超声波时差法原理介绍

合集下载

超声波传播速度的测量

超声波传播速度的测量

超声波在固体中传播速度的测量在固体中传播的声波是很复杂的,它包括纵波、横波、扭转波、弯曲波、表面波等,而且各种声速都与固体棒的形状有关,金属棒一般为各向异性结晶体,沿任何方向可有三种波传播。

【实验目的】1、学会用时差法测定超声波在固体中的传输速度。

2、学会用逐差法处理实验数据。

3、熟悉数字示波器等仪器的使用。

【实验原理】时差法测量原理:在实际工程中,时差法测量声速得到广泛的应用。

时差法测试声速的基本原理是基于速度V=距离S/时间T,通过在已知的距离内计测声波传播的时间;从而计算出声波的传播速度,在一定的距离之间由控制电路定时发出一个声脉冲波,经过一段距离的传播后到达接收换能器。

接收到的信号经放大,滤波后由高精度计时电路求出声波从发出到接收这个在介质传播中经过的时间,从而计算出在某一介质中的传播速度。

只因为不用目测的方法,而由仪器本身来计测,所以其测量精度相对于前面两种方法要高。

同样在液体中传播时,由于只检测首先到达的声波的时间,而与其它回波无关,这样回波的影响比较小,因此测量的结果较为准确,所以工程中往往采用时差法来测量。

连续波经脉冲调制后由发射换能器发射至被测介质中,声波在介质中传播,经过t时间后,到达L距离处的接收换能器。

由运动定律可知,声波在介质中传播的速度可由以下公式求出:速度V=距离L/时间t。

通过测量二换能器发射接收平面之间距离L和时间t ,就可以计算出当前介质下的声波传播速度。

图5-5 发射波与接收波【仪器与器材】SVX-7声速测试仪信号源、SV-DH-7A型测试架、数字示波器、材料样品(有机玻璃棒、铝棒等)【实验内容与步骤】1、时差法测量超声波在固体中传播速度步骤图5-6 时差法测量超声波在固体中传播速度接线图(1)按图5-6接线,将测试方法设置到脉冲波方式将,接收增益调到适当位置(一般为最大位置),以计时器不跳字为好。

(2)将发射换能器发射端面朝上竖立放置于托盘上,在换能器端面和固体棒的端面上涂上适量的耦合剂,再把固体棒放在发射面上,使其紧密接触并对准,然后将接收换能器接收端面放置于固体棒的上端面上并对准,利用接收换能器的自重与固体棒端面接触。

超声波流量计原理:时差法

超声波流量计原理:时差法
信号从缓冲棒传入待测介质。 信号从缓冲棒传入待测介质。 从缓冲棒传入待测介质
超声波流量计: 超声波流量计 信噪比
II. 信噪比 (SNR)
S = 在流体中传播的信号 N = 在管壁内传播的“短路”噪声 在管壁内传播的“短路” • 为了完成优良的测量,要求 为了完成优良的测量, S >> N 或 SNR >> 1. • 高压有助于提高信号 S. • 良好的垫片将减小噪声 N. Pmin (barg)* 气体 N2 H2 SNR ≈ 1 2 7.5 SNR ≈ 4 4 30
层流 过渡流场 湍流 = 0.75 ≈ 0.85 = 0.91 - 0.99
GE Panametrics
kRe =
注释: 注释:
1 1.119 − 0.011 log R e
运动粘度 v变化 10倍导致流量 <1% 的变化。 的变化。
V = 10 m/sec 及内径 (ID) = 6” v = 10×10-6 v = 100×10-6 × × Re = 0.15×106 Re = 0.015×106 × × kRe = 0.932 kRe = 0.922
tup > tdn ∆ t = tup − tdn
超声波流量计原理: 超声波流量计原理:时差法
流体流速
GE Panametrics
V Η
C2 ×∆t 2L
体积流量测定
θ P
L
V
Q = 流速 × 横截面积 Q = V×A 声速
tup = tdn =
P c -Vsin θ P c+Vsin θ
c=
P tavg
超声波流量计: 超声波流量计 Re修正 修正
修正系数
GE Panametrics

