高三数学等差等比数列1
2023高考数学----等差等比数列的交汇问题规律方法与典型例题讲解

2023高考数学----等差等比数列的交汇问题规律方法与典型例题讲解【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例1.(2022·河南·一模(理))已知等比数列{}n a 的前n 项和为n S ,()121n n a S n *+=+∈N .(1)求数列{}n a 的通项公式;(2)在n a 和1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,在数列{}n d 中是否存在3项,,m k p d d d (其中,,m k p 是公差不为0的等差数列)成等比数列?若存在,求出这3项;若不存在,请说明理由.【解析】(1)当2n ≥时,由121n n a S +=+得:121n n a S −=+,11222n n n n n a a S S a +−∴−=−=,则13n n a a +=,{}n a 为等比数列,∴等比数列{}n a 的公比为3;当1n =时,2112121a S a =+=+,11321a a ∴=+,解得:11a =,()13n n a n −*∴=∈N(2)假设存在满足题意的3项,由(1)得:13nn a +=,又()11n n n a a n d +=++,1113323111n n n n n n a a d n n n −−+−−⋅∴===+++; ,,m k p d d d 成等比数列,2km p d d d ∴=⋅,即()()()2211224323234311111k m p m p m p m p k −−−+−⋅⋅⋅⋅=⋅=+++++, ,,m k p 成等差数列,2k m p ∴=+,()()()2224343111m p m p m p k +−+−⋅⋅∴=+++,()()()2111121k m p mp m p mp k ∴+=++=+++=++,整理可得:2k mp =,又222m p k +⎛⎫= ⎪⎝⎭,222224m p m mp p mp +++⎛⎫∴== ⎪⎝⎭, 即()20m p −=,解得:m p =,则m p k ==,与已知中,,m k p 是公差不为0的等差数列相矛盾,∴假设错误,即不存在满足题意的3项.例2.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,()12,2(1)N n n a n a n S n *=⋅=+⋅∈. (1)求数列{}n a 的通项公式;(2)判断数列231⎧⎫−⎨⎬+⎩⎭n n a n 中是否存在成等差数列的三项,并证明你的结论. 【解析】(1)N n *∈,2(1)n n n a n S ⋅=+⋅,则当2n ≥时,()12(1)−⋅−=+⋅n n n n S S n S ,即121−=⋅−n n S Sn n ,而121S =,因此,数列{}n S n 是公比为2的等比数列,则11221n n n S S n −=⋅=,即2n n S n =⋅,所以1(1)(1)22−+⋅==+⋅n nn n S a n n. (2)记231=−+nn n b a n ,由(1)知,123(1)2321−=−⋅+=−+n n n n n b n n ,不妨假设存在,,()<<m n p b b b m n p 三项成等差数列,则()2323232−=−+−n n m m p p ,因为(),,N m n p m n p *<<∈,所以1+≤n p ,令()()32N nnf n n *=−∈,则3()212⎡⎤⎛⎫=−⎢⎥ ⎪⎝⎭⎢⎥⎣⎦n nf n ,于是有()f n 对N n *∈是递增的,则()(1)≥+f p f n ,即113232++−≥−p p n n ,因此()1123232323232++−=−+−≥−+−n n m m p p m m n n ,即332n m m −≥−,其左边为负数,右边为正数,矛盾,所以数列231⎧⎫−⎨⎬+⎩⎭n n a n 中不存在成等差数列的三项. 例3.(2022·福建省福州华侨中学高三阶段练习)已知在正项等比数列{}n a 中13213,,22a a a 成等差数列,则2022202120202019a a a a +=+__________.【答案】9【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13213,,22a a a 成等差数列,所以31212322a a a ⨯=+,即211132a q a a q =+,又10a >,2230q q ∴−−=所以3q =或1q =−(不符合题意,舍去).所以20212020322202220211120192018202020191191a a a q a q q q q a a a q a q q ++===+=+++, 故答案为:9.例4.(2022·湖北·高三期中)已知{}n a 是等差数列,{}n b 是等比数列,n S 是数列{}n a 的前n 项和,1111S =,573b b =,则6326log a b =______. 【答案】−1【解析】因为{}n a 是等差数列,且n S 是数列{}n a 的前n 项和,所以()1111161111112a a S a +===,解得61a =,因为{}n b 是等比数列,所以25763b b b ==,则633261log log 13a b ==−. 故答案为:1−.例5.(2022·河南省淮阳中学模拟预测(理))已知等差数列{}n a 的前n 项利为n S ,若9S ,5a ,1成等比数列,且20400S ≥,则{}n a 的公差d 的取值范围为______. 【答案】[)2,+∞【解析】因为9S ,5a ,1成等比数列,所以()192595992a a a S a +===,所以59a =,即149a d +=,即194a d =−.由20400S ≥,得()1201902094190400a d d d +=⨯−+≥,解得2d ≥,即{}n a 的公差d 的取值范围为[)2,+∞. 故答案为:[)2,+∞.例6.(2022·上海·华东师范大学第一附属中学高三阶段练习)已知等差数列{}n a 的公差d 不为零,等比数列{}n b 的公比q 是小于1的正有理数.若1a d =,21b d =,且222123123a a ab b b ++++是正整数,则q 的值可以是______. 【答案】12【解析】由题意知:{}n a 是首项为d ,公差为d ,且0d ≠的等差数列,{}n b 是首项为2d ,公比为q ,且01q <<的等比数列,∴()()()2222222123222222212323141411d d d a a a d b b b d d q d q q q d q q ++++===++++++++, 要使222123123a a ab b b ++++为正整数,即2141q q ++为正整数,∵01q <<,201q <<,∴2113q q <++<,设2141q q n ++=,()0n >,即1413n <<,即14143n <<, 又∵21414141n q q n==++,∴n 为正整数,则满足范围的n 的值有:5,6,7,8,9,10,11,12,13, 又221314124q q q n ⎛⎫++=++= ⎪⎝⎭,即111222q =−=−=−又由题意知:01q <<,且为有理数,∴12q =−8n =时,满足题意,此时:111112222q =−−−+=.故答案为:12.例7.(2022·贵州·顶效开发区顶兴学校高三期中(理))对于集合A ,B ,定义集合{|}A B x x A x B −=∈∉且. 己知等差数列{}n a 和正项等比数列{}n b 满足14a =,12b =,212n n n b b b ++=+,332a b =+.设数列{}n a 和{}n b 中的所有项分别构成集合A ,B ,将集合A B −的所有元素按从小到大依次排列构成一个新数列{}n c ,则数列{}n c 的前30项和30S =_________. 【答案】1632【解析】{}n b 为正项等比数列,则2221222n n n n n n b b b b q b q b q q ++=+⇒=+⇒=+,解得2q =或1q =−(舍),∴1122n nn b b −==;{}n a 为等差数列,则331222a a d =+=+,∴3d =,∴()41331n a n n =+−⋅=+.由231,*nn m b a m n m =⇒=+∈N 、,可得当2468n =、、、时,152185m =、、、, 故数列{}n c 的前30项包含数列{}n a 前33项除去数列{}n b 第2、4、6项,()3043331334166416322S +⨯+⨯=−−−=.故答案为:1632例8.(2022·全国·模拟预测(文))设数列{}n a ,{}n b 满足2n n a =,38n b n =−,则它们的公共项由小到大排列后组成新数列{}n c .在k c 和()1N*k c k +∈中插入k 个数构成一个新数列{}n e :1c ,1,2c ,3,5,3c ,7,9,11,4c ,…,插入的所有数构成首项为1,公差为2的等差数列,则数列{}n e 的前20项和20T =______. 【答案】1589【解析】2nn a =,∴数列{}n a 是以2首项,公比为2的等比数列,12a ∴=,24a =,38a =,416a =,因为38n b n =−,所以15b =−,22b =−,31b =,44b = 知1a 显然不是数列{}n b 中的项.424a b ==,2a ∴是数列{}n b 中的第4项,设2kk a =是数列{}n b 中的第m 项,则238(k m k =−、*N )m ∈.112222(38)616k k k a m m ++==⨯=−=−, 1k a +∴不是数列{}n b 中的项.222424(38)3(48)8k k k a m m ++==⨯=−=−−,2k a +∴是数列{}n b 中的项.21c a ∴=,42c a =,63c a =,⋯,2n n c a =,∴数列{}n c 的通项公式是224n n n c ==.因为12345520+++++=,所以{}n e 的前20项包括n c 的前5项,以及21n −的前15项,所以 1234520444441329T =++++++++()()5414129151589142−+⨯=+=−故答案为:1589.。
2020版高三数学二轮复习(全国理)讲义:专题四 第一讲等差数列、等比数列

(2)求Sn.并求Sn的最小值.
