各种微波波导参数

合集下载

微波技术第3章1矩形波导

微波技术第3章1矩形波导
编辑ppt
可见前五个导模是 TE10、TE20、TE01、 TE11、TM11。
35
则TE10模 TE20模 TE01模 TE11和TM11模 TE21和TM21模 TE12和TM12模
• 当f0 = 10GHz时,λc=3cm
fcTE10=6.562GHz fcTE20=13.123GHz fcTE01=14.764GHz fcTE11=16.156GHz fcTE21=19.753GHz fcTE12=30.248GHz
传播。
编辑ppt
13
TE20模场结构
TE10 TE20
编辑ppt
14
(2)TE01模与TE0n模
其场分量为
Ex
j n
b H mn sin n b y e
jz
Hy
j n
b
ny
H mn sin b e
jz
Hz
ny H mn cos b e
jz
Ey Ez H x 0
TE01模只有Ex、Hy和Hz三个场分量,它们与x无关,故 沿a边场无变化;
波分布或TM11模场;如 图。
注:TE11与TM11是简并模,这种简并称为模式简并; 同理,TEmn与TMmn (m>0, n>0) 是简并模。
编辑ppt
19
3.管壁电流 Js nˆHtan
主模:TE10模工作下
波导底面 y = 0 ; nˆ yˆ
JSy 0 y ˆ [x ˆHx zˆHz] x ˆHz zˆHx
ZTM
Eu Hv
2
1
k
c
编辑ppt
31
(5)TE10模矩形波导的传输功 率
P Re 1 E H * ds 2S

微波技术

微波技术
22 10
4-8
5
1218
2
1827
1.25
80100
0.3
•C~K 为早期的微波通信频段,80’s 后较少 •W(3mm) 实际上是卫星通信的主流频段 广播电视、通信频率相对较低: KHz~ 3G 在实验中使用厘米波中的X波段, 其标称波长为3.2cm,中心频率为9375MHz。
国际上对各微波频段用途的规定
2.频率极高,穿透性强
由于微波既能穿透电离层 (低频电磁波不行) 也能穿透 尘埃、云、雾 (光波不行), 因此,微波就成了卫星通讯、 空间通讯和射电天文研究的 重要手段。 可以容易穿入介质内部: 如微波加热——食品发热
近代物理实验专题讲座 2003.8
3. 频带宽,信息性好
可用频带很宽 (数百兆甚至上千兆赫兹),是低频 无线电波无法比拟的。因此,微波在通讯领域内得 到了广泛的应用。 微波通讯系统的工作频带宽、信息容量大、机动 性好,特别适合于卫星通讯,宇航通讯和移动通讯 等,因而在现代通讯系统中占有相当重要的地位。
λ(m)
广播 电视 微波 红外可见光 紫外
无 线 电 波 光 波
波长处于光波和无线电波之间
近代物理实验专题讲座 2003.8
微波频段的划分: 分米波, 厘米波,毫米波和亚毫米波
常用波段代号
波段代号 频率范围 (GHz) 标称波长 (cm) L S C X 8-12 3 Ku K W
1-2 2-4
微 波 技

山东师范大学物理实验中心
一、微波基础知识
按照国际电工委员会(IEC)的定义,微波 (Microwaves)是:
“波长足够短,以致在发射和接收中能实际 应用波导和谐振腔技术的电磁波”
微波是指:波长为1m至0.1mm,频率在 300MHz-3000GHz之间的电磁波或无线电波。

