小学奥数经典题型:鸡兔同笼(假设法
鸡兔同笼解题技巧汇总

鸡兔同笼解题技巧汇总鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的一类应用题。
它不仅有趣,还能锻炼我们的逻辑思维和数学运算能力。
下面就为大家汇总一些常见的解题技巧。
一、假设法假设法是解决鸡兔同笼问题最常用的方法之一。
我们可以先假设笼子里全是鸡或者全是兔,然后根据实际的脚数与假设情况下的脚数差异来计算鸡和兔的数量。
假设全是鸡:如果笼子里全是鸡,那么每只鸡有 2 只脚。
假设笼子里一共有 n 个头,那么脚的总数就是 2n 只。
但实际的脚数比这个假设的脚数要多,多出来的部分就是因为把兔当成鸡来计算造成的。
每只兔有 4 只脚,而每只鸡只有 2 只脚,每把一只兔当成鸡,就少算了 2 只脚。
所以用实际脚数与假设脚数的差值除以 2,就可以得到兔的数量。
假设全是兔:同理,如果假设笼子里全是兔,那么每只兔有 4 只脚,脚的总数就是 4n 只。
但实际脚数比这个假设的脚数要少,少的部分就是因为把鸡当成兔来计算造成的。
每把一只鸡当成兔,就多算了 2 只脚。
所以用假设脚数与实际脚数的差值除以 2,就可以得到鸡的数量。
例如:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有94 只脚。
假设全是鸡,脚的总数为:35×2 = 70(只)实际脚数比假设多:94 70 = 24(只)每只兔比鸡多的脚数:4 2 = 2(只)兔的数量:24÷2 = 12(只)鸡的数量:35 12 = 23(只)二、方程法方程法是一种比较直接和通用的方法。
我们可以设鸡的数量为x 只,兔的数量为 y 只,然后根据头的总数和脚的总数列出方程组来求解。
根据头的总数:x + y =总头数根据脚的总数:2x + 4y =总脚数例如:还是上面的例子,设鸡有 x 只,兔有 y 只。
x + y = 35 (1)2x + 4y = 94 (2)由(1)式得:x = 35 y (3)将(3)式代入(2)式:2×(35 y) + 4y = 9470 2y + 4y = 942y = 24y = 12将 y = 12 代入(1)式:x + 12 = 35,x = 23所以鸡有 23 只,兔有 12 只。
小学奥数 鸡兔同笼问题

第五课鸡兔同笼问题例:鸡兔同笼,上有40个头,下有100只足。
鸡兔各有多少只?1、极端假设解法一:假设40个头都是鸡,那么应有足2×40=80(只),比实际少100-80=20(只)。
这是把兔看作鸡的缘故。
而把一只兔看成一只鸡,足数就会少4-2=2(只)。
因此兔有20÷2=10(只),鸡有40-10=30(只)。
解法二:假设40个头都是兔,那么应有足4×40=160(只),比实际多160-100=60(只)。
这是把鸡看作兔的缘故。
而把一只鸡看成一只兔,足数就会多4-2=2(只)。
因此鸡有60÷2=30(只),兔有40-30=10(只)。
解法三:假设100只足都是鸡足,那么应有头100÷2=50(个),比实际多50-40=10(个)。
把兔足看作鸡足,兔的只数(头数)就会扩大4÷2倍,即兔的只数增加(4÷2-1)倍。
因此兔有10÷(4÷2-1)=10(只),鸡有40-10=30(只)。
解法四:假设100只足都是兔足,那么应有头100÷4=25(个),比实际少40-25=15(个)。
把鸡足看作兔足,鸡的只数(头数)就会缩小4÷2倍,即鸡的只数减少1-1÷(2÷4)=1/2。
因此鸡有15÷1/2=30(只),兔有40-30=10(只)。
2、任意假设解法五:假设40个头中,鸡有12个(0至40中的任意整数),则兔有40-12=28(个),那么它们一共有足2×12+4×28=136(只),比实际多136-100=36(只)。
这说明有一部分鸡看作兔了,而把一只鸡看成一只兔,足数就会多4-2=2(只),因此把鸡看成兔的只数是36÷2=18(只)。
那么鸡实际有12+18=30(只),兔实际有28-18=10(只)。
解法六:假设100只足中,有鸡足80只(0至100中的任意整数,最好是2的倍数),则兔足有100-80=20(只),那么它们一共有头80÷2+20÷4=45(个),比实际多45-40=5(个)。
鸡兔同笼问题解决技巧汇总