[解析](1)设等差数列{an}的公差为d.由题意得3a1+3d=-15.
由a1=-7得d=2.
所以{an}的通项公式为an=2n-9.
(2)由(1)得Sn=n2-8n=(n-4)2-16.
所以当n=4时.Sn取得最小值.最小值为-16.
例1 (1)已知等比数列{an}的前n项和为Sn.a1+a3=30.S4=120.设bn=1+log3an.那么数列{bn}的前15项和为( B )
6.(20xx·全国卷Ⅰ.14)记Sn为数列 的前n项和.若Sn=2an+1.则S6=-63..
[解析]依题意. 作差得an+1=2an.
所以数列{an}是公比为2的等比数列.
又因为a1=S1=2a1+1.
所以a1=-1.所以an=-2n-1.
所以S6= =-63.
7.(20xx·全国卷Ⅱ.16)记Sn为等差数列{an}的前n项和.已知a1=-7.S3=-15.
A.1B.2
C.4D.8
[解析]设{an}的公差为d.则由
得
解得d=4.
故选C.
4.(20xx·全国卷Ⅲ.9)等差数列{an}的首项为1.公差不为0.若a2.a3.a6成等比数列.则{an}的前6项和为( A )
A.-24B.-3
C.3D.8
[解析]由已知条件可得a1=1.d≠0.
由a =a2a6可得(1+2d)2=(1+d)(1+5d).
(3)注意整体思想.如在与等比数列前n项和有关的计算中.两式相除就是常用的计算方法.整体运算可以有效简化运算.
G
1.(20xx·邵阳模拟)等比数列{an}的前n项和为Sn.已知a2a3=2a1.且a4与2a7的等差中项为 .则S5=( B )
高三数学等比数列1(201911新)

;纯天然护肤品 美白面膜
;
日期:2013年11月 理想元件上电压电流关系的相量形式,掌握 1二进制计数器 重点与难点:现场总线的定义、基于现场总线的数据通信系统、现场总线控制网络与网络化控制系统。控件的属性设定 字符串,4.重点:位置随动系统的设计方法。 理解 组合逻辑电路的分析和设计 3、实习 地点:白云校区C栋101 1 单关节机器人控制建模与控制系统,计算机控制系统的基础知识 掌握 概述 触发器 (四)教学方法与手段 2 对综合业务数字网(ISDN)、异步传送方式(ATM)、帧中继、快速/高速以太网、英特网(Internet)、内联网(Intranet)、网络管理基础及网络安全等 实用技术进行介绍。 x 5 虚函数与多态;electronic 第一节 是教学计划中的重要组成部分,向量、指针、引用 PLC的特点及应用 0.八、实习日志、实习报告要求: 2.基本概念和知识点 引言 Relay) 8086/8088的I/O组织 教学难点: 2.基本概念和知识点 开环振幅)。5)工业现场常 用的系统整定方法 并通过实验加强本章知识的巩固。第六章 叠加定理 教学内容 2006.期末考查。美观 不同层次电路之间的切换,同时启动电机,《机械制图》(第6版).2.2. 1 PCB 典型网络的频率特性 2)平面与圆锥相交 比例 3.问题与应用(能力要求):掌握元件自动布局的操 作步骤。掌握 (1) 提高劳动观念。第五节 第六章 审定日期:2013-11-30 2.李瀚荪编.c++程序设计教程.主要电器设备选择(高压断路器、隔离开关、母线、电流互感器、电压互感器、电容器等)。邵群涛编,2.通过实习场所增加对本专业学科的感性认识。 6 7 1.七、课程设计的考核 方式和成绩评定标准 4.结合实验板演示;计 §2.教师应示范讲解,《自动控制原理课程设计》教学大纲 Modern 引言 (五)课堂练习 陈在平 2.基本概念和知识点:8051内部资源应用及编程,包括用图解法分析放大电路的静态工作点、电压放大倍数、波形非线性失真;Simulink模型的建 立;聂典.(三)实践环节与课后练习 Techniques 32 (2) 第三节 专业学生 Smith纯滞后补偿控制算法 理解 12.系统校正设计基础 自动化控制系统的行为描述 抽象编程和多态 学生按照实习计划在指定的车间对典型零件及部件进行实习,6 (四)教学方法与手段 (一)目的与要求 稳压 二极管的稳压原理;专业内容涵盖电工电子、计算机控制及仪器仪表、经典的与现代的控制理论与控制技术等。32 使学生掌握基本控制规律及其特点,3.问题与应用(能力要求):掌握如何创建原理图元件。Drives 绪论 课程设计周数:2周 0.应了解该厂的仪表生产情况及该类仪表的国 内外发展情况。电梯停止运行,定期检查设计进度情况。 模拟电子技术,使学生切实掌握非电类专业必须具备的电路基础知识; 大纲修订人:吴卓葵 其作用是为以后专业实验、课程设计及毕业设计准备必要的工艺知识和操作技能。通过该课程的学习,(一)目的与要求 并具备应用网络 技术进行资料收集的能力。1.主要内容:元件的编辑 就设计课题进行深入分析,第二节 基本概念:电压负反馈、电流负反馈、串联负反馈、并联负反馈。①中心投影 8局部变量和全局变量 1 大纲修订人: Visual 5 第五节 3.问题与应用(能力要求):掌握制作原理图元件的全过程及相 关工具的使用。3)绘制工程形体的轴测图 第二节 (2)给出控制流程图并编写控制软件 第四节 时序逻辑电路的分析与设计 重点与难点: 掌握 第七章 工厂供电系统的功率损耗和电能损耗 课程名称:自动化专业生产实习 1.自动化类专业的教学安排 3.三、教学方法与手段 第五章 了解 形体剖视图的几种表示方法, 第一节 正弦稳态电路的功率 4 2. 第四节 了解 6.第三节 15 4.虚心向工人和工程技术人员学习,总评成绩 电动机过载保护,打印输出。(四)教学方法与手段 (二)教学内容 了解 本章重点:阅读装配图 4 第四章 6)设置新投影面的原则及求新投 影的方法。3.0 建议课程设计报告(说明书)参考格式如下: 能否掌握程序构成部分,纬圆法。达到学以致用的目的。CIMS的发展现状和传感器网络 整流电路 3 课程内容 第四节 多变量自动化控制系统 运动多媒体手段以课堂讲授,第一章 1.0 基于对象开发 修订日期:2014-12-3 本课程 设计是一个专业基础课课程设计,development 第8章 衡量学习是否达到目标的标准:教材1: 进行现场调试或系统仿真 适合于做直接耦合多级放大电路的输出级。了解 大纲修订人: 占 1.4 大纲审定人:张小花 (二)虚拟仪器硬件设计(2天) 不仅是控制理论的基础,主要讲述自动控 制原理与控制系统设计、实验等内容。第三章 具有提高学生对相关专业理论的认知能力、增强学生对专业技术工作适应能力和开发创新能力的作用。(一)布置题目和任务 学科基础必修课 多继承 ②系统总体设计方案 金工实习应以学生独立操作为主,2 机械制造自动化 电路分析教程. 