微波波导型号与详细参数

微波波导型号与详细参数

外截面尺寸(mm) 基本壁厚 内圆角最大 (mm) 直径R1 1.5 1.5 1.5 1.5 1.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.8 0.8 0.8 0.8 0.8 0.8 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.2 0.15 0.15 0.15 0.038 6 5 5 3.18 3.18 3.18 3.18 2.03 2.03 2.03 2.03 2.03 1.625 1.625 1.625 1.625 1.625 1.27 1.27 1.015 1.015 1.015 1.015 1.015 1.015 1.015 1.015 1.015 1.015 0.76 0.76 基本宽度 A 待定 待定 待定 待定 待定 待定 待定 169.16 133.6 113.28 90.42 76.2 61.42 50.8 43.64 38.1 31.75 25.4 21.59 17.83 14.99 17.7 10.67 9.14 7.72 6.81 5.79 5.13 4.57 3.556 3.175 基本高度 宽和高的偏 外圆角直径R2 差(±) 最小值 最大值 B 待定 待定 待定 待定 待定 待定 待定 86.61 68.83 58.67 47.24 39.1 32.33 25.4 23.44 19.05 15.88 12.7 12.06 9.93 8.51 6.35 6.35 5.59 4.88 4.42 3.91 3.58 3.3 2.54 2.35 待定 待定 待定 待定 待定 待定 待定 0.2 0.2 0.2 0.17 0.14 0.12 0.1 0.08 0.08 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.025 0.025 待定 待定 待定 待定 待定 待定 待定 1 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.65 0.65 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 待定 待定 待定 待定 待定 待定 待定 1.5 1.5 1.5 1.5 1.5 1.3 1.3 1.3 1.3 1.3 1.15 1.15 1 1 1 1 1 1 1 1 1 1 0.8 0.8