鸡兔同笼问题解决技巧汇总“鸡兔同笼”是一个古老而有趣的数学问题,它常常出现在小学数学的教材中,也在各类数学竞赛中频繁出现。
这个问题看似简单,但却蕴含着丰富的数学思维和解题技巧。
下面我们就来汇总一下解决鸡兔同笼问题的各种技巧。
一、假设法假设法是解决鸡兔同笼问题最常用的方法之一。
我们可以先假设笼子里全是鸡或者全是兔,然后根据实际的头和脚的数量差异来进行调整。
假设全是鸡,那么脚的总数就应该是头的数量乘以 2。
但实际的脚数比这个假设的脚数要多,这是因为把兔当成鸡来算,每只兔少算了 2 只脚。
用实际脚数与假设脚数的差除以 2,就可以得到兔的数量,再用总头数减去兔的数量就是鸡的数量。
假设全是兔,同理可得,脚的总数应该是头的数量乘以 4。
实际脚数比假设脚数少,是因为把鸡当成兔来算,每只鸡多算了 2 只脚。
用假设脚数与实际脚数的差除以 2,就得到鸡的数量,总头数减去鸡的数量就是兔的数量。
例如,笼子里有 35 个头,94 只脚。
假设全是鸡,脚的数量就是35×2 = 70 只,实际有 94 只脚,多了 94 70 = 24 只脚。
每只兔比鸡多2 只脚,所以兔的数量就是 24÷2 = 12 只,鸡的数量就是 35 12 = 23 只。
二、方程法方程法是一种比较直接和通用的方法。
我们可以设鸡的数量为x 只,兔的数量为 y 只。
根据头的总数,我们可以得到方程 x + y =总头数。
再根据脚的总数,又可以得到方程 2x + 4y =总脚数。
然后通过联立这两个方程,就可以解出 x 和 y 的值。
比如还是上面的例子,设鸡有 x 只,兔有 y 只,可列出方程组:x + y = 352x + 4y = 94通过第一个方程变形为 x = 35 y,代入第二个方程,得到 2×(35 y) + 4y = 94,解得 y = 12,x = 23。
三、抬腿法抬腿法是一种比较有趣和直观的方法。
假设让鸡和兔都抬起两只脚,那么此时笼子里站立的脚的数量就是总脚数减去头的数量乘以 2。
小学四年级鸡兔同笼20道典型数学题假设法解题(含答案解析易中难度)

小学四年级鸡兔同笼20道典型数学题假设法解题(含答案解析易中难度)1.有一只笼子装着鸡和兔,从上数头有20个,从下数脚64只,问笼中鸡、兔各有多少只?解:①假设笼中全是兔子,共有多少只脚?4×20=80(只)②比原来的总数多多少只脚?80-64=16(只)③一只兔子比一只鸡多多几只脚?4-2=2④(把看多的兔子换成鸡)有几只鸡?16÷2=8⑤兔子有多少只?20-8=12只答:有鸡8只,兔12只。
2.一个商场有两轮摩托车和三轮摩托车共26辆,其中共有轮子67个,问两轮摩托车和三轮摩托车各有多少辆?解:①假设商场全是三轮摩托车,共有多少个轮子?3×26=78(个)②比原来的总数多多少个轮子?78-67=11(个)③一个三轮摩托车比一辆二轮摩托车多几各轮子?3-2=1④(把看多的三轮摩托车换成两轮摩托车)有几辆两轮摩托车?11÷1=11⑤有多少辆三轮摩托车?26-11=15只答:有两轮摩托车11辆,三轮摩托车15辆。
3. 小明家有200千克油,分别装在48个油瓶中,其中大油瓶每瓶装5千克,小油瓶每瓶装3千可,问大、小油瓶各有多少个?解:①假设全部是大油瓶,共装多少千克油?5×48=240(千克)②比原来的总数多多少千克?240-200=40(千克)③一个大油瓶比一个小油瓶多装多少千克油?5-3=2④(把看多的大油瓶换成小油瓶)有几小油瓶?40÷2=20⑤有多少个大油瓶?48-20=28(个)答:有大油瓶28个,小油瓶20个。
4.小亮存钱罐里有42枚硬币,共有32元,分别是硬币1元和5角的,问1元和5角的各有多少枚?解:①假设全部1元的,即10角,共有多少角?10×42=420(角)②比原来的总数多多少角?420-320=100(角)③1元比5角多多少角?10-5=5(角)④(把看多的1元换成5角)有几5角?100÷5=20(枚)⑤有多少个1元?42-20=22(枚)答:有1元的22枚,5角的20枚。
四年级奥数举一反三-用假设法解题鸡兔同笼