第六章 熟练掌握直流电机工作原理;衡量学习是否达到目标的标准:教材1: 网络状态报表,英文名称:Detection 采用多媒体教学手段,第一节 0.掌握 熟悉 互相讨论,7)掌握各种光电效应、光电器件工作原理和应用、光纤传感器特点和类型,第三章 第一节 掌握三相电路的概念和 对称、不对称三相电路的计算,以达到对理论知识的熟练简明应用。针对课程内容实践性强的特点, 讲课 理解 3. 第七章 特殊型运放在某方面的性能指标特别优秀,39 知识点:当负反馈放大电路的组成不合理,4.掌握晶体管基本放大电路三种接法的主要特点和分析方法。一、课程设计 基本信息 重点:autocad的功能 5 process 8051输出控制的C编程 学习各种投影法(主要是正投影法)的基本理论及其应用,1 128 郑学坚,掌握 教学内容 能比较熟练地运用相关知识,大纲审定人:唐宇 审定日期:2013. 1 1. 1 大纲修订人:x 及格,陈维钧 整数型、浮点型、数组 6) 结合身边的事物举例说明: 修订日期:2012-10-18 生态与环境控制 了解 [1] 装配图 对象生灭 学生按格式和内容要求撰写报告。 第三章 第二节其他交流电力控制电路 电子工艺实习. 控制掺入杂质的多少就可有效地改变其导电性,Digital 2.电路信号的仿真,熟悉 能在电路设计里根据 三种基本接法的性能特点进行合适的挑选。3、说明:针对设计方案的需要论证的内容进行资料搜寻。第二节 course 工厂变配电所及其次系统的运行维护 复合管的电流放大系数约为各晶体管电流放大系数的乘积。重点:理解和掌握逻辑无环流系统对逻辑控制器DLC的要求,courses 思考题: Computer 7 1 加深汇编语言的程序设计和接口组成及应用,同时学习计算机绘图的初步知识,1 使学生初步掌握对控制系统进行分析与综合,第八节 4)圆的轴测图:“四心”法、“棱形”法。对元件封装库里没有的封装,1 5.通过学习后,无 第一节 进行课题的设计。(1)实习日志 Embedded 1 理解 五、推荐教材和教学参考资源 。0.主要介绍利用集成运放构成的比例、加减、积分、微分、对数、指数等基本运算电路。§6.放置说明文字,零输入响应,结合实验板演示;中文简介:主要讨论AUTOCAD?掌握 运用多媒体手段以课堂讲授,晶体管的主要参数;不便于集成化, 要求学生掌握多级放大电路的电压放大倍数、输入电阻、输出电阻的计算方法。2004 如独立工作能力与创造力;应将后级输入电阻作为负载。is 详细讲解了电路原理图和印刷电路板的设计方法。all 1 第五节 时:81 7直流发电机的运行原理 2.稳压电路的作用是在电网电压波动或负 载电流变化时保持输出电压基本不变。审定日期:2014-12-30 §2.审定日期:2014-12-10 元件封装编辑器介绍,学分:3 理论部分: (二)教学内容 各种截交线如何作图?北京:清华大学出版社,11)掌握成分分析仪表的基本概念。4 就设计课题进行深入分析, 计算机控制系统应用软 件设计 二、教学目的与要求 利用PN结击穿时的特性制成稳压二极管。撰写设计总结报告 中间级为共射电路,使负载从电源中获得的输出信号能量, 通信工程图等内容。3、说明:针对题目要求的给出合理的设计方案。10.语句等概念及表示方法 分配 of 交平面的夹角实形;问题与应用 (能力要求):了解字符型LCD的结构和引脚,掌握 理解难点 ②该厂主要仪表的构成;《CAD》课程教学大纲 T7-2、4、6、8 3 以及8051单片机控制8盏LED灯实现跑马灯的电路原理图。实践环节:对第一章设计的扩展数据存储器的单片机系统进行编程,论 1 0.结构,0 五、推荐教材和教学 参考资源 修订日期: T8-2、5、7、11、15、18 levels.1.1 H面上又是如何判别可见性。0 能按教学大纲独立完成设计; 通过本章的学习,同时通过实习使学生树立劳动观点,1 并能正确分析其地址范围。第三节霍尔传感器 [1] 4. 电容式传感器的应用 3、说明:严格按照学校要求的内容、 格式及版面样式进行撰写。引脚列表,主要内容:串行口 修订日期:2014年5月20日 4 数据通信技术 并为后续的专业课打下基础。analog 掌握 基本概念和知识点:8051片内并行口的定义与应用, 九、其他说明 计算机网络基础知识是非通信类专业学生学习计算机网络的基础;能计算 常见的共射放大电路的静态工作点。2直流电机的基本结构 四、教学内容及目标 课程性质:实践教学环节 1.I.3 1 能否很好翻译课后作业 Automation)的设计思想已经普及到中小企业及各级相关大专院校之中。0.3.问题与应用(能力要求) 2.基本
2019届高三数学复习--数列--数列、等差数列与等比数列

2019届⾼三数学复习--数列--数列、等差数列与等⽐数列2019届⾼三数学复习--数列--数列、等差数列与等⽐数列第10讲数列、等差数列与等⽐数列1.(1)[2014?全国卷Ⅱ]数列{an}满⾜an+1=,a8=2,则a1= .(2)[2018?全国卷Ⅰ]记Sn为数列{an}的前n项和.若Sn=2an+1,则S6= .[试做]命题⾓度数列的递推问题(1)解决数列的递推问题:关键⼀,利⽤an=得出an与an+1(或an-1)的递推式;关键⼆,观察递推式的形式,采⽤不同的⽅法求an.(2)若递推式形如an+1=an+f(n),an+1=f(n)?an,则可分别通过累加、累乘法求得通项公式,或⽤迭代法求得通项公式;若递推式形如an+1=pan+q(其中p,q均为常数,且p≠1),则通常化为an+1-t=p(an-t)的形式,其中t=,再利⽤换元法转化为等⽐数列求解.2.(1)[2017?全国卷Ⅲ]等差数列{an}的⾸项为1,公差不为0.若a2,a3,a6成等⽐数列,则{an}前6项的和为( )A.-24B.-3c.3D.8(2)[2016?全国卷Ⅰ]设等⽐数列{an}满⾜a1+a3=10,a2+a4=5,则a1a2…an的最⼤值为 .[试做]命题⾓度等差、等⽐数列的基本计算关键⼀:基本量思想(等差数列:⾸项a1和公差d.等⽐数列:⾸项a1和公⽐q).关键⼆:等差数列的性质,若+n=p+q(,n,p,q∈N*),则an+a=ap+aq;等⽐数列的性质,若+n=p+q(,n,p,q∈N*),则ana=apaq.3.(1)[2017?全国卷Ⅱ]等差数列{an}的前n项和为Sn,a3=3,S4=10,则 .(2)[2015?全国卷Ⅱ]设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn= .[试做]命题⾓度数列求和关键⼀:利⽤等差数列、等⽐数列的前n项和公式求解.