淀粉、蛋白质等水解产物增亥,吸呼底物增加,促进了呼吸,时间稍长,呼吸底物减少,呼吸速度即降低,且因氧化碑酸化解联,形成无效呼吸,导致正常代谢进程紊乱,代谢失调。水分胁迫对植物的严重影:由于水分胁迫引起植物脱水,导致细胞膜结构破坏。在正常情况下,由于细胞膜结构的存在,植物细胞内有一定的区域化(compartmentation),不同的代谢过程在

干旱胁迫对植物的影响

干旱胁迫对植物影响 摘要:胁迫严重影响着植物的生长发育,如干旱胁迫,可造成经济作物产量的逐年大幅下降[1],它们不能逃避不利的环境变化, 它 们需要快速的感应胁迫刺激进而适应各种环境胁迫。大多数植物遭受干旱逆境后各个生理过程都会受到不同程度的影响。我们都知道 ,水分在植物的生命活动中起着重要的作用,不仅是光合作用的原料之一,而且还维持着植物的正常体态。因此,我们要用各种预防途径来减少干旱对植物的影响。 关键词:干旱胁迫植物影响 Drought stress impact on plants Abstract : stress seriously influence the plant growth and development, such as drought stress, which can cause economic crop production has fallen dramatically year by year [1], they cannot escape from adverse environmental change, they need fast induction stress stimulation and adapt to various environmental stresses. Most plants by drought adversity after various physiological processes are subject to the influence of different level. As we all know, water in the plant life activities play an important role, not only is one of the raw material of photosynthesis, but also maintains the normal posture of plants. Therefore, we want to use a variety of preventive ways to minimize the effects of drought on plant.

干旱胁迫对小麦幼苗生理生化指标的影响

干旱胁迫对小麦幼苗生理生化指标的影响 摘要:以小麦幼苗为试验材料,研究干旱胁迫对小麦生理生化指标脯氨酸(Pro)、丙二醛(MDA)、过氧化氢(H2O2)、抗氧化酶(PPO、POD)、谷胱甘肽(GSH)、抗坏血酸(ASA)的含量的影响。试验结果表明:在干旱胁迫下除发芽率下降外,小麦幼苗的脯氨酸(Pro)、丙二醛(MDA)、过氧化氢(H2O2)、抗氧化酶(PPO、POD)、谷胱甘肽(GSH)的含量都比正常情况下小麦幼苗的含量多。 关键词:干旱胁迫小麦幼苗生理生化指标 引言:植物体生存在自然环境中,其水热条件随时都变化,对植物多少会产生一些影响。凡是对植物产生伤害的环境都被称为逆境,也称胁迫。干旱也属于逆境,水分在植物的生命活动中占主导地位。大多数植物遭受干旱逆境后各个生理过程都会受到不同程度的影响。如生理生化指标脯氨酸(Pro)、丙二醛(MDA)、过氧化氢(H2O2)、抗氧化酶(PPO、POD)、谷胱甘肽(GSH)等发生变化。小麦的生长不仅受到自身遗传物质的控制,还受到众多环境因子的影响,如光、温、水和土壤营养物质等。世界上约有70%的小麦播种面积分布在干旱、半干旱农业区,干旱对小麦的生理、生化都产生重要的影响,进而影响小麦的生长发育、产量和品质。因此,为了减小环境对小麦生产的影响,有必要从小麦的各项生理生化指标含量的变化,来研究干旱胁迫对小麦的影响。本次实验是研究吸胀12小时萌发一周后,干旱处理一周的小麦其生理生化指标脯氨酸(Pro)、丙二醛(MDA)、过氧化氢(H2O2)、抗氧化酶(PPO、POD)、谷胱甘肽(GSH)、抗坏血酸(ASA)含量的变化。

一、材料与方法 1、材料及处理 将吸胀12小时的小麦种子在有6层湿润滤纸的带盖白磁盘 (24cmX16cm )培养基中生长7天,7天后将其中一部分幼苗干旱生长7 天,7天后用相同的方法分别对实验组和对照组的小麦进行脯氨酸 (Pro)、丙二醛(MDA)、过氧化氢(H2O2)、抗氧化酶(PPO 、POD )、谷胱 甘肽(GSH)、抗坏血酸(ASA )的含量的测定。 2、测定方法[1] (1)小麦种子发芽率的测定 各取50粒吸胀的小麦种子→沿胚的中心线切成两半(严格区分两 个半粒),进行下列实验:其中50个半粒进行TTC 染色(30℃水浴 20 min ) ,另50个半粒进行曙红染色(室温染色10 min ) 根据两种方 法的染色情况,分别计算发芽率。 (2)脯氨酸(Pro)含量的测定 ①脯氨酸(Pro)的提取:分别取实验组和对照组的胚芽鞘→加入 3 mL 3%磺基水杨酸(SSA )和少许石英砂→充分研磨→用 2 mL 3% SSA 洗研钵→5000 rpm 离心10 min →上清液定容至5 mL 。 ②脯氨酸(Pro)的测定:上清液各2 mL →分别加入2 mL 冰乙酸和 2 mL 茚三酮试剂→煮沸15 min→冷却后→5000 rpm 离心10 min (若没 沉淀可略此步骤) →分别测定A 520, 将测得的结果用公式 Pro content = 用总显V V V W L A ????ε520计算出正常和干旱生长小麦