你知道吗?
大约一千五百年前,我国古代数学 名著《孙子算经》中记载了一道数 学题,这就是著名的“鸡兔同笼” 问题。
中国古代《孙子算经》中有云:
问 鸡 兔 各 几 何
下 有 九 十 四 足
上 有 三 十 五 头
腿?
例 1:
今有鸡、兔共居一笼,已知鸡头 和兔头共35个,鸡脚与兔脚共 94只。问鸡、兔各有多少只?
同步奥数
P89:1、
P90:4、5
假设全是鸡
脚:35x2=70(只)
相差:94-70=24(只)
兔:24÷( 4-2)=12(只) 鸡:35-12=23(只)
假设全是兔
举一反三
1,鸡与兔共有30只,共有脚70只。 鸡与兔各有多少只?
举一反三
2、面值是2元、5元的人民币共27张,
全计99元。面值是2元、5元的人民 币各有多少张?
四年级下册数学 鸡兔同笼问题(假设法)

那么鸡就要减少20只
腿数就必须减少20×2=40条
还剩256-40=216条
那么这时鸡和兔子的只数都是:216÷(4+2)=36只
鸡原来的只数是:36+20=56只
答:鸡有56只,兔子有36只.
3、北街小学进行英语竞赛,答对一题得10分,答错一题倒扣2分,共15题.小红得了102分,小红答对了几题?
5、班级购买活页簿与日记本合计32本,花钱74元.活页簿每本1.9元,日记本每本3.1元.问:买活页簿、日记本各几本?
解:假设全是日记本,
活页薄:(3.1×32-74)÷(3.1-1.9)
=25.2÷1.2
=21(本)
日记本:32-21=11(本)
答:活页薄有21本,日记本11本.
1、小梅数她家的鸡与兔,数头有16个,数脚有44只.问:小梅家的鸡与兔各有多少只?
假设全是鸡,
则有脚2×16=32(只)
比实际少了44-32=12(只)
而每只兔有4只脚,少算了4-2=2只脚
所以兔有:12÷2=6(只)
那么鸡有16-6=10(只)
答:鸡有10只,兔有6只.
2、鸡兔同笼,鸡比兔多20只,共ห้องสมุดไป่ตู้256条腿,问鸡多少只?兔多少只?
解:假设小红全部做对,则小红做错了:
(15×10﹣102)÷(10+2)=4(题)
答对:15﹣4=11(题)
答:小红答对了11题.
4、鸡兔共100只,共有脚284只,鸡兔各有多少只?
解:假设全是鸡,那么兔有:
(284-100×2)÷(4-2),=42(只)
则鸡有:100-42=58(只)
答:鸡有58只,兔有42只
鸡兔同笼问题——假设法

鸡兔同笼问题——假设法例1、今有鸡兔同笼,上有三十五头,下有九十四足,问,鸡兔各有几只?解析:假设35只全部是鸡,那么共有足:35×2=70(只)假设比实际少的足数:4-70=24(只)每把一只鸡换成兔子,足增加:4-2=2(只)兔子数:24÷2=12(只)鸡数:35-12=23(只)练习1:今有鸡兔同笼,上有24头,下有76足,问,鸡兔各有几只?(答案:兔子有14只,鸡有10只)例2、某次数学竞赛,共有10道题,每做对一道题得8分,每做错一道题倒扣5分,小丽得了41分,他做对了几道题?解析:假设小丽全做对,那么应得分8×10=80(分)假设比实际多:80-41=39(分)每把一道对换成错,分数少:8+5=13(分)错题数:39÷13=3(道)对题数:10-3=7(道)练习2 某次数学竞赛,共有25道题,每做多一道题得4分,每做错一道或不做倒扣1分,小丽得了60分,她做对了几道题?(答案:他做对了17道题)例3、有2分和5分的硬币共有30枚,总价值9角9分两种硬币各有多少枚?解析:假设30枚全部是2分,那么共有钱:30×2=60(分)假设比实际少:99-60=39(分)每把一枚2分换成5分,钱增加:5-2=3(分)5分数:39÷3=13(枚)2分数:30-13=17(枚)练习3有2角和5角的铅笔共有18支,总价值6元,两支铅笔各有多少只?(答案:5角有8支,2角有10支。
)例4、师徒二人轮流加工一批零件,师傅每小时加工60个,徒弟每小时加工40个,他们一共加工260个零件,平均每小时加工52个,求师徒各加工多少小时?解析:师徒一共加工时间:260÷52=5(时)假设5小时全是师傅做,那么应加工:60×5=300(个)假设比实际多:300-260=40(个)每把一个1小时师傅做换成徒弟,零件减少:60-40=20(个)徒弟工作时间:40÷20=2(时)师傅工作时间:5-2=3(时)练习4 松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连几天采了112个松子,平均每天采14个,问这几天当中有几天晴天?(答案:答:晴天有2天。
小学奥数假设性问题鸡兔同笼问题