波导中微波的模式

波导中微波的模式

波导中微波的模式波导是一种用来传输微波信号的导波结构,由金属壁面构成,中间空腔内充满介质。

在波导中,微波信号通过内部的反射而传播,产生各种模式。

不同模式具有不同的传播特性和分布特点,对于波导设计和应用都非常重要。

本文将介绍波导中常见的几种微波模式。

1.矩形波导模式:矩形波导是最常见的一种波导类型,由金属矩形管道组成。

在矩形波导中,有许多不同的模式,包括正交模式(TE模式)和纵向模式(TM模式)。

(1)TE模式:TE模式是横向电场模式,在矩形波导中,电场垂直于波导的横截面方向。

TE模式的特点是不含有磁场分量,只有电场分量。

TE模式分为TE10,TE20,TE01等不同的阶次。

(2)TM模式:TM模式是纵向磁场模式,在矩形波导中,磁场沿波导的横截面方向。

TM模式的特点是不含有电场分量,只有磁场分量。

TM模式也分为TM10,TM20,TM01等不同的阶次。

矩形波导模式的分布特点是波束在波导内壁上反射,形成驻波模式。

TE和TM模式可以共存,交替出现。

2.圆形波导模式:圆形波导是由金属圆管构成的波导结构。

圆形波导模式与矩形波导模式类似,也有TE模式和TM模式,但其阶次的确定方式略有不同。

(1)TE模式:TE模式是横向电场模式,电场沿着圆柱壁面方向。

TE 模式中的波动电场与壁面垂直,并且没有磁场分量。

(2)TM模式:TM模式是纵向磁场模式,磁场沿着圆柱壁面方向。

TM 模式中的波动磁场与壁面垂直,并且没有电场分量。

与矩形波导不同的是,圆形波导模式的阶次由径向模式数目(m)和角向模式数目(n)两个参数共同确定。

例如,TE11模式表示径向和角向模式都为13.表面波模式:除了矩形和圆形波导模式外,波导中还存在一种特殊的模式,称为表面波模式。

表面波模式是指波在波导壁面上沿着壁面传播的模式,不进一步传播到波导的深处。

表面波模式包括射线波、栅波和电磁波导模式。

射线波模式是指波束沿着表面传播,而不发散或收敛;栅波模式是指波束被壁面上的栅格结构所限制;电磁波导模式是指在电磁波导中,电磁波束是由电和磁场的耦合形成的。

实验三微波波导波长与频率的测量

实验三微波波导波长与频率的测量

实验三微波波导波长与频率的测量摘要:本实验通过使用微波频率计和波导滑动短路板等设备,测量了微波波导的波长与频率之间的关系。

实验结果表明,微波波导的波长与频率呈线性关系,可以通过一定的测量方法确定微波波导的波长。

1.引言微波波导是一种广泛应用于微波通信和微波器件中的传输线路。

波导的基本特点是信号可以在其中以电磁波的形式传输,并且波导参数可以影响波导的传输性能。

其中,波导的波长和频率是两个重要的参数。

测量波导的波长和频率可以有效地评估波导的传输性能和应用范围。

2.实验原理微波波导内的电磁波的波长与频率之间存在一定的关系。

一般而言,波导的波长lambda可以通过以下公式计算得出:lambda = c/f其中,c为光速,f为波导的频率。

在实际测量中,可以通过使用微波频率计和波导滑动短路板来测量波导的频率和波长。

微波频率计可以根据输入的信号频率,直接测量得到波导的频率。

而波导滑动短路板则可以控制波导中的波长,通过移动短路板的位置,可以观察到引起的驻波现象。

当波导中存在驻波时,滑动短路板所移动的距离正好等于半个波长。

3.实验步骤3.1连接实验设备:将微波频率计与波导滑动短路板连接起来,确保连接正确并稳定。

3.2设置微波频率计:根据实验要求,设置微波频率计的工作频率范围,并将其调整到合适的工作状态。

3.3移动滑动短路板:在波导的一端,将滑动短路板移动到适当的位置,观察到波导中的驻波现象。

3.4测量驻波位置:通过滑动短路板的移动距离,准确测量驻波的位置,并记录下来。

3.5 计算波导的波长:根据实验数据,计算出波导的波长,使用公式lambda = 2 * d,其中d为驻波位置和波导起点之间的距离。

4.实验结果与分析通过实验测量得到的驻波位置数据,可以计算得到波导的波长。

将波导的波长与实际频率计测得的频率数据进行对比,可以观察到波导的波长与频率之间的线性关系。

实验结果表明,波导的波长与频率之间存在着确定的关系。

5.结论本实验通过测量微波波导的波长和频率,得出了波长与频率之间的线性关系。

恒达微波波导魔T功率分配器 合成器说明书

恒达微波波导魔T功率分配器 合成器说明书

1.6功率分配器/合成器【产品简介】恒达微波提供一系列高性能的波导魔T 、功分器、合成器产品。

在魔T 的H 臂或E 臂接上负载,则可制成魔T 功率分配器或合成器。

波导魔T 具有如下特点:平衡臂两端对称;从E 臂输入的信号会在平衡臂两端等幅反相输出,H 臂隔离;从H 臂输入的信号会在平衡臂两端等幅同相输出,E 臂隔离;从平衡臂任一端输入的信号在E 臂和H 口等分输出,而对应平衡臂另一端隔离。

因此魔T 具有的对口隔离、邻口3dB 耦合及完全匹配的特点,使之在微波领域获得了广泛应用,尤其用在单脉冲雷达和差比较器、雷达收发开关、功率分配/合成、混频器及移相器等场合。

【型号描述】波导魔T ,波导管型号BJ100,材料为铝(材料为铜时缺省)。

产品类型:波导魔TH D - 100 W M T A波导管型号:B J 100恒达微波材料:铝【产品类型】类型代码含义类型代码含义WET 波导ET 接头WHT 波导HT 接头WMTPC 波导同相功率合成器WMTPD 波导同相功率分配器WMT 波导魔TWSWC 波导90°功率分配器/合成器(窄边耦合);I\U\XY\YU 型WTWC波导90°功率分配器/合成器(宽边耦合);I\U\XY\YU 型1.6.1波导ET 接头、波导HT 接头这两种器件在微波系统中常用作功率分配/合成元件。

波导ET 接头可以将E 口输入的信号在平衡臂两端等幅反相输出,反之,在平衡臂两端等幅反相输入信号则在E 口合成输出;波导HT 接头可以将H 口输入的信号在平衡臂等幅同相输出,反之,在平衡臂两端等幅同相输入信号则在H 口合成输出,但是ET 、HT 接头是不匹配的器件,只对其E 口或是H 口进行单端口匹配。