超声波流量计时差法测量原理

超声波流量计时差法测量原理

超声波流量计时差法测量原理嘿,朋友们!今天咱来聊聊超声波流量计时差法测量原理。

你说这超声波啊,就像是我们生活中的小侦探,能帮我们搞清楚流体的流量呢!想象一下,超声波在流体里穿梭,就像我们在人群中跑来跑去一样。

这个时差法呢,简单来说,就是利用超声波在顺流和逆流时传播时间的不同来测量流量的。

这不就好比我们跑步,顺着风跑和逆着风跑,花费的时间肯定不一样呀!
咱先说说这顺流的时候,超声波一路畅通无阻,“嗖”的一下就过去了,时间相对较短。

可到了逆流呢,它就像是遇到了阻碍,得费点劲儿才能过去,这时候花费的时间就长啦。

然后呢,通过测量这顺流和逆流的时间差,再经过一系列复杂又精妙的计算,嘿,流量就被我们给算出来啦!是不是很神奇呀!
这就像是我们解一道很难的数学题,看似复杂,其实只要找到关键的线索,就能一步步解开啦。

超声波流量计时差法就是这样的关键线索呢!
你想想看,如果没有这个巧妙的方法,我们要怎么准确知道流体的流量呢?那可就麻烦多啦!所以说呀,这个方法可真是帮了大忙了。

在很多工业领域,都离不开它呢!比如石油化工呀,水的处理呀,各种需要精确测量流量的地方。

它就像一个默默无闻的小英雄,在背后为我们的生活和生产提供着重要的数据支持。

而且啊,它还很可靠呢!只要安装正确,使用得当,就能一直给我们提供准确的信息。

这就像我们有一个特别靠谱的朋友,总是能在关键时刻给我们帮助。

总之呢,超声波流量计时差法测量原理真的是一个非常了不起的发明!它让我们对流体的流量测量变得更加简单、准确、可靠。

我们应该好好珍惜和利用这个神奇的技术,让它为我们的生活和社会发展做出更大的贡献呀!这可不是我随便说说哦,这是实实在在的好处呀!大家说是不是呢!。

超声波时差法流量计原理

超声波时差法流量计原理

超声波时差法流量计原理一、前言超声波时差法流量计是一种常用的流量计,其工作原理是利用超声波在流体中传播速度与流体速度有关的特性,通过测量两个超声波传输路径之间的时间差来计算流量。

本文将详细介绍超声波时差法流量计的原理。

二、超声波传播速度超声波是指频率高于20kHz的机械振动波,其在空气中的传播速度为340m/s,而在液体和固体中的传播速度则与介质密度、弹性模量和粘滞系数等因素有关。

由于液体和固体中分子之间的距离比空气中小得多,因此其传播速度也相应较高。

例如,在水中,超声波的传播速度约为1500m/s。

三、时差法测量原理时差法测量原理是利用两个超声波探头分别向上游和下游方向发射超声波,并在对侧接收反射回来的信号。

由于上下游方向有一定的流动速度差异,因此反射回来的信号到达探头所需时间也不同。

根据这两个时间差可以计算出流体通过管道的体积流量。

四、探头设计超声波时差法流量计的探头通常由两个发射器和两个接收器组成。

发射器向上游和下游方向分别发射超声波,接收器则接收反射回来的信号。

为了保证测量精度,探头需要满足以下要求:1. 发射和接收角度应合适,一般为45度或60度。

2. 发射和接收距离应合适,一般为管道直径的1-2倍。

3. 接收灵敏度应高于发射灵敏度。

五、测量误差超声波时差法流量计的测量误差与许多因素有关,例如管道直径、流速、液体温度、压力和粘稠度等。

其中最主要的影响因素是液体中气泡和杂质。

气泡会散射超声波并产生回声信号,而杂质也会对超声波传播产生影响。

因此,在使用过程中需要注意避免气泡和杂质进入管道内部。

六、总结超声波时差法流量计是一种准确可靠的流量计,其原理基于超声波在流体中传播速度与流体速度有关的特性。

探头设计和测量误差是影响测量精度的重要因素,需要注意避免气泡和杂质进入管道内部。

超声波热量表的频差法流量测量原理

超声波热量表的频差法流量测量原理

超声波热量表的频差法流量测量原理超声波热量表的频差法流量测量原理 1 时差法流量测量原理时差法是利用一对超声波换能器相向交替(或同时)收发超声波,通过观测超声波在介质中的顺流和逆流传播时间差来间接测量流体的流速,再通过流速来计算流量的一种间接测量方法。