第一部分:典型例题:例题1:甲每小时走12千米,乙每小时走8千米。
某日甲从A 地到B 地,乙同时从B 地到A 地。
已知乙到达A 地时,甲已先到B 地5小时。
求AB 两地的距离。
思路点拨:假设甲到达B 地后,继续前行走。
那么当乙到达A 地时,甲乙又走了60512=⨯。
就是在这相同时间内,甲比乙多走的路程,由于甲每小时比乙多走12-8=4,因此看60千米里面有几个4千米,就得出乙走完全程的时间。
再用乙的速度×时间就可以求出AB 两地的距离。
()[]1208-125128=÷⨯⨯例题2:小王骑车到甲地到乙地往返一次。
去时的速度是每小时20千米,回来时的速度是每小时12千米,求他往返的平均速度。
思路点拨:要求往返的平均速度,应该用总路程÷往返的总时间,而这道题的具体路程是个未知量。
我们可以假设路程是60千米,那么总路程就是120260=⨯(千米)。
往返的总时间是812602060=÷+÷(小时),用158120=÷(千米)就是往返的平均速度,当然假设的路程也可以是别的数据,但最好既是12的倍数,又是20的倍数。
()()155312012602060260=+=÷+÷÷⨯例题3:学校举行乒乓球比赛。
已知参加单打的小组比双打多13组,参加单打的人数比双打多16人。
参加单打和双打的各有多少人?思路点拨:单打每组2人,双打每组4人。
我们可以假设每组也只有2人,既然单打比双打多13组,那么单打的人数应比双打多26132=⨯(人),但实际上只多16人。
为什么会相差1016-26=(人)、这是因为每组双打的人数少算4-2=2(人)。
所以参加双打的有5210=÷(组) 双打的人数:单打的人数:孰能生巧:1.一列快车从甲地开往乙地,每小时行200千米,以此同时一列慢车从乙地开往甲地,每小时行160千米。
途中快车因故停留4小时,所以比慢车迟1小时到达目的地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼问题
《代换法》
一、列举法
二、古人算法:兔数=总脚数÷2-总头数
三、代换法
1.假设全是鸡:兔数=(总脚数-2×总头数)÷(4-2)
2.假设全是兔:鸡数=(4×总头数-总脚数)÷(4-2)
四、列方程的解法。
1、鸡兔同笼,共有50个头,170只脚,问笼中有鸡多少只?兔有多少只?
2、48名学生去划船,一共乘坐10只船,其中大船坐6人,小船4人,则大船有多少只?小船有多少?
3、李老师和40名同学一起去植树,李老师植树5棵,男同学每人栽3棵,女同学每人栽2棵,他们一共栽树103棵,男同学多少人?女同学有多少人?
4、兔子妈妈拔萝卜,晴天每天可拔20个,雨天每天拔12个,它一连几天拔了112个萝卜,平衡每天拔14个,这几天当中有多少天是雨天?
5、一共有30枚硬币,由2角和5角组成,共值8元7角,2角硬币有多少个?5角硬币有多少个?
10、学校买回5个篮球和7个排球,一共用了290元,一个篮球比一个排球贵10元,篮球的单价是多少元?排球的单价是多少元?
11、100个和尚吃100个馒头,每个大和尚吃3个馒头,三个小和尚吃1
个馒头,问大小和尚各有多少个人?
有一群鸡和兔,脚的总数比头的总数的2倍还多22,兔有多少只?
推广题:已知鸡比兔多(或少)多少只及总脚数,求鸡兔各多少只?
如果鸡多,则兔数=(总脚数-2×多的鸡数)÷(4+2)
如果兔多,则鸡数=(总脚数-4×多出总数)÷(4+2)
13、鸡兔同笼,共有脚700只,兔比鸡少50只,那么兔有多少只?鸡有多少只?14、鸡兔同笼,一共有280只脚,兔比鸡少20只,那么兔有多少只?鸡有多少只?15、买了一些4角和8角的邮票,一共用去40元,已知8角邮票比4角邮票多20张,那么8角邮票买了多少张?
16、鸡兔同笼,鸡比兔多30只,共有脚300只,问鸡有多少只?兔有多少只?
得失问题:不合格数=(产品总数×合格品得分数-实得总分数)÷(合格得分数+扣分数)20、某小学举行数学竞赛,共20道题,若做对一题得5分,做错或没有做一题扣2分,李明得了72分,他做对了多少道?
21、某次数学竞赛,共25道题,若做对一题得4分,做错或没有做一题扣1分,小刚得了80分,他做对了多少道?。