植物水分胁迫诱导蛋白研究进展

植物水分胁迫诱导蛋白研究进展 施俊凤1,孙常青2  (1.山西省农业科学院农产品贮藏保鲜研究所,山西太原030031;2.山西省农业科学院作物遗传研究所,山西太原030031) 摘要 干旱是影响植物正常生长发育的一种最主要的逆境因子,研究发现了大量的植物应答水分胁迫的蛋白。笔者综述了这些蛋白的特性和功能,以提高人们对于植物抗旱机理的认识。关键词 水分胁迫;功能蛋白;调节蛋白;植物中图分类号 S311 文献标识码 A 文章编号 0517-6611(2009)12-05355-03P rogress in P roteins R esponding to W ater Stress in P lants SHI Jun 2feng et al (Institute of Farm Products S torage ,Shanxi Academ y of Agricultural Sciences ,T aiyuan ,Shanxi 030031)Abstract Drought is an im portant stress factor ,which im pacts the grow th and developm ent of plants.At present ,a series of proteins responding to water -stress in plants have been reported.T he study summ arizes the characters and functions of these proteins for enhancing integrated understanding to the m echanism of proteins inv olved in the tolerance to water stress in plants.K ey w ords W ater stress ;Functional protein ;Regulatory protein ;Plant 作者简介 施俊凤(1977-),女,山西代县人,助理研究员,从事抗旱 分子研究。 收稿日期 2009202206 干旱在我国是影响区域最广、发生最频繁的气象灾害。植物在遭受干旱胁迫时,会做出各种反应来避免或减轻缺水对其细胞的伤害。随着分子生物学技术和理论的发展,抗旱相关基因不断被克隆,现已证明一些基因表达产物可增强植物的抗逆性。根据其功能,可分为调节蛋白和功能蛋白两大类。 1 调节蛋白 调节蛋白在逆境胁迫信号转导和功能基因表达过程中起调节作用。目前,已发现的主要有转录因子、蛋白激酶、磷脂酶C 、磷脂酶D 、G 蛋白、钙调素和一些信号因子等。 1.1 转录因子 转录因子对水分胁迫的响应非常迅速,一 般数分种即可达最高水平,转录因子C BF1、C BF2、C BF3、C BF4和DRE B1a 、DRE B1b 、DRE B1c 、DRE B2通过与顺式作用元件 CRT/DRE 结合,引起一组含顺式作用元件CRT/DRE 的抗旱 功能基因表达。在拟南芥等多种植物中,DRE 顺式作用元件普遍存在于干旱胁迫应答基因的启动子中,对干旱胁迫诱导基因的表达起调控作用。 转录因子A BF 和bZIP 可与顺式作用元件A BRE 特异结合,通过依赖A BA 的信号转导途径调控植物对冷害、干旱和高盐碱等环境胁迫的反应 [1] ;MY B 和MY C 可与MY BR 和 MY CR 特异结合,引起相应抗旱功能基因的表达;WRKY 调控 的目标基因启动子是具有W 框的顺式元件,在拟南芥中约有100个WRKY 成员,存在于根、叶、花序、脱落层、种子和维管组织中,参与植物胁迫反应的很多生理过程 [2] 。 1.2 蛋白激酶 目前已知的植物干旱应答有关的蛋白激酶 主要有受体蛋白激酶(RPK )、促分裂原活化蛋白激酶 (M APK )、转录调控蛋白激酶(TRPK )等。RPK 与感受发育和 环境胁迫信号相关;M APK 与植物对干旱、高盐、低温等反应的信号传递有关;TRPK 主要参与细胞周期、染色体正常结构维持等的基因表达[3]。 M AP 激酶级联信号转导途径由M AP 激酶(M APK )与M AP 激酶激酶(M APKK )和M AP 激酶激酶激酶(M APKKK )组 成。植物细胞感受环境胁迫(如损伤、干旱、低温等)后,通过受体蛋白激酶、M APK 4、蛋白激酶C 和G 蛋白等上游激活子顺次激活M APKKK 、M APKK 和M APK 。M APK 被激活后进入细胞核,通过激活特定转录因子引起功能基因的表达或停留在胞质中激活其他酶类如蛋白激酶磷酸酶、脂酶等,最终引起植物细胞对内外刺激的生理生化反应。目前已经在植物中鉴定出多个由干旱胁迫所诱导的与M APK 信号通路有关的蛋白激酶,如A T MPK3、A T MEKK1和RSK 等。利用酵母双杂交系统,M iz oguchi 等证明A T MEKK1参与拟南芥对干旱、高盐、低温和触伤胁迫信号传递的M APK 级联途径[4]。 最近,T aishi 等报道,在拟南芥中有一种蛋白激酶SRK 2C 可响应干旱胁迫诱导,将该基因敲除后的突变体srk2c 对干旱极敏感[5]。另外,用花椰菜病毒的35S 强启动子构建超表达SRK 2C 的转基因植株,其抗旱性也明显增强。 1.3 与第二信使生成有关的蛋白酶 P LC 是主要的磷酸二 酯酶,水解磷酸二酯键,根据水解的磷脂不同,可产生IP3、 DAG 、PA 等。IP3可提高细胞质溶质中的C a 2+浓度,诱导抗 性相关基因的表达[6]。DAG 和PA 可通过诱导活性氧(ROS )的产生,引起相关抗性基因的表达,从而增强植物抗旱性。 C a 2+是最受关注的第二信使,在保卫细胞中,干旱信号 导致C a 2+浓度增加,引起气孔关闭。C a 2+与其受体蛋白钙调素结合发生构象变化,通过C a 2+/C aM 依赖性蛋白激酶 (C DPK )起作用,使蛋白质的S er 或Thr 磷酸化,引起下游信号 传递,使抗旱相关基因表达。 2 功能蛋白 功能蛋白往往是整个水分胁迫调控通路的终 端产物,直接在植物的各种抗旱机制中起作用。当植物遭受水分胁迫时,其本身作为一个有机整体能从各方面进行防御。K azuk o 等将植物水分胁迫功能蛋白分为渗透调节相关蛋白、膜蛋白、毒性降解酶、大分子保护因子和蛋白酶5大类[7]。 2.1 渗透调节相关蛋白 当植物遭受渗透胁迫时,会积累 大量渗透调节物质,如脯氨酸、甘露醇、甜菜碱、可溶性糖和一些无机离子等。这些物质可使植物在胁迫条件下保持吸收水分或降低水分散失,维持一定的细胞膨压,保持细胞生长、气孔开放和光合作用等正常生理过程。现已发现很多渗 安徽农业科学,Journal of Anhui Agri.Sci.2009,37(12):5355-5357,5385 责任编辑 胡剑胜 责任校对 况玲玲