关键⼆:利⽤数列求和⽅法(公式法、倒序相加法、分组求和法、并项求和法、错位相减法、裂项相消法)求解.⼩题1数列的递推关系1(1)已知数列{an}的前n项和为Sn,若3Sn=2an-3n,则a2018=( )A.22018-1B.32018-6c.-D.-(2)已知数列{an}满⾜a1=15,=2(n∈N*),则的最⼩值为 .[听课笔记]【考场点拨】由递推关系式求数列的通项公式,常⽤的⽅法有:①求出数列的前⼏项,再归纳猜想出数列的⼀个通项公式(注意验证);②将已知递推关系式整理、变形得到等差或等⽐数列的通项公式,或⽤累加法(适⽤于an+1=an+f(n)型)、累乘法(适⽤于an+1=an?f(n)型)、待定系数法(适⽤于an+1=pan+q 型)求通项公式.【⾃我检测】1.数列{an}满⾜a1=1,且对任意的,n∈N*,都有a+n=a+an+n,则+++…+等于( )A.B.c.D.2.定义各项均不为0的数列{an}:a1=1,a2=1,当n≥3时,an=an-1+.定义各项均不为0的数列{bn}:b1=1,b2=3,当n≥3时,bn=bn-1+.则=( )A.2017B.2018c.2019D.10093.在数列{an}中,a1=0,an+1=,则数列{an}的前2018项和S2018= .4.已知数列{an}的前n项和为Sn,且an+Sn=3n-1,则数列{an}的通项公式an= .⼩题2等差、等⽐数列的基本计算2(1)已知数列{an}的前n项和Sn=2n+1-2,bn=log2(?),数列{bn}的前n项和为Tn,则满⾜Tn>1024的n的最⼩值为( )A.9B.10c.12D.15(2)已知等差数列{an}中,a3=7,a9=19,Sn为数列{an}的前n项和,则的最⼩值为 .[听课笔记]【考场点拨】等差、等⽐数列问题的求解策略:(1)抓住基本量,⾸项a1、公差d或公⽐q;(2)熟悉⼀些结构特征,如前n项和为Sn=an2+bn(a,b是常数)的形式的数列为等差数列,通项公式为an=p?qn-1(p,q≠0)的形式的数列为等⽐数列;(3)由于等⽐数列的通项公式、前n项和公式中变量n在指数位置,所以常采⽤两式相除(即⽐值的⽅式)进⾏相关计算.【⾃我检测】1.已知数列{an}是公⽐为q的等⽐数列,若a1,a3,a2成等差数列,则公⽐q的值为( )A.-B.-2c.1或-D.-1或2.等⽐数列{an}的⾸项为3,公⽐q≠1,若a4,a3,a5成等差数列,则数列{an}的前5项和S5=( )A.-31B.33c.45D.933.设等差数列{an}的前n项和为Sn,若a1=-11,a4+a6=-6,则当Sn取得最⼩值时,n的值为 .4.已知等差数列{an}的前n项和为Sn,a1=9,a5=1,则使得Sn>0成⽴的n的最⼤值为 .⼩题3等差、等⽐数列的性质3(1)已知等差数列{an}的前n项和为Sn,若a4,a10是⽅程x2-8x+1=0的两个根,则S13=( )A.58B.54c.56D.52(2)已知数列{an}的各项都为正数,对任意的,n∈N*,a?an=a+n恒成⽴,且a3?a5+a4=72,则log2a1+log2a2+…+log2a7= .[听课笔记]【考场点拨】等差、等⽐数列性质使⽤的注意点:(1)通项性质:若+n=p+q=2k(,n,p,q,k∈N*),则对于等差数列有a+an=ap+aq=2ak,对于等⽐数列有aan=apaq=.(2)前n项和的性质:对于等差数列有S,S2-S,S3-S2,…成等差数列;对于等⽐数列,若有S,S2-S,S3-S2,…成等⽐数列,则仅在q≠-1,或q=-1且为奇数时满⾜.【⾃我检测】1.已知数列{an}为等差数列,数列{bn}为等⽐数列,且满⾜a2017+a2018=π,=4,则tan=( )A.-1B.c.1D.2.已知等⽐数列{an}中,a5=2,a6a8=8,则=( )A.2B.4c.6D.83.已知正项等⽐数列{an}的前n项和为Sn,且S10=10,S30=130,则S40=( )A.-510B.400c.400或-510D.30或404.已知等差数列{an}的公差不为0,a1=1,且a2,a4,a8成等⽐数列,{an}的前n项和为Sn,则Sn=( )A.B.c.D.⼩题4等差、等⽐数列的综合问题4(1)已知等差数列{an}的前n项和为Tn,a3=4,T6=27,数列{bn}满⾜bn+1=b1+b2+b3+…+bn,b1=b2=1,设cn=an+bn,则数列{cn}的前11项和S11=( )A.1062B.2124c.1101D.1100(2)已知数列{an}的通项公式为an=n+t(t∈R),数列{bn}为公⽐⼩于1的等⽐数列,且满⾜b1?b4=8,b2+b3=6,设cn=+,在数列{cn}中,若c4≤cn(n∈N*),则实数t的取值范围为 .[听课笔记]【考场点拨】解决数列的综合问题的易失分点:(1)公式an=Sn-Sn-1适⽤于所有数列,但易忽略n≥2这个前提;(2)对含有字母的等⽐数列求和时要注意q=1或q≠1的情况,公式Sn=只适⽤于q≠1的情况.【⾃我检测】1.已知数列{an}的各项均为整数,a8=-2,a13=4,前12项依次成等差数列,从第11项起依次成等⽐数列,则a15=( )A.8B.16c.64D.1282.已知正项等⽐数列{an}的前n项和为Sn,且a1a6=2a3,a4与2a6的等差中项为,则S5=( )A.B.30c.31D.3.当n为正整数时,定义函数N(n)表⽰n的最⼤奇因数,如N(3)=3,N(10)=5.若S(n)=N(1)+N(2)+N(3)+…+N(2n),则S(5)=( )A.342B.345c.341D.3464.已知等⽐数列{an}满⾜a2a5=2a3,且a4,,2a7成等差数列,则a1?a2?…?an的最⼤值为 .模块三数列第10讲数列、等差数列与等⽐数列典型真题研析1.(1)(2)-63[解析](1)由题易知a8==2,得a7=;a7==,得a6=-1;a6==-1,得a5=2,于是可知数列{an}具有周期性,且周期为3,所以a1=a7=.(2)⽅法⼀:令n=1,得S1=a1=2a1+1,所以a1=-1,⼜由Sn=2an+1=2(Sn-Sn-1)+1(n≥2),得Sn=2Sn-1-1(n≥2),即Sn-1=2(Sn-1-1)(n≥2),所以数列{Sn-1}是以S1-1=-2为⾸项,2为公⽐的等⽐数列,所以S6-1=(-2)×25=-64,则S6=-63.⽅法⼆:令n=1,得S1=a1=2a1+1,所以a1=-1.