1.6.1.1波导ET 接头【标准产品数据表】产品型号频率范围(GHz)工作带宽对称性(dB)E口驻波比插损(dB)法兰材料涂覆HD-3WET0.32-0.49≤15%±0.25≤1.15≤0.2FDP铝氧化HD-4WET0.35-0.53≤15%±0.25≤1.15≤0.2FDP铝氧化HD-5WET0.41-0.62≤15%±0.25≤1.15≤0.2FDP铝氧化HD-6WET0.49-0.75≤15%±0.25≤1.15≤0.2FDP铝氧化HD-8WET0.64-0.98≤15%±0.25≤1.15≤0.2FDP铝氧化HD-9WET0.75-1.15≤15%±0.25≤1.15≤0.2FDP铝氧化HD-12WET0.96-1.46≤15%±0.25≤1.15≤0.2FDP铝氧化HD-14WET 1.13-1.73≤15%±0.25≤1.15≤0.2FDP铝氧化HD-18WET 1.45-2.20≤15%±0.25≤1.15≤0.2FDP铝氧化HD-22WET 1.72-2.61≤15%±0.25≤1.15≤0.2FDP铝氧化HD-26WET 2.17-3.30≤15%±0.25≤1.15≤0.2FDP铝氧化HD-32WET 2.60-3.95≤15%±0.25≤1.15≤0.2FDP铝氧化HD-40WET 3.22-4.90≤15%±0.25≤1.15≤0.2FDP铝氧化HD-48WET 3.94-5.99≤15%±0.35≤1.20≤0.2FDP铝氧化HD-58WET 4.64-7.05≤15%±0.35≤1.20≤0.2FDP铝氧化HD-70WET 5.38-8.17≤15%±0.35≤1.20≤0.3FDP铜镀银HD-84WET 6.57-9.99≤15%±0.35≤1.20≤0.3FBP铜镀银HD-100WET8.20-12.40≤15%±0.35≤1.20≤0.3FBP铜镀银HD-120WET9.84-15.0≤15%±0.35≤1.20≤0.3FBP铜镀银HD-140WET11.9-18.0≤15%±0.40≤1.25≤0.3FBP铜镀银HD-180WET14.5-22.0≤15%±0.40≤1.25≤0.4FBP铜镀银HD-220WET17.6-26.7≤15%±0.40≤1.25≤0.4FBP铜镀银HD-260WET21.7-33.0≤15%±0.40≤1.25≤0.4FBP铜镀银HD-320WET26.5-40.0≤15%±0.40≤1.25≤0.4FBP铜镀银HD-400WET32.9-50.1≤10%±0.50≤1.35≤0.5FUGP铜镀金HD-500WET39.2-59.6≤10%±0.50≤1.35≤0.5FUGP铜镀金HD-620WET49.8-75.8≤10%±0.50≤1.35≤0.5FUGP铜镀金HD-740WET60.5-91.9≤10%±0.50≤1.35≤0.5FUGP铜镀金HD-900WET73.8-112≤10%±0.50≤1.35≤0.5FUGP铜镀金1.6.1.2波导HT 接头【标准产品数据表】产品型号频率范围(GHz)工作带宽对称性(dB)H 口驻波比插损(dB)法兰材料涂覆HD-3WHT 0.32-0.49≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-4WHT 0.35-0.53≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-5WHT 0.41-0.62≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-6WHT 0.49-0.75≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-8WHT 0.64-0.98≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-9WHT 0.75-1.15≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-12WHT 0.96-1.46≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-14WHT 1.13-1.73≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-18WHT 1.45-2.20≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-22WHT 1.72-2.61≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-26WHT 2.17-3.30≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-32WHT 2.60-3.95≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-40WHT 3.22-4.90≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-48WHT 3.94-5.99≤15%±0.35≤1.20≤0.2FDP 铝氧化HD-58WHT 4.64-7.05≤15%±0.35≤1.20≤0.2FDP 铝氧化HD-70WHT 5.38-8.17≤15%±0.35≤1.20≤0.3FDP 铜镀银HD-84WHT 