四种观赏植物的活性氧代谢对干旱胁迫的响应

四种观赏植物的活性氧代谢对干旱胁迫的响应以红叶石楠(Photinia serrulata Lindl)、小叶黄杨(Buxus sinica (Rehd. et Wils.)Cheng var. parvifolia M.Cheng)、金叶女贞(Ligustrum×vicaryi Hort.)及大叶黄杨(Euonymus japonicus Thunb.)为试验材料。采用盆栽试验法,在避雨大棚中进行自然干旱-复水试验。 测定干旱胁迫下,4种植物体内超氧阴离子自由基(O2-)产生速率、过氧化氢(H2O2)含量、丙二醛(MDA)、可溶性蛋白含量、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)及谷胱甘肽还原酶(GR)活性的变化及抗坏血酸-谷胱甘肽循环系统中DHA、ASA、GSH及GSSG的含量。以探索这4种观赏植物的活性氧代谢对干旱胁迫的响应。 在干旱处理条件下,结果表明:4种植物的过氧化氢(H2O2)含量总体呈先上升后下降的趋势。超氧阴离子生成速率:红叶石楠呈先下降后上升的趋势,且维持较高水平。 小叶黄杨、金叶女贞、大叶黄杨均呈先上升高后下降。丙二醛(MDA)含量:红叶石楠干旱处理远高于对照水平,变化幅度较小。 小叶黄杨呈上升趋势。金叶女贞呈下降-升高-下降的趋势。 大叶黄杨呈下降-升高-下降-升高的趋势。可溶性蛋白含量:红叶石楠、小叶黄杨呈下降趋势,金叶女贞为先升后降,大叶黄杨呈先降后升。 清除酶类变化趋势:4种植物的SOD活性总体呈先上升后下降的趋势;APX 活性小叶黄杨总体上升趋势,金叶女贞及红叶石楠呈升高-下降-升高的趋势,大叶黄杨呈先升后降的趋势;POD活性变化:红叶石楠呈先升后降,小叶黄杨呈上升趋势,大叶黄杨呈下降升高的趋势;CAT活性变化:红叶石楠、金叶女贞、大

最新干旱对植物生长影响的研究

干旱对植物生长影响 的研究

干旱对植物生长影响的研究 班级:08生本(2)班组员:朱青桃、卢金玲、叶海林、邓桂娣、胡俊、徐斐 一、内容提要:本实验采取教师指导性讲解、学生自主完成实验方案设计的方法进行实验。本实验主要研究的是干旱对植物生长的影响,实验步骤包括植物材料的栽培、管理、水分控制、定量测定、数据统计和分析,并结合所学知识做出综合性评价。 二、关键词:玉米干旱湿润水分实验组对照组植株含水量叶绿素含量膜透性鲜重干重可溶性糖过氧化物酶根冠比 三、前言:不利的生长环境的变化会影响植物的生长,干旱是最重要的逆境之一。通过该实验的开设,使我们学生了解环境条件对植物生长的影响。使学生通过查资料及文献、设计实验、包括实验条件(土壤含水量)的控制、衡量植物生长的指标及测定方法,提高学生的自主动手能力和实验操作能力,训练学生的团结合作精神,并为后续课程和毕业论文的实施打下基础。 四、实验前准备:我们小组成员通过查资料,在充分讨论的基础上写出可行性实验方案交老师审核通过后,就进行实验,我们通过谈论认为方案应包括实验方法与详细步骤,例如: 1、栽培管理:土壤的准备、土壤装入花盆,播种(最好呈等边三角形排列),管理,干旱控水时期及程度(除了水分以外其他的因素保持一致)怎样使两种土壤水分(干旱和湿润)保持相对稳定,每天保持光照2个小时,并且按时测量每一株的玉米叶片(倒数第三片叶子)的长度。 2、水分处理:干旱(水分胁迫)与对照(正常浇水);干旱处理的用称重法每天保持每一盆的总重量为原来重量的0.92倍。 3、形态指标测定:生长速度(用每一株倒数第三片叶的叶片长度表示)、鲜重、干重、根冠比(即根系干重与地上部干重之比)测定等。 4、生理生化指标测定:叶绿素含量测定,植物伤害程度指标的测定(可溶性糖),保护酶活性测定(过氧化物酶) 5、实验时间:四周 五、主要仪器设备与所用材料:玉米叶片,花盆,质地相同的土壤,尺子,绳子,可见光分光光度计、紫外可见光分光光度计、电子天平、台秤、6个花盆、水浴锅、离心机、尺子、剪刀、离心管、烧杯、研钵、移液管、蒽酮试剂、硫酸氢钾、80%的丙酮、80%乙醇、纯乙醇等。