由Sn=2an+1①,得Sn-1=2an-1+1(n≥2)②,①-②得an=2an-2an-1(n≥2),即an=2an-1(n≥2),所以{an}是以a1=-1为⾸项,2为公⽐的等⽐数列,于是S6==-63.2.(1)A(2)64[解析](1){an}为等差数列,且a2,a3,a6成等⽐数列,则=a2?a6,即(a1+2d)2=(a1+d)(a1+5d).将a1=1代⼊上式并化简,得d2+2d=0,∵d≠0,∴d=-2,∴S6=6a1+d=1×6+×(-2)=-24.(2)设该等⽐数列的公⽐为q,则q==,可得a1+a1=10,得a1=8,所以an=8×n-1=n-4.所以a1a2…an=-3-2-1+0+…+(n-4)=,易知当n=3或n=4时,(n2-7n)取得最⼩值-6,故a1a2…an的最⼤值为-6=64.3.(1) (2)- [解析](1)设公差为d,则a1+2d=3且4a1+6d=10,解得a1=1,d=1,所以Sk=,=2,所以(2)因为a1=-1,an+1=SnSn+1,所以S1=-1,Sn+1-Sn=SnSn+1,所以-=-1,所以数列是⾸项为-1,公差为-1的等差数列,所以=-n,所以Sn=-.考点考法探究⼩题1例1(1)A(2)[解析](1)由题意可得3Sn=2an-3n,3Sn+1=2an+1-3(n+1),两式作差可得3an+1=2an+1-2an-3,即an+1=-2an-3,即an+1+1=-2(an+1),由3S1=2a1-3=3a1,可得a1=-3,∴a1+1=-2,∴数列{an+1}是⾸项为-2,公⽐为-2的等⽐数列,据此有a2018+1=(-2)×(-2)2017=22018,∴a2018=22018-1.(2)由=2,得an+1-an=2n,∵a1=15,∴当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=15+2+4+…+2(n-1)=15+2×=n2-n+15, ∵a1=15满⾜上式,∴an=n2-n+15,∴=n+-1,易知当n依次取1,2,3时,n+-1的值递减;当n取⼤于或等于4的⾃然数时,n+-1的值递增.当n=3时,=3+5-1=7;当n=4时,=4+-1=.故的最⼩值为.【⾃我检测】1.c [解析]∵an+=a+an+n对任意的,n∈N*都成⽴,∴an+1=an+a1+n=an+1+n,即an+1-an=1+n,∴a2-a1=2,a3-a2=3,…,an-an-1=n(n≥2),把上⾯(n-1)个式⼦相加可得,an-a1=2+3+4+…+n,∴an=1+2+3+…+n=(n≥2),当n=1时,a1=1,满⾜上式,∴an=,从⽽有==2,∴+++…+=2×=.2.D [解析]当n≥3时,由an=an-1+两边同除以an-1,可得=1+,即-=1,则数列是⾸项为1,公差为1的等差数列,所以=n-1(n≥2),所以an=a1×××…×=1×1×2×…×(n-1)(n≥2).同理可得-=1(n≥3),则数列是⾸项为3,公差为1的等差数列,所以=n+1(n≥2),可得bn=b1×××…×=1×3×4×…×(n+1)(n≥2), 所以==1009,故选D.3. [解析]∵a1=0,an+1=,∴a2==,a3===-,a4==0,∴数列{an}具有周期性,其周期为3,且a1+a2+a3=0,则S2018=S3×672+2=a1+a2=.4.3-[解析]由an+Sn=3n-1,得当n≥2时,an-1+Sn-1=3n-4,两式相减得an=an-1+,∴an-3=(an-1-3).∵当n=1时,a1+S1=3-1=2,∴a1=1,∵a1-3=-2,∴数列{an-3}是以-2为⾸项,为公⽐的等⽐数列, ∴an-3=-2?,∴an=3-.⼩题2例2 (1)A (2)3 [解析](1)因为数列{an}的前n项和Sn=2n+1-2,所以当n≥2时,an=Sn-Sn-1=2n+1-2n=2n,当n=1时,a1=21+1-2=2,满⾜上式,所以an=2n,所以bn=log2(?)=log2+log2=2n+2n,所以数列{bn}的前n项和Tn=+=n(n+1)+2n+1-2,易知当n∈N*时,Tn递增.当n=9时,T9=9×10+210-2=1112>1024;当n=8时,T8=8×9+29-2=582 所以满⾜Tn>1024的n 的最⼩值为9.(2)∵a3=7,a9=19,∴公差d===2,∴an=a3+(n-3)d=7+2(n-3)=2n+1,∴Sn==n(n+2),∴==≥×2=3,当且仅当n=2时取等号.【⾃我检测】1.c [解析]由题意知2a3=a1+a2,∴2a1q2=a1q+a1,即2q2=q+1,∴q=1或q=-.2.B [解析]∵等⽐数列{an}的⾸项为3,∴an=3qn-1,⼜a4,a3,a5成等差数列,∴a4+a5=2a3,∴q2+q=2,∴(q+2)(q-1)=0,∴q=-2,∴an=3?(-2)n-1,∴S5==33,故选B.3.6 [解析]设数列{an}的公差为d,则a4+a6=2a1+8d=2×(-11)+8d=-6,解得d=2,所以Sn=-11n+×2=n2-12n=(n-6)2-36,所以当n=6时,Sn取得最⼩值.4.9 [解析]因为a1=9,a5=1,所以公差d==-2,所以Sn=9n+n(n-1)(-2)=10n-n2,令Sn>0,得00成⽴的n的最⼤值为9.⼩题3例3 (1)D (2)21 [解析](1)由根与系数的关系可得a4+a10=8,结合等差数列的性质可得a1+a13=a4+a10=8,则S13===52.(2)令=1,∵a?an=a+n,∴a1?an=a1+n,∴数列{an}为等⽐数列.由a3?a5+a4=72,得+a4=72,∵a4>0,∴a4=8,∴log2a1+log2a2+…+log2a7=log2(a1?a2?…?a7)=log2=log287=21.【⾃我检测】1.c[解析]由等差数列的性质可知,a2+a4033=a2017+a2018=π,由等⽐数列的性质可知,b1b39==4,所以tan=tan=1,故选c.2.A [解析]设数列{an}的公⽐为q.∵数列{an}是等⽐数列,∴a6a8==8,∴a7=2(与a5同号),∴q2==,∴=q4=()2=2.故选A.3.B [解析]∵正项等⽐数列{an}的前n项和为Sn,∴S10,S20-S10,S30-S20,S40-S30也成等⽐数列,∴10×(130-S20)=(S20-10)2,解得S20=40或S20=-30(舍),故S40-S30=270,∴S40=400,故选B.4.A [解析]设等差数列{an}的公差为d(d≠0).∵a2,a4,a8成等⽐数列,∴=a2?a8,即(a1+3d)2=(a1+d)?(a1+7d),∴(1+3d)2=(1+d)?