6.57-9.99≤15%±0.35≤1.20≤0.3FBP 铜镀银HD-100WHT 8.20-12.40≤15%±0.35≤1.20≤0.3FBP 铜镀银HD-120WHT 9.84-15.0≤15%±0.35≤1.20≤0.3FBP 铜镀银HD-140WHT 11.9-18.0≤15%±0.40≤1.20≤0.3FBP 铜镀银HD-180WHT 14.5-22.0≤15%±0.40≤1.25≤0.4FBP 铜镀银HD-220WHT 17.6-26.7≤15%±0.40≤1.25≤0.4FBP 铜镀银HD-260WHT 21.7-33.0≤15%±0.40≤1.25≤0.4FBP 铜镀银HD-320WHT 26.5-40.0≤15%±0.40≤1.25≤0.4FBP 铜镀银HD-400WHT32.9-50.1≤10%±0.50≤1.35≤0.5FUGP铜镀金产品型号频率范围(GHz)工作带宽对称性(dB)H 口驻波比插损(dB)法兰材料涂覆HD-500WHT 39.2-59.6≤10%±0.50≤1.35≤0.5FUGP 铜镀金HD-620WHT 49.8-75.8≤10%±0.50≤1.35≤0.5FUGP 铜镀金HD-740WHT 60.5-91.9≤10%±0.50≤1.35≤0.5FUGP 铜镀金HD-900WHT73.8-112≤10%±0.50≤1.35≤0.5FUGP铜镀金1.6.2波导魔T【标准产品数据表】产品型号频率范围(GHz)工作带宽驻波比隔离度(E-H )(dB)对称性(dB)法兰材料涂覆H 口E 口HD-3WMT 0.32-0.49≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-4WMT 0.35-0.53≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-5WMT 0.41-0.62≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-6WMT 0.49-0.75≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-8WMT 0.64-0.98≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-9WMT 0.75-1.15≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-12WMT 0.96-1.46≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-14WMT 1.13-1.73≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-18WMT 1.45-2.20≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-22WMT 1.72-2.61≤20%≤1.20≤1.50≥35≤0.4FDP 铝氧化HD-26WMT 2.17-3.30≤20%≤1.20≤1.50≥35≤0.4FDP 铝氧化HD-32WMT 2.60-3.95≤20%≤1.20≤1.50≥35≤0.4FDP 铝氧化HD-40WMT 3.22-4.90≤20%≤1.20≤1.50≥35≤0.4FDP 铝氧化HD-48WMT 3.94-5.99≤20%≤1.20≤1.50≥35≤0.4FDP 铝氧化HD-58WMT 4.64-7.05≤20%≤1.20≤1.50≥35≤0.4FDP 铝氧化HD-70WMT 5.38-8.17≤20%≤1.20≤1.50≥35≤0.4FDP 铜镀银HD-84WMT 6.57-9.99≤20%≤1.20≤1.50≥35≤0.4FBP 铜镀银HD-100WMT 8.20-12.4≤20%≤1.20≤1.50≥35≤0.4FBP 铜镀银HD-120WMT 9.84-15.0≤20%≤1.20≤1.50≥35≤0.4FBP铜镀银产品型号频率范围(GHz)工作带宽驻波比隔离度(E-H )(dB)对称性(dB)法兰材料涂覆H 口E 口HD-140WMT 11.9-18.0≤20%≤1.20≤1.50≥35≤0.4FBP 铜镀银HD-180WMT 14.5-22.0≤20%≤1.20≤1.50≥35≤0.4FBP 铜镀银HD-220WMT 17.6-26.7≤20%≤1.20≤1.50≥30≤0.4FBP 铜镀银HD-260WMT 21.7-33.0≤20%≤1.20≤1.50≥30≤0.4FBP 铜镀银HD-320WMT 26.5-40.0≤20%≤1.20≤1.50≥30≤0.4FBP 铜镀银HD-400WMT 32.9-50.1≤20%≤1.20≤1.50≥30≤0.5FUGP 铜镀金HD-500WMT 39.2-59.6≤20%≤1.20≤1.50≥30≤0.5FUGP 铜镀金HD-620WMT 49.8-75.8≤20%≤1.20≤1.50≥30≤0.5FUGP 铜镀金HD-740WMT 60.5-91.9≤20%≤1.20≤1.50≥30≤0.5FUGP 铜镀金HD-900WMT73.8-112≤20%≤1.20≤1.50≥30≤0.5FUGP铜镀金1.6.3波导同相功率分配器/合成器根据波导魔T 所特有的对口隔离、邻口3dB 耦合及完全匹配的特点,可在在波导魔T 的E 臂内置负载,制成波导同相功率分配器/合成器。