干旱胁迫及植物抗旱性的研究进展

新疆农业大学 专业文献综述 题目: 干旱胁迫及植物抗旱性的研究进展 姓名: 库热·巴吐尔 学院: 林学与园艺学院 专业: 园艺(特色经济林) 班级: 041班 学号: 043231142 指导教师: 海利力·库尔班职称: 教授 2008年12月19日

干旱胁迫及植物抗旱性的研究进展 摘要:干旱(水分亏缺)是我国北方沙漠化地区植物生长季的主要环境胁迫因子。本文从植物干旱的种类,植物对水分胁迫的生理反应,抗旱机理,植物水分胁迫的研究方法等几个方面,探讨植物抗旱研究的进展,存在问题及发展趋势,和干旱和高温在生理水平对植物光合作用影响机制的最新研究进展进行了综述,并对以后的相关研究进行了一些分析。 关键词:干旱胁迫;植物抗旱性,干旱机制 干早(Drought)是限制植物生长发育,基因表达和产量的重要因子[1-4],是气象与环境质量的指标,是指在无灌溉条件下,长期无雨或少雨,气温高,湿度小,土壤水分不能满足农作物的需要,使作物的正常生长受到抑制,甚至枯死,造成减产或无收的一种自然现象,一般分为大气干旱和土壤干早[5-6]。全球干旱半干旱地区约占陆地面积的35%遍及世界60多个国家和地区。我国是一个干旱和半干旱面积很大的国家,干旱半干旱的面积约占国土面积的52.5%,其中干旱地区占30.8%,半干旱地区占21.7%[7]。植物的抗旱性是指植物在大气或土壤干旱条件下生存和形成产量的能力,抗旱性鉴定就是按植物抗旱能力大小进行鉴定,评价的过程[8-10]。前人对于植物抗旱性的研究作了大量的工作,并在许多方面取得了突破性进展,为干旱半干旱地区的农林业生产提供了理论基础。但这些研究都具有一定的局限性,主要表现为现有研究结果多数是针对植物某个或几个方面进行研究,如某些生理或生化指标,而这些研究指标只在某一时间范围内起有限的作用,用这些具有时间限制的少数几个指标来阐明植物抗旱的途径,方式和机理,或进行耐旱性评价都难以反映植物的真实情况,甚至会使某些最关键的问题被忽略。因此,本文对植物干旱胁迫及抗旱性方面的一些研究成果及存在的问题进行了探讨。 1 干旱胁迫 干旱是一个长期存在的世界性难题,中国水的问题始终是个大问题,水的安全供给问题引起了世界各国的关注。中国的干旱缺水问题目前已引起党中央,国务院和全社会的关注,中国的水危机不是危言耸听,而是既成事实。干旱缺水将成为我国农业和经济社会可持续发展的首要制约因素。 1.1 干旱胁迫的类型及特点 干旱形成有两种主要原因,并形成两类干旱。一是土壤干旱。由于连年干旱,雨量过少,每年降雨量约在200~300mm,地下水位又较低,土壤中水分根本不能满足植物生长,如无灌溉,作物将受干旱之害。二是大气干旱。植物的水分亏缺是由于蒸腾失水超过吸水而产生的,即使在土壤水分充足的情况下,晴天的中午也常常产生干旱。气温高,强烈的太阳辐射显著促进蒸腾;由于土壤干燥,地温低,根的机能低下,使吸水受到抑制。都能使植物产生水分亏缺,特别是二者同时产