(1+7d),∴d=1,∴Sn=n+=.故选A.⼩题4例 4 (1)c (2)[-4,-2] [解析](1)设数列{an}的公差为d,则解得∴数列{an}的通项公式为an=n+1.当n≥2时,bn+1-bn=bn,∴bn+1=2bn,即数列{bn}从第⼆项起为等⽐数列,∴bn=2n-2(n≥2), ∴数列{bn}的通项公式为bn=分组求和可得数列{cn}的前11项和S11=(2+3+4+…+12)+(1+1+2+22+…+29)=77+210=1101.(2)在等⽐数列{bn}中,由b1?b4=8得b2?b3=8,⼜b2+b3=6,且公⽐q⼩于1,∴b2=4,b3=2,∴q==,因此bn=b2qn-2=4×=.由cn=+,得cn=∴cn是取an,bn中的较⼤者.由题易知c4是数列{cn}中的最⼩项,⼜bn=递减,an=n+t递增,∴当c4=a4时,c4≤cn,即a4≤cn,a4是数列{cn}中的最⼩项,则必须满⾜b4 【⾃我检测】1.B [解析]设由数列{an}的前12项构成的等差数列的公差为d,从第11项起构成的等⽐数列的公⽐为q,由a13===4,解得d=1或d=,⼜数列{an}的各项均为整数,故d=1,所以q==2,所以an=故a15=24=16,故选B.2.c [解析]设正项等⽐数列{an}的公⽐为q,q>0.∵a1a6=2a3,a4与2a6的等差中项为,∴q5=2a1q2,a1(q3+2q5)=3,得a1=16,q=,则S5==31.3.A [解析]由题设知,N(2n)=N(n),N(2n-1)=2n-1,∴S(n)=[1+3+5+…+(2n-1)]+[N(2)+N(4)+N(6)+…+N(2n)]=4n-1+[N(1)+N(2)+N(3)+…+N(2n-1)]=4n-1+S(n-1)(n≥2),⼜S(1)=N(1)+N(2)=2, ∴S(n)=4n-1+4n-2+…+41+2=,∴S(5)==342.故选A.4.1024[解析]设数列{an}的公⽐为q.由已知得a3a4=a2a5=2a3?a4=2,a4+2a7=2×?a7=,∴==q3, ∴q==2-1,a1==24,∴an=24?2-(n-1)=25-n,∴a1?a2?…?an=24×23×…×25-n=24+3+…+(5-n)===,∴当n=4或5时,a1?a2?…?an取得最⼤值1024.[备选理由]例1为由递推关系求数列的通项公式问题,难度较⼤;例2考查等⽐数列前n项和中参数的计算,不同于原例2只考查等差、等⽐数列的基本量的计算;例3考查等⽐数列的计算,采⽤整体求解⽐较⽅便;例4为等差数列性质的应⽤问题;例5是⼀道等差数列与等⽐数列的综合题.例 1 [配例1使⽤]已知数列{an}满⾜a1=1,a2=,若anan-1+2anan+1=3an-1an+1(n≥2,n∈N*),则数列{an}的通项公式为an= .[答案][解析]∵anan-1+2anan+1=3an-1an+1(n≥2,n∈N*), ∴+=,即-=2,⼜∵-=2,∴数列是以2为⾸项,2为公⽐的等⽐数列,∴-=2n,∴当n≥2时,=++…++=2n-1+2n-2+…+2+1==2n-1.当n=1时,=1,满⾜上式,∴=2n-1,∴an=.例 2 [配例2使⽤]已知等⽐数列{an}的前n项和Sn=32n-1+r,则r的值为( )A.B.-c.D.-[解析]B 当n=1时,a1=S1=3+r;当n≥2时,an=Sn-Sn-1=32n-1-32n-3=32n-3(32-1)=8?32n-3=8?32n-2?3-1=?9n-1.∵数列{an}为等⽐数列,∴3+r=,∴r=-,故选B.例3[配例2使⽤]在等⽐数列{an}中,已知a1+a2+a3=1,a2+a3+a4=2,则a8+a9+a10= .[答案]128[解析]设数列{an}的公⽐为q.∵a1+a2+a3=1,a2+a3+a4=(a1+a2+a3)q=2,∴q=2,∴a8+a9+a10=(a1+a2+a3)q7=27=128.例4 [配例3使⽤]在等差数列{an}中,其前n项和为Sn,若2(a1+a4+a7)+3(a9+a11)=24,则S13+2a7=( )A.17B.26c.30D.56[解析]c 设等差数列{an}的公差为d,由等差数列的性质可得a1+a7=2a4,a9+a11=2a10,则有6a4+6a10=24,即a1+6d=2,所以S13=13a1+d=13(a1+6d)=26,2a7=2(a1+6d)=4,所以S13+2a7=30.例5 [配例4使⽤]已知各项都是正数的等⽐数列{an}的公⽐q≠1,且a2,a3,a1成等差数列,则的值为( )A.B.c.D.或[解析]B 由题得a3×2=a2+a1,∴a1q2=a1q+a1,∴q=,∴==q2=.。
第1讲 等差数列与等比数列

所以 q=- 1 ,所以 S4=S3+a4= 3 - 1 = 5 .
2
4 88
答案: 5 8
4.(2019·全国Ⅰ卷)记
Sn
为等比数列{an}的前
n
项和.若
a1=
1 3
,
a42
=a6,则
S5=
.
解析:设等比数列{an}的公比为 q,由 a42 =a6 可得 a12 q6=a1q5,解得 a1q=1,
则 S9= 9a1 a9 = 9 4 =18.故选 A.
2
2
(2)(2019·南昌期中)已知 Sn 为等差数列{an}的前 n 项和,若 a2019 >-1 且 Sn 有最小 a2020
方法技巧
解等差数列、等比数列基本运算问题的基本思想是方程思想,即通过等差数列、 等比数列的通项公式及前n项和公式得出基本量(等差数列的首项和公差、等 比数列的首项和公比),然后再通过相关公式求得结果.
热点训练1:(1)(2019·湖南省长望浏宁四县高三3月调研)中国古代词中,有一 道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多 十七,要将第八数来言”.题意是:把996斤绵分给8个儿子做盘缠,按照年龄从 大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的 绵是( ) (A)174斤 (B)184斤 (C)191斤 (D)201斤
(1)证明:由题设得 4(an+1+bn+1)=2(an+bn),则 an+1+bn+1= 1 (an+bn). 2
又因为 a1+b1=1,所以{an+bn}是首项为 1,公比为 1 的等比数列. 2
高三数学等差等比数列综合运用

1 n ( a 2 a 2 n ) 1 n (1 4 n 3) 2n 1 , n n 2 2
bn 1 bn
2( n 1) 1 (2 n 1)
2 . b n 是等差数列.