共面波导计算

共面波导计算

共面波导计算
共面波导(Coplanar waveguide, CPW)是一种常用的传输微波和射频信号的结构,它由一个中心导体和两个平行的地面导体组成,中心导体与地面导体之间有一定的间隙。

以下是一些常见的共面波导参数计算:
1.特性阻抗(Characteristic Impedance):特性阻抗是共面波
导中传输的电磁波的阻抗。

可以使用如下公式计算:Z0 =
sqrt(L/C) 其中,L为单位长度的电感,C为单位长度的电容。

2.传播常数(Propagation Constant):传播常数描述了电磁
波在共面波导中传播的速度和衰减。

可以使用如下公式计
算:Propagation Constant = sqrt((R+jωL)(G+jωC)) 其中,j为
虚数单位,R为单位长度的电阻,G为单位长度的电导,
ω为角频率。

3.模式特征阻抗(Mode Characteristic Impedance):共面波
导可以支持多种模式的传输,每一种模式具有不同的特性
阻抗。

模式特征阻抗可以通过实验或仿真来计算或测量。

4.群速度(Group Velocity):群速度是指信号在共面波导中
传播的速度。

可以使用下述公式计算:Group Velocity =
dω/dk 其中,ω为角频率,k为波矢量。

需要注意的是,对于复杂的共面波导结构或材料,计算可能需要使用数值模拟方法,如有限元分析或电磁场仿真软件。

微波基本参数的测量

微波基本参数的测量

微波基本参数的测量引言一 实验目的1 熟悉和掌握微波测试系统中各种常用设备的结构原理及使用方法;2 掌握微波系统中频率、驻波比、功率等基本参数的测量方法;3 按要求测出测量线中的驻波分布;二 实验原理微波系统中最基本的参数有频率、驻波比、功率等。

要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。

(1) 导行波的概念:由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。

导行波的电场E 或磁 场H 都是x 、y 、z 三个方向的函数。

导行波可分成以下三种类型: (A) 横电磁波(TEM 波):TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即:0=Z E ,0=Z H 。

电场E 和磁场H ,都是纯横向的。

TEM 波沿传输方向的分量为零。

所以,这种波是无法在波导中传播的。

(B) 横电波(TE 波):TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。

亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。

(C) 横磁波(TM 波):TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。

亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。

TE 波和TM 波均为“色散波”。

矩形波导中,既能传输mm TE 波,又能传输mm TM 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。