水分对植物生长的影响-Word-文档

植物的水分生理是一种复杂的现象。一方面植物通过根系吸收水分,使地上部分各器官保持一定的膨压,维持正常的生理功能;另一方面,植株又通过蒸腾作用把大量的水分散失掉,这一对相互矛盾的过程只有相互协调统一才能保证植株的正常发育。 充足的水分是植物生长的一个重要条件。水分缺乏,生长就会受到影响。其原因是:第一,水分是植物细胞扩张生长的动力。植物细胞在扩张生长的过程中,需要充足的水分使细胞产生膨胀压力,如果水分不足,扩张生长受阻,植株生长矮小。禾谷类作物在拔节和抽穗期间,主要靠节间细胞的扩张生长来增加植株高度,此时需要水分较多,如果严重缺水,不仅植株生长矮小,而且有可能抽不出穗子,导致严重减产。第二,水分是各种生理活动的必要条件。植物生长首先需要一定的有机物作为建造细胞壁和原生质的材料,这些材料主要是光合作用的产物,而水是光合作用顺利进行的必要条件,缺水光合作用降低。同时光合作用制造的有机物质向生长部位运输也需要水分。缺水时,有机物趋于水解,呼吸作用急剧增加,这些都不利于植物生长。 在水分充足的情况下,植物生长很快,个大枝长,茎叶柔嫩,机械组织和保护组织不发达,植株的抗逆能力降低,易受低温、干旱和病虫的危害。 1.水分状况对植物生长的影响 1.1对植物形态的影响 植物通过水分供应进行光合作用和干物质积累,其积累量的大小直接反映在株高、茎粗、叶面积和产量形成的动态变化上。在水分胁迫下,随着胁迫程度的加强,枝条节间变短,叶面积减少,叶数量增加缓慢;分生组织细胞分裂减慢或停止;细胞伸长受到抑制;生长速率大大降低。遭受水分胁迫后的植株个体低矮,光合叶面积明显减小,产量降低。 1.1.1 对叶片变化的影响 叶片是光合与蒸腾的主要场所。叶片的大小、形状、颜色、表面特征和位置等从本质上决定了叶片对入射光的吸收和反射,影响叶温,从而影响到叶片界面阻力;叶片的内部结构影响叶片的扩散阻力及水汽运动的总阻力。叶肉细胞扩张和叶片生长对水分条件十分敏感。植株叶片要保持挺立状态,既要靠纤维素的支持,还要靠组织内较高膨压的支持,植株缺水时所发生的萎蔫现象便是膨压下降的表现。因此,可以把植株叶片的形状、大小和膨压高低作为判断植株水分状况的依据。 目前主要用叶面积指数(LAI)来表示叶面积与所在土地面积的比例。LAI影响植物的光合和蒸腾作用,LAI大的通常较LAI小的同种作物蒸腾的水量多。蒸腾过度会引起叶片水分亏缺。直接导致叶面积下降,生长减缓,最终导致产量的下降。叶片颜色也可以反映土壤的供水状况。如果叶片颜色发暗而中午萎蔫严重,说明土壤缺水;如果叶片颜色较淡、叶片较大,说明供水充足。

干旱胁迫对植物逆境生理生化指标的影响.

干旱胁迫对植物生理生化指标的影响 摘要:本文以实验室提供的小麦种子作为材料,在实验室种植,评估小麦种子发芽率,并利用PEG 模拟小麦干旱胁迫,通过紫外分光光度计法测定小麦幼苗各生理生化指标综合评价干旱胁迫对小麦生理生化的影响,实验发现,干旱胁迫下,小麦幼苗抗氧化酶系统、脯氨酸、过氧化氢、丙二醛等含量均明显增加,表现出有效的抗旱效应,说明在干旱胁迫下,植物能够通过合成自身所需的以上物质来达到抗旱的作用,而且这些物质可以作为植物抗旱指标来对植株进行抗旱性评价。 关键词:玉米种子小麦幼苗发芽率抗氧化酶(POD 脯氨酸(pro )丙二醛(MDA )H 2O 2 引言:虽然地球上的有70%的水分覆盖,但是能够真正的被人类利用的水资源却很少。近年来,由于环境的恶化以及温室效应的加剧,越来越多的地方出现干旱现象,由于缺水而导致粮食产量的减少,我们需要提高农作物的抗旱性,从而减少生产用水。小麦是世界上总产量排名第二的粮食作物,因此研究小麦抗旱性,对于实现小麦水资源高效利用和农业可持续发展具有重要意义;通过测定作物抗旱指标可以确定植物的抗旱能力,前人有关小麦抗旱性的研究,围绕抗旱性评价指标、抗旱生理指标等已有较多报道,本实验通过利用前人的研究方法测定小麦多个生理指标进而对这批小麦种子抗旱性综合评价。 一、材料: 玉米种子小麦种子小麦幼苗 二、方法: (1)、取50粒吸胀的玉米种子或小麦种子→沿胚的中心线切成两半(严格区分两个半粒),进行下列实验:其中50个半粒进行TTC 染色(30℃水浴 20 min )另50个半粒进行曙红染色(室温染色10 min)→洗净后观察。

(2)、Pro 的提取:分别取0.1 g实验组和对照组的幼苗→加入3 mL 3%磺基水杨酸(SSA )和少许石英砂→充分研磨→用2 mL 3% SSA洗研钵→5000 rpm离心10 min →上清液定容至5 mL。测定:上清液各2 mL →分别加入( 2 mL冰乙酸和2 mL茚三酮试剂→煮沸15 min→冷却后→5000 rpm离心10 min(若没沉淀可略此步骤)→ 分别测定A520计算: (3)MDA 提取:分别取0.1 g实验组和对照组→加入3 mL 0.1% TCA 和少许石英砂→充分研磨→用2 mL 0.1%TCA洗研钵→5000 rpm离心10 min →量上清液体积。测定:分别取上清液各1 mL →加入0.6%TBA(用10%TCA配制)3 mL →煮沸15 min→冷却后→5000 rpm离心5 min (视沉淀有无)→分别测定OD450和OD532 (4)、H2O2提取:分别取0.1 g实验组和对照组→加入3 mL 50 mM PBS (提取液,pH=6.8,内含1mM HA 和少许石英砂用总显V V V W L A ????ε520Pro content = (μmol.g -1FW →充分研磨→用2 mL PBS洗研钵→5000 rpm离心10 min →上清液定容至5 mL 。测定:分别取上清液各3 mL →加入0.1%Ti(SO42 [用20%(v/v H2SO4配制] 1 mL→摇匀→ 5000 rpm 离心10 min → OD410 计算: (5)抗氧化酶的提取:分别取0.1 g 实验材料→加入少许石英砂和3 ml 提取液(50mmol/L PBS, pH6.0, 内含0. 1mmol/ LEDTA, 1%PVP)→ 充分研磨→转入离心管中→用2 ml提取液洗研钵→ 5000 rpm 离心10 min →上清液定容至5 ml →用于测定POD 和PPO 酶活性或分装后转至-20或-80℃保存。2、POD 测定:取POD 反应混合液(10 mmol/L愈创木酚,5 mmol/L H2O2,用PBS 溶解)2.95 ml,加入酶液50 ml(空白调零用PBS 取代),立即记时,摇匀,读出反应2 min时的A470。