作业: 《全案》 P
速度训练: 1.已知等差数列{an},{bn}前 n 项和分别是 Sn、Tn, a1 1 Sn 2n 若 ,则 等于( C ) b1 1 Tn 3n 1 (A)
a n 是等差数列,记其前 n 项
和 为 S n , 若 a1 8 , 且 a 8 2 0 , 则
S
15
300 _________.
三、数列与其他数学分支的综合问题
数列的综合问题,是数列的概 念、性质在其他知识领域的穿插与 渗透。数列与函数、方程、三角、 不等式等知识相互联系,优化组合, 无形中加大了综合力度。
an
联系
差数列; ⑵
a n 为等差数列 b 为等比数列.
注:等差、等比数列的证明须用定义证明 .
二、等比数列与等差数列的综合计算问题 数列计算是本章的中心内容,利用等差数 列和等比数列的通项公式、前项和公式及其性 质熟练地进行计算,是高考命题重点考查的内 容.
例如:已知
a n S n S n 1 ( n 2 n )
2 2 ( n 1)
2( n 1) 2 n 3 ,
∴ a n 2 n 3 ,即 a n 是首项为 1 ,公差为 2
1 的等差数列.∴ b n ( a 2 a 4 a 2 n ) n
11 17
73
训练 3 、 预测 1
高三数学知识点之数列

高三数学知识点之数列数列是数学中常见的概念,也是高三数学中的重点内容之一。
在本文中,我将介绍数列的定义、分类和常见性质,帮助读者更好地理解和应用数列知识。
一、数列的定义数列是由一系列按照一定规律排列的数字组成的序列。
通常用${a_1}$, ${a_2}$, ${a_3}$, ... 表示数列的元素,其中 ${a_1}$ 表示第一个元素,${a_2}$ 表示第二个元素,依此类推。
数列可以有无限个元素,也可以只有有限个元素。
二、数列的分类1.等差数列等差数列是指数列中相邻两项之差都相等的数列。
设数列为${a_1}$, ${a_2}$, ${a_3}$, ...,相邻两项之差为常数 $d$,则有以下关系:${a_2}$ - ${a_1}$ = ${a_3}$ - ${a_2}$ = $d$例如,2, 5, 8, 11, ... 就是一个公差为3的等差数列。
2.等比数列等比数列是指数列中相邻两项之比都相等的数列。
设数列为${a_1}$, ${a_2}$, ${a_3}$, ...,相邻两项之比为常数 $q$,则有以下关系:${a_2}$ / ${a_1}$ = ${a_3}$ / ${a_2}$ = $q$例如,1, 2, 4, 8, ... 就是一个公比为2的等比数列。
3.递推数列递推数列是指数列中的每一项都可以通过前一项计算得到的数列。
设数列为 ${a_1}$, ${a_2}$, ${a_3}$, ...,且满足以下递推关系:${a_{n+1}}$ = $f({a_n})$其中 $f(x)$ 表示一个确定的函数。
递推数列可以是等差数列或等比数列,也可以是其他类型的数列。
三、数列的常见性质1.通项公式对于某些特定的数列,可以通过确定的方法得到数列的通项公式,即通过序号 $n$ 直接计算第 $n$ 项 ${a_n}$ 的公式。
通项公式的推导可以通过观察数列的规律、利用递推关系或解递推方程等方法得到。
2.前 n 项和前 n 项和是指数列前 n 项的和,通常用 $S_n$ 表示。
高三数学知识点数列公式大全

高三数学知识点数列公式大全数学是学习生涯的关键阶段,为了能够使同学们在数学方面有所建树,小编特此整理了高三数学知识点数列公式大全,以供大家参考。
一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=S1(n-1)或Sn-Sn-1(n2或n=2)2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=na1+[n(n-1)/2]dSn=n(a1+a2)/2Sn=nan-[n(n-1)/2]d当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1 qn-1 an= ak qn-k(其中a1为首项、ak为已知的第k项,an0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n 的正比例式);当q1时,Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则am+an=ap+aq3、等比数列{an}中,若m+n=p+q,则aman=apaq4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{anbn}、{an/bn}、{1/bn}仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 11、{an}为等差数列,则(c0)是等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
千题]自动化仪器应用于临床化学检验,其特点不包括()A.自动化B.精密度高C.微量D.快速E.准确度最高 [单选,A2型题,A1/A2型题]CT扫描的优点不包括()A.密度分辨力高B.可作定量分析C.极限分辨力高D.真正的断面图像E.图像无层面以外结构的干扰 [单选]血吸虫性肝硬化所致门静脉高压是因为()A.窦前阻塞B.窦内阻塞C.窦后阻塞D.肝前阻塞E.肝后阻塞 [单选]公路供配电线路构成中,下列选项中错误的是()。A.10kV高压线路可采用架空电线路或电缆线路B.10kV高压线路只能采用电缆线路C.低压配电线路一般采用电缆线路D.按电压等级可分为10kV高压线路、380/220V低压配电线路 [单选]上颌窦内靠下壁的半圆形软组织影边缘光滑,直径1.0~1.5cm,窦腔内其余部分无异常,最可能的诊断是()A.息肉B.黏液囊肿C.黏膜囊肿D.血管瘤E.正常变异 [单选,A1型题]关于脊髓灰质炎三型混合疫苗接种,错误的是()A.接种对象是两个月以上的正常小儿B.用热水先将糖丸融化后再服用C.基础免疫需服用三次,每次间隔一个月D.4岁还需要加强免疫一次E.口服后可获得局部免疫和体液免疫 [单选,A型题]可作片剂崩解剂的是()A、交联聚乙烯吡咯烷酮B、预胶化淀粉C、甘露醇D、聚乙二醇E、聚乙烯吡咯烷酮 [单选]聚合物主链中的取代基有规律的交替排列在中轴分子链的两端的聚合物,称为()。A、定向聚合;B、间规聚合;C、无规聚合;D、本体聚合。 [单选]素描是造型训练,如石膏写生,其作画过程共分()个步骤。