(2) 色散波的特点:由于TE 波及TM 波与TEM 波的性质不同。

色散波就有其自身的特点: (a) 临界波长cλ :矩形波导中传播的色散波,都有一定的“临界波长”。

只有当自由空间的波长λ小于临界波长λc 时,电磁波才能在矩形波导中得到传播。

mm TE 波或mm TM 波的临界波长公式为:22)()(2bn a m c +=λ (1)(b)波导波长gλ和相速V 、群速Vc :色散波在波导中的波长用gλ表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TE10 截止 波长λc (mm) 1169.2 1067.5 915.0 762.5 584.6 495.6 391.4 330.4 259.1 218.4 172.7 144.3 116.3 95.1 80.77 69.7 57 45.72 38.1 31.6 25.91 21.34 17.27 14.22 11.38 9.55 7.52 6.2 5.08 4.06 3.3
0.038 0.038 0.038
0.76 0.76 0.76
2.819 2.616 2.388
2.172 2.07 1.956
0.025 0.025 0.025
0.5 0.5 0.5
0.8 0.8 0.8
2.59 2.18 1.73
115.717 137.246 173.576
理论衰减量(dB/m) 铝波导 最小值 0.009 0.010 0.013 0.017 0.025 0.003 0.005 0.006 0.008 0.011 0.016 0.021 0.028 0.040 0.049 0.066 0.091 0.126 0.151 0.199 0.269 0.426 0.493 0.660 0.923 无 无 无 无 无 无 最大值 0.013 0.015 0.019 0.025 0.004 0.005 0.007 0.009 0.013 0.016 0.023 0.031 0.042 0.059 0.072 0.095 0.131 0.182 0.222 0.294 0.396 0.607 0.728 0.974 1.362 无 无 无 无 无 无 无 无 无 无 无 无 无 0.007 0.010 0.013 0.019 0.025 0.034 0.048 0.058 0.078 0.108 0.150 0.180 0.238 0.320 0.507 0.588 0.787 1.100 1.431 2.048 2.737 3.688 无 无 铜波导 最小值 最大值 无 无 无 无 无 无 无 0.010 0.015 0.019 0.027 0.037 0.050 0.070 0.086 0.114 0.156 0.217 0.265 0.351 0.473 0.723 0.868 1.162 1.624 2.112 3.023 4.040 5.444 无 无
矩形波导的截止频率fc=149.9/a (GHz) 矩形波导的起始频率=1.25fc (GHz)=187.375/a 矩形波导的终止频率=1.9fc (GHz)=284.81/a
标 准 型 号 中国-国家 标准 BJ3 BJ4 BJ5 BJ6 BJ8 BJ9 BJ12 BJ14 BJ18 BJ22 BJ26 BJ32 BJ40 BJ48 BJ58 BJ70 BJ84 BJ100 BJ120 BJ140 BJ180 BJ220 BJ260 BJ320 BJ400 BJ500 BJ620 BJ740 BJ900 BJ1200 BJ1400 EIA-国际 标准 WR-2300 WR-2100 WR-1800 WR-1500 WR-1150 WR-975 WR-770 WR-650 WR-510 WR-430 WR-340 WR-284 WR-229 WR-187 WR-159 WR-137 WR-112 WR-90 WR-75 WR-62 WR-51 WR-42 WR-34 WR-28 WR-22 WR-19 WR-15 WR-12 WR-10 WR-8 WR-7 英国-国家 标准 无 无 WG1 WG2 WG3 WG4 WG5 WG6 WG7 WG8 WG9A WG10 WG11A WG12 WG13 WG14 WG15 WG16 WG17 WG18 WG19 WG20 WG21 WG22 WG23 WG24 WG25 WG26 WG27 WG28 WG29 153-IEC 标准 R3 R4 R5 R6 R8 R9 R12 R14 R18 R22 R26 R32 R40 R48 R58 R70 R84 R100 R120 R140 R180 R220 R260 R320 R400 R500 R620 R740 R900 R1200 R1400
内截面尺寸(mm) 基本高度 宽和高的偏 b 差(±) 292.1 266.7 228.6 190.5 146.05 123.82 97.79 82.55 64.77 54.61 43.18 34.04 29.08 22.149 20.193 15.799 12.624 10.16 9.525 7.899 6.477 4.318 4.318 3.556 2.845 2.388 1.88 1.5494 1.27 1.016 0.8255 待定 待定 0.51 0.38 0.38 待定 待定 0.33 0.26 0.22 0.17 0.14 0.12 0.095 0.081 0.07 0.057 0.046 0.038 0.031 0.026 0.021 0.02 0.02 0.02 0.02 0.02 0.0127 0.0127 0.0076 0.0064