植物对干旱胁迫的生理生态响应及其研究进展

干旱作为影响作物生长发育、基因表达、分布以及产量品质的重要因素之一,严重限制了作物的大面积扩展。植物对干旱的适应能力不仅与干旱强度、速度有关,而且更受其自身基因的调控。在一定干旱阀值(drought threshold)胁迫范围内,很多植物能够进行相关抗旱基因的表达,随之产生一系列生理、生化及形态结构等方面的变化,从而显现出抗旱性的综合性状。因此,从植物本身出发,深入研究植物的抗旱机理,揭示其抗旱特性,提高植物品种的抗旱耐旱能力,以降低作物栽培的用水量,同时最大程度提高作物的产量和品质,科学选育适宜广大干旱、半干旱地区种植的优良作物品种,已成为国内外专家学者们所特别关注和研究的热点问题,对于水资源的合理利用和生态环境的改善均有着重要的意义。 干旱作为植物所遭受的所有非生物胁迫中损害最为严重的不利因素,直接影响世界农业的生产。据统计资料表明:中国农田耗水量大约占全国总耗水量的80%,而中国受旱农田面积由20世纪70年代的1 134万hm2增长到90年代的2 667万hm2,全国农田灌溉区每年缺水量约300亿m3[1-2]。目前,生存资源、环境与农业可持续发展之间的矛盾日益突出,这就要求人们更应高度重视农业综合开发过程中作物逆境生物学的基础研究。 1?干旱胁迫对植物生长指标的影响 1.1?干旱胁迫对根系活力的影响 植物根系的活力是体现植物根系吸收功能、合成能力、氧化还原能力以及生长发育情况的综合指标,能够从本质上反应植物根系生长与土壤水分及其环境之间的动态变化关系,因此,保证一个深层、分散、具有活力的根系是植物耐旱避旱的重要因素之一。 有研究表明:当植物生长受到干旱胁迫时,高羊茅(Festuca arundinacea)的根死亡率升高,其中土壤表层的根死亡率最高[3-4]。当土壤含水量低于一定程度时,随着胁迫时间的增长,根系活力逐渐不足以维持生命而使植物不可逆转地彻底死亡[5]。由此可见,根系活力和土壤的相对含水量与植物的抗旱性密切相关。 1.2?干旱胁迫对叶片相对含水量的影响 水是植物的血液,其含量一般占组织鲜重的65%~90% [6]。叶片的相对含水量(RWC)表征植物在遭受干旱胁迫后的整体水分亏缺状况,反映了植株叶片细胞的水分生理状态。因此,RWC常常是被用来衡量植物抗旱性的生理指标。RWC比单纯的含水量更能较为敏感地反映植物水分状况的改变,在一定程度上反映了植物组织水分亏缺程度[7]。在干旱胁迫条件下,土壤中的可利用水减少,导致根系吸水困难,相对含水率降低[8]。任丽花[9]等对圆叶决明的研究对此做出了证明:圆叶决明34721和86134的RWC与土壤相对含水量之间均呈正相关,其相关系数分别为0.945 8和0.974 4。高涵[10]、葛体达[11]等的研究结果也同样证明了这一点。余玲、王彦荣[12]等以国内外20个优良紫花苜蓿为材料的研究结果表明:抗旱性强的品种在干旱胁迫下牧草产量高。叶片保水能力强,相对含水量也随干 植物对干旱胁迫的生理生态响应及其研究进展 赵雅静1,2,翁伯琦2* ,王义祥2,徐国忠2 (1.福建农林大学资源与环境学院,福建福州350002;2.福建省农业科学院农业生态研究所,福建福州350013) 摘?要:通过对干旱胁迫下植物生理代谢各项指标的分析,综述了干旱胁迫对植物生长与抗逆生理的影响,讨论了植物应对干 旱环境刺激或逆境的适应及抵御机制,以期为作物逆境生物学研究提供参考依据。 关键词:干旱胁迫;生理代谢;生态响应 中图分类号:S311 文献标识码:A 文章编号:1008 - 9799(2009)02 - 0045 - 06 收稿日期:2009 - 04 - 17 基金项目:科技部农业成果转化项目(2007GB2C400151),科技部星 火计划项目(2007EA720019),福建省农业科学院科技创 新团队建设基金(STIF-Y01)。 作者简介:赵雅静(1984 - ),女,汉族,在读硕士生。研究方向: 植物营养与环境生态。 * 通讯作者。