A、2个B、3个C、4个D、5个 [判断题]消防强切信号电压一般是24伏。A.正确B.错误 [单选]深龋患者激发痛较重,洞底软龋能够彻底去净,治疗方法应选择()A.双层垫底,一次完成充填治疗B.局麻后开髓失活,行牙髓治疗C.先做安抚疗法,待一到二周复诊时症状消除后,再以双层垫底充填D.施行活髓切除术E.间接盖髓、双层垫底一次完成充填治疗 [单选]斑疹伤寒患者血清中可测出对变形杆菌“OX19”,的抗体,是属于()A.间接凝集反应B.直接凝集反应C.反向凝集试验D.交叉凝集反应E.反向间接凝集反应 [单选,A2型题,A1/A2型题]矽肺是指长期吸入哪种物质所致的以肺部弥漫性纤维化为主的全身性疾病()。A.烟雾B.金刚砂C.石棉D.水泥E.游离二氧化硅 [单选,A1型题]27岁初产妇,胎儿娩出后无阴道流血,胎盘娩出后阴道流血不断,时多时少,1小时内阴道流血量超过600ml,血压70/50mmHg,脉搏126次/分。紧急措施应是()A.为宫颈裂伤,立即缝合B.为阴道血肿,立即处理C.检查凝血功能,并输纤维蛋白原D.静注麦角新碱加强宫缩E.手入宫 [问答题,案例分析题]2012年1月1日,长江公司销售一批产品给黄河公司,价税合计金额为1000万元,款项尚未收到。因黄河公司发生财务困难,至12月31日长江公司仍未收到款项,长江公司为该应收账款计提坏账准备100万元。2012年12月31日,黄河公司与长江公司协商,达成重组协议如下。( [单选]兽药房专业技术人员调剂处方时必须做到“四查十对”,下列选项哪项不是所查内容?()A、查药品B、查配伍禁忌C、查价格D、查用药合理性 [单选]对于HIV病毒携带者描述错误的是()A.患者无症状B.少数有淋巴结肿大C.CDT淋巴细胞下降至(O.2~0.4)×10/LD.血清HIV抗体阳性 [单选,A4型题,A3/A4型题]男性,33岁,左小腿被锈铁钉刺伤一段时间后出现乏力、头疼、打哈欠,继而有张口困难、蹙眉和苦笑面容等表现,全身肌肉阵发性痉挛,但神志一直清醒,诊断为破伤风。该病潜伏期一般为()A.1周B.2周C.3周D.4周E.5周 [单选]预防风心病加重的根本措施是().A.积极治疗心力衰竭B.积极锻炼身体C.饮食清淡,避免妊娠D.预防和治疗感染E.卧床休息 [配伍题,B1型题]治疗脾气虚弱型黄体功能不足,应首选的方剂是()。</br>治疗虚热型无排卵型功血,应首选的方剂是()。A.四物汤B.归脾丸C.补中益气汤D.固本止崩汤E.保阴煎 [单选]需要在运动状态下对包装设备进行调整、维护和排除故障时,则仅允许通过()或借助于点动按钮开关使包装设备进行运动。A.转动B.运行C.运转D.手动 [单选]男性,30岁,车祸致右髋疼痛,且右下肢活动受限,呈屈曲、内收、内旋及短缩畸形。最有可能的诊断是()A.股骨颈骨折B.股骨转子骨折C.骨内收肌扭伤D.髋关节前脱位E.髋关节后脱位 [单选]颅后窝骨折的特征性表现为()A.脑脊液鼻漏B.失明C.Battle征D.失嗅E.搏动性突眼 [单选]甲公司与乙公司签订了一份房屋买卖合同,双方合同约定因房屋买卖发生的一切争议均提交A市仲裁委员会仲裁。乙公司将房屋交付给甲公司后,甲公司认为房屋质量存在瑕疵拒绝付款,随后甲公司将房屋转租于丙公司。乙公司向A市仲裁委员会提出仲裁申请,请求解除合同。下列说法正确 [填空题]广告设计的本质在于(),广告主和广告策划者是广告的传播者,广告信息是广告传播的主要内容,刊播广告的各种媒介是广告传播的媒介,而接触广告的媒介受众则是()的受众。 [单选,A型题]有关“厌氧芽胞梭菌”的叙述,哪一项是错误的()A.革兰染色阳性B.主要分布于土壤、人和动物肠道C.都能通过伤口感染D.特异性治疗需应用抗毒素E.抵抗力强 [单选,A1型题]提出"理性情绪疗法"的心理学家是()A.艾里斯B.贝克C.迈切鲍姆D.艾森克E.拉扎勒斯 [单选]下列表现不符合骨关节炎特点的是()A.表现为关节疼痛、骨性膨大B.慢性起病、进展缓慢C.膝关节在活动时有骨擦感D.休息时关节疼痛明显,活动时疼痛减轻E.晨僵可达20~30分钟 [单选]关于骨产道,下述哪项是正确的().A.骨盆是由骶骨、耻骨、尾骨组成B.真骨盆两侧为髂骨翼,后面为第五腰椎C.骨盆入口平面为骶岬、髂耻线与耻骨联合上缘D.骨盆出口平面是由骶尾关节、两侧坐骨棘、耻骨联合下缘围绕的骨盆腔最低平面E.中骨盆平面横径为坐骨结节间径 [单选,A1型题]膀胱肿瘤最常见的临床表现是()A.尿频、尿急、尿痛B.疼痛+血尿C.镜下血尿D.排尿困难E.全程肉眼血尿 [单选]用孕激素治疗闭经出现撤药性阴道流血,说明()。A.子宫内膜萎缩B.子宫内膜增生过度C.子宫内膜结核D.子宫内膜已受雌激素影响E.子宫内膜未受雌激素影响 [问答题,简答题]MF-8干粉灭火器如何使用? [单选]甲烷化反应是强放热反应,每1%二氧化碳床层温升是()。A.59B.72C.83D.40 [单选]下列哪些内容应成为航海员判定海图资料是否可信的依据()。Ⅰ.等深线的间距;Ⅱ.测量时间;Ⅲ.岸形的描绘;Ⅳ.小改正;Ⅴ出版国家。A.Ⅰ~ⅤB.Ⅰ,Ⅱ,Ⅳ,ⅤC.Ⅱ,Ⅲ,ⅣD.Ⅰ~Ⅳ [问答题,案例分析题]病例摘要:闫某,男,32岁,市民,已婚,于2013年6月23日上午9时就诊。患者自述昨晚与朋友在市区露天就餐,并饮白酒半斤,其间感觉有一菜有酸腐之味,食下少量,今日凌晨3时许出现腹痛,泻下稀便两次,腹部坠胀不安,里急后重,肛门灼热,此后欲便不能,仅排出 [单选,A4型题,A3/A4型题]男,30岁,既往发作性心悸史,2小时前突然心悸,伴有头晕、乏力、出汗来诊。体格检查:BP90/60mmHg,心脏无扩大,心率190次/分,节律不规则,第一心音强弱不等,各瓣膜听诊区未闻及心脏杂音。心电图检查:P波消失,QRS波群宽大畸形,节律不规则。在该患者 [单选,A2型题,A1/A2型题]不需酶催化反应即可发光的发光底物是()A.吖啶酯B.三联吡啶钌C.鲁米诺或其衍生物D.4-MUPE.AMPPD [单选]下列对骨质疏松描述错误的是()A.骨质疏松症可分为原发性、继发性两类B.雌激素可抑制骨吸收,雌激素水平不足是病因之一C.多数患者为原发性骨质疏松症D.女性绝经期后发病率升高E.骨折是本病最为严重的后果 [单选]以下哪一条不符合喉癌的CT表现()。A.前联合厚度超过2cm应考虑肿瘤侵犯的可能B.喉癌的诊断主要是临床和病理,CT的作用主要是确定病变的范围C.经声门癌是原发于喉室内的癌,是比较早期的肿瘤D.前联合的喉癌很容易侵犯甲状软骨和环甲膜E.声带固定、增厚,软组织肿块,侵犯、 [单选]通过一定的法律行为或基于法定的事实从原所有人处取得所有权的方式称为()。A.善意取得B.继受取得C.原始取得D.非法取得