TE10 截止 频率 fc (GHz) 0.257 0.281 0.328 0.393 0.513 0.605 0.766 0.908 1.157 1.372 1.736 2.078 2.577 3.153 3.712 4.301 5.260 6.557 7.869 9.488 11.575 14.051 17.358 21.053 26.344 31.393 39.499 48.374 59.016 73.770 90.793
额定承受功率(MW) 1.25fc 最小值 246 205 150 104 61.5 44.2 27.6 19.6 12.09 8.6 5.4 3.5 2.44 1.52 1.17 0.79 0.52 0.33 0.26 0.18 0.12 0.066 0.053 0.036 0.023 0.016 0.01 0.0069 0.0046 0.003 0.0019 1.9fc 最大值 348 290 213 148 87.1 62.6 39.1 27.8 17.1 12.2 7.6 5 3.46 2.15 1.66 1.12 0.73 0.47 0.34 0.25 0.17 0.094 0.076 0.051 0.033 0.023 0.144 0.0098 0.0066 0.0042 0.0028
主模频率范围(GHz) 起始频率 1.25fc 0.32 0.35 0.41 0.49 0.64 0.76 0.96 1.13 1.45 1.72 2.17 2.6 3.22 3.94 4.64 5.38 6.57 8.2 9.84 11.9 14.5 17.6 21.7 26.3 32.9 39.2 49.8 60.5 73.8 92.2 113 终止频率 1.9fc 0.49 0.53 0.62 0.75 0.98 1.15 1.46 1.73 2.2 2.61 3.3 3.95 4.9 26.7 33 40 50.1 59.6 75.8 91.9 112 140 173 基本宽度 a 584.2 533.4 457.2 381 292.1 247.65 195.58 165.1 129.54 109.22 86.36 72.14 58.17 47.549 40.386 34.849 28.499 22.86 19.05 15.799 12.95 10.668 8.636 7.12 5.69 4.775 3.795 3.0988 2.54 2.032 1.651
BJ1800 BJ2200 BJ2600
WR-5 WR-4 WR-3
WG30 WG31 WG32
R1800 R2200 R2600
145 172 217
220 261 330
1.2954 1.0922 0.8636
0.6477 0.5461 0.4318
0.0064 0.0051 0.0051
187.375/a (GHz) 284.81/a (GHz)
理论衰减量(dB/100ft.) 铝波导 最小值 0.270 0.310 0.390 0.510 0.760 0.098 0.140 0.180 0.259 0.334 0.475 0.652 0.860 1.231 1.487 2.004 2.761 3.833 4.590 6.077 8.185 12.970 15.036 20.120 28.119 无 无 无 无 无 无 最大值 0.400 0.460 0.580 0.760 0.113 0.145 0.206 0.266 0.382 0.494 0.702 0.953 1.270 1.795 2.195 2.910 3.993 5.547 6.775 8.971 12.082 18.487 22.197 29.701 41.508 无 无 无 无 无 无 无 无 无 无 无 无 无 0.214 0.309 0.399 0.567 0.777 1.026 1.467 1.773 2.390 3.292 4.570 5.472 7.246 9.759 15.464 17.928 23.989 33.526 43.603 62.425 铜波导 最小值 最大值 无 无 无 无 无 无 无 0.317 0.456 0.588 0.837 1.136 1.514 2.140 2.617 3.470 4.761 6.614 8.078 10.696 14.406 22.042 26.465 35.413 49.491 64.367 92.152
基本壁厚 内圆角最大 (mm) 直径R1 1.5 1.5 1.5 1.5 1.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.8 0.8 0.8 0.8 0.8 0.8 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.2 0.15 0.15 0.15 0.038 6 5 5 3.18 3.18 3.18 3.18 2.03 2.03 2.03 2.03 2.03 1.625 1.625 1.625 1.625 1.625 1.27 1.27 1.015 1.015 1.015 1.015 1.015 1.015 1.015 1.015 1.015 1.015 0.76 0.76
相关文档
最新文档