盐害对植物的影响(借鉴内容)

植物的盐害和抗盐性 在自然条件下,生长在中干旱、半干旱地区的植物,由于土壤中含有较多的盐类,常受盐害而不能正常生长和存活。盐的种类决定土壤的性质,钠盐是形成盐分过多的主要盐类,NaCl和Na2SO4含量较多称为盐土,Na2CO3与NaHCO3含量较多称为碱土。而在自然界,这两种情况常常同时出现,统称为盐碱土。 1 植物的盐害顾名思义,盐害指土壤中可溶性盐类过多对植物的不利影响。这种影响是多种多样的,但主要危害有三个方面: 1.1 生理干旱土壤盐分过多使植物根际土壤溶液渗透势降低,根据水从高水势向低水势流动的原理,这就给植物造成一种水逆境,植物吸收水分困难,此时植物要吸收水分,必须形成一个比土壤溶液更低的水势,否则植物将受到与水分胁迫相类似的危害,处于生理干旱状态。如一般植物在土壤盐分超过0.2%~0.5%时出现吸水困难,盐分高于0.4%时植物体内水分易外渗,生长速率显著下降,甚至导致植物死亡。 1.2 特殊离子的毒害盐分过多的土壤环境的一个特点是某些离子浓度过高,而毒害植物,这就是盐类离子对植物的特殊效应。高浓度盐分首先影响原生质膜,改变其透性。由于膜的透性变化致使植物吸收某种盐类过多而排斥了对另一些营养元素的吸收,从而,植物细胞内部的离子种类和浓度也就发生变化,这种不平衡吸收,不仅造成营养失调,抑制了生长,同时还产生单盐毒害作用,即当溶液中只有一

种金属离子(对盐碱土而言主要为钠离子)时,对植物起较强的毒害作用。如Na+浓度过高时,植物会受到Na+的毒害,减少对K+的吸收,同时也易发生PO43-和Ca2+的缺乏症。 1.3 破坏正常代谢由于盐胁迫影响了膜的正常透性和改变了一些膜结合酶类活性,引起一系列的代谢失调:(1)光合作用。盐分过多使PEP羧化酶和RuBP羧化酶活性降低,叶绿体趋于分解,叶绿素被破坏。叶绿素和类胡萝卜素的生物合成受阻,气孔关闭,使光合速率下降,影响作物产量。(2)呼吸作用。一般来说,低盐时植物吸收受到促进,而高盐时受到抑制。盐分过多时总的趋势是呼吸消耗量多,净光合生产率低,不利于植物生长。(3)蛋白质合成。盐分过多对蛋白质代谢影响比较明显,抑制合成促进分解,抑制蛋白质合成的直接原因可能是由于破坏了氨基酸的合成,如蚕豆在盐胁迫下叶内半胱氨酸和蛋氨酸合成减少,从而使蛋白质含量减少。(4)有毒物质。盐胁迫使植物体内积累有毒的代谢产物,如蛋白质分解的产物游离的氨基酸、胺、氨等的积累,这些物质对植物有毒害作用,致使植物叶片生长不良,抑制根系生长,组织变黑坏死等。毒素积累是盐害的重要原因。 2 植物的抗盐性 :某些植物能对盐胁迫产生一定的适应能力,能在盐渍土上正常生长。植物的抗盐方式基本上是两种,一是避盐(逃避盐害),它是指通过降低盐类在体内积累,从而避免盐类的危害而实现的;二是耐盐(忍受盐害),它是指通过生理的或代谢的适应,而忍受已进入细胞的盐类。事实上植物对任何不良环境条件(逆境)的抗御能

高级植物生理学02水分胁迫

干旱胁迫 一、逆境概述 抗逆性的研究是目前农业和植物学学科研究的一个热点。 外界胁迫包括两类:生物胁迫(如病虫草害)和非生物胁迫如(温度、水分、营养、重金属、风等)。形成原因有自然界所形成的(如干旱、盐碱、热害、冷害、病虫害等)和人为因素(如重金属污染, 大气污染, 酸雨等)。 植物对胁迫因子的抗性可以分为两种形式:逃避和抵抗。植物细胞可以在一定限度的胁迫条件下,采用适当的防卫机制来抵抗胁迫,使得它能够在不利的环境下生存下来。这种机制表现为细胞代谢的改变,这是以通过信号传导系统调控的抗逆基因的表达为基础的。 共性和个性:不同逆境对植物伤害的机制在很多方面是相同的。植物对不同逆境的抵抗有很多方面也是相同的。讨论:比较逆境生理学,如自由基、活性氧、保护酶、抗氧化剂、脯氨酸…… 交叉适应是自然界广泛存在的现象,人们往往用一种胁迫去处理植物细胞,它就可以得到对其他胁迫因子的抗性,这种现象是以共同的生理反应为基础的。 胁迫条件同样诱导了很多的胁迫蛋白的出现,在细胞内出现最多的是热激蛋白, 已有一些直接或间接的证据表明Ca2+ 及CaM参与了植物HSR的信号转导。 ABA、乙烯、生长素、烟草花叶病毒(TMV) 的感染、盐、干旱、冷害、紫外光、机械伤害及真菌感染等至少可以有10 余种信号可以诱导渗调素的产生。渗透胁迫=干旱?。 信号转导:抗性基因的诱导与ABA 密切相关, 外加的ABA 可以诱导抗性基因的表达。NO是一种植物细胞内广泛存在的信号物质,调控着很多植物生命活动,在植物抗性反应中,它的作用往往是和活性氧和ABA相互交联的。当病原菌侵害时,NO可以和活性氧共同作用诱导细胞的抗病反应。 二、胁迫对植物的伤害 干旱对植物生长和繁殖、农业生产和社会生活有着极其重要的影响。干旱对世界作物产量的影响,在诸自然逆境中占首位,其危害程度相当于其他自然灾害之和。植物旱害是由自然条件和植物本身的生理条件所引起。包括自然条件引起的大气干旱、土壤干旱和植物本身原因引起的生理干旱。 水分胁迫的标准。采用土的含水量表示比较方便,采用植物本身的水分指标来表示比较正确。水势,相对含水量,叶片气孔阻力和蒸腾速率也是常用的衡量水分胁迫程度的表征指标。 植物生长受抑制是干旱胁迫所产生的最明显的生理效应 干旱胁迫抑制光合作用光反应中原初光能转换、电子传递、光合磷酸化和光合作用暗反应过程最终导致光合作用下降。 呼吸作用减慢, 蛋白质分解 核酸代谢受阻,激素代谢途径改变等 活性氧的产生和抗氧化系统之间的平衡体系破坏。而损伤膜的结构和抑制酶

逆境胁迫对植物生理生化代谢的影响

逆境胁迫对植物生理生化代谢的影响 摘要:干旱、盐碱和低温是强烈限制作物产量的三大非生物因素,其中干旱造成的损失最大, 其损失超过其他逆境造成损失的总和。对植物产生伤害的环境称为逆境,又称胁迫。常见的逆境有寒冷、干旱、高温、盐渍等。逆境会伤害植物,严重时会导致植物死亡。逆境对植物的伤害主要表现在细胞脱水、膜系统受破坏,酶活性受影响,从而导致细胞代谢紊乱。有些植物在长期的适应过程中形成了各种各样抵抗或适应逆境的本领,在生理上,以形成胁迫蛋白、增加渗透调节物质(如脯氨酸含量)、提高保护酶活性等方式提高细胞对各种逆境的抵抗能力。以小麦幼苗为材料,设置对照组,探究了干旱胁迫下脯氨酸(pro)、谷胱甘肽(GSG)、丙二醛(MDA)、H2O2的含量变化以及抗氧化酶(POD、PPO)活性的变化。结果表明:在干旱胁迫下,脯氨酸(pro)、谷胱甘肽(GSG)、丙二醛(MDA)、H2O2的含量相对于对照组均有较明显的上升趋势,POD和PPO活性也表现出较大水平的提高。 关键词:干旱胁迫,抗逆性,脯氨酸,丙二醛,样品,细胞膜透性,过氧化物酶活性,叶绿素,可溶性糖。谷胱甘肽;抗氧化酶;H2O2 引言:干旱是我国农业可持续发展面临的主要问题之一,【1】干旱胁迫对植物的 影响是一个复杂的生理生化过程,涉及到许多生物大分子和小分子植物细胞膜起调节控制细胞内外物质交换的作用,它的选择透性是其最重要的功能之一。【2】研究表明,游离的脯氨酸在植物细胞抵抗非生物胁迫过程中扮演着越来越重要的角色,许多新的生理功能也逐渐被发现,近几年来有关脯氨酸的研究倍受科学工作者的关注【9-13】。干旱是一种最常见的胁迫,遇此逆境作物除进行气孔调节外,渗透词节也不夹为一种有效方法。原理是通过加强合成代谢,增加细胞内渗透物质浓度,降低渗透势,维持膨压和细胞正常生理功能。脯氨酸作为水溶性最大的氮基酸(162.3g· (100g)。H 2 O,25 o C)具有较强水合能力,是理想的渗透介质。作物遇旱时它的大量积累有助于细胞或组织持水,防止脱水,故可视为作物对干早环境的一种保护性适应。已经证明了在逆境条件下脯氨酸的积累来抵抗植物对非生物胁迫的伤害,植物体内的抗氧化酶系统也能将伤害细胞的活性氧控制在可忍耐水平内,通过各种过氧化酶的协同作用,可以把细胞内产生的具有很强氧化 活性的活性氧如O2-、H 2O 2 、OH-等直接或间接地清除,防止了活性氧放大级联作 用,保证了细胞内生命活动的正常进行。丙二醛(MDA)是由于植物官衰老或在逆境条件下受伤害,其组织或器官膜脂质发生过氧化反应而产生的,对干旱也具有抵抗作用。GSH作为生物体内主要的还原态硫之一,在生物体抵抗各种胁迫(冷害、干旱、重金属、真菌等)的过程中起着重要的作用,其含量水平的高低与植物对各种环境胁迫的忍耐程度密切相关。近些年来,它在高等植物代谢过程中的生理作用,尤其是在植物抵御活性氧伤害过程中的作用及其与植物抗逆性关系的研究进展很快。前人研究进展植物在正常生长情况下, 活性氧的产生和清除处于

相关文档
最新文档