如图1,顺流换能器和逆流换能器分别安装在流体管的两侧并相距一定距离,管线的内直径为D,超声波通过的路径长度为L。

超声波顺流传播时间为td,逆流传播时间为tu,超声波的传播方向与流体的流动方向加角为&theta;。

由于流体流动的原因,超声波顺流传播L长度的距离所用的时间比逆流传播所用的时间短,其时间差可用下式表示:其中:c是超声波在非流动介质中的声速,V是流体介质的流动速度,tu和td之间的差&Delta;t为式中X是两个换能器在管线方向上的间距,为了简化,我们假设,流体的流速和超声波在介质中的速度相比是个小量。

即:上式简化为:即,流体的速度为:流量Q可以表示为:由此可见,时差法的测量精度主要取决于对微小时差&Delta;t的分辨率,即纳秒级的时标,所以时差法的测量精度受到许多方面的制约,小流量测量精度难以保证和提高。

2 频差法测量流量原理在顺流方向,超声波的鸣环频率ft1为在逆流方向,超声波的鸣环频率ft2为则频率差为由以上公式可以看出,当两个超声波换能器安装位置一定时,L和&theta;也就确定,流速v仅与&Delta;ft有关,而与声速c无关。

为了满足在低流速下的流量测量精度,应使测量频差的数目达到足够大,频差法可以采用锁相倍频技术,以使测量的频差扩大到N倍,这相当于提高了小流量时的测量精度。

3 频差法测量流量的实现方法在启动超声波测量之前,超声波发射和接收回路处于休眠状态。

一旦收到外部启动信号,由内部单片机发出一个启动脉冲,并通过同步触发电路激活超声波发射器产生第一次发射。

发射脉冲通过流体传播到达接收器并输出回波信号,经回波检测和整形后,将回波脉冲反馈回同步触发器,以使发射器产生第二次发射,接收器接收的第二个回波脉冲再次反馈回发射端。

超声波流量计原理时差法

超声波流量计原理时差法
• 为了完成优良的测量,要求 S >> N 或 SNR >> 1.
• 高压有助于提高信号 S.
• 良好的垫片将减小噪声 N.
气体 N2 H2
Pmin (barg)*
SNR ≈ 1 SNR ≈ 4
2
4
7.5
30
* 数据源于1996年 5月荷兰壳牌石油公司有关实验结果。
BWT 缓冲棒 垫片
安装短管
N S N 管线 安装短管 垫片 BWT 缓冲棒
过渡流场: • 流场不定 Re : 2000 to 4000
湍流: • 流场变平 Re : >4000
超声波流量计: 流体动力学
GE Panametrics
流场系数 (kRe)
沿直径探测
基于雷诺数(Re)的理论修正
Nikuratze’s 等式
V = kRe Vm 范围:
层流 过渡流场 湍流
kRe = 0.932
kRe = 0.922
超声波流量计: 流体动力学
GE Panametrics
水标与实际工况之间因kRe可能导致的附加误差
在 20 deg C时, 水的运动粘度= 1×10-6, 假定管子内径 DN100 若管内水的流速 V = 1 m/s,则 Re = 1×106
kRe = 0.9497
超声波流量计: 流体动力学
GE Panametrics
流场
流场的形态由管中的摩擦力与粘滞力决 定
雷诺 #
表征流场的形态
Re = V ID
Re = 雷诺 # V = 流速 ID = 管子内径 = 运动粘度
(ft2/sec or m2/sec)
=
动力粘度 流体密度

时差法超声波流量计原理

时差法超声波流量计原理一、引言时差法超声波流量计是一种常用的非接触式流量计,它利用超声波的传播速度和反射原理来测量流体的流速和体积流量。

该技术在石油、化工、冶金、电力等行业中得到广泛应用,本文将详细介绍时差法超声波流量计的原理。

二、超声波传播原理超声波是指频率大于20kHz的高频声波,其传播方式与普通声音不同。

普通声音是通过空气分子振动相互传递的,而超声波则是通过物质内部介质中分子振动相互传递。

当超声波遇到介质边界时,会发生反射和折射现象。

三、时差法原理1.单向测量在单向测量中,发射器向下游方向发射超声波信号,经过液体后被接收器接收到。

此时液体处于静止状态,信号从发射到接收所需时间为T1。

当液体开始流动时,信号在液体中传播所需时间变为T2。

由于液体的流速可以通过T1和T2之间的时间差来计算出来,因此时差法超声波流量计可以用来测量单向流动的液体的流速和体积流量。

2.双向测量在双向测量中,发射器和接收器分别位于管道两端,发射器向上游方向发射超声波信号,经过液体后被接收器接收到。

同时,发射器也会向下游方向发射超声波信号,经过液体后被另一个接收器接收到。

此时液体处于静止状态,信号从发射到接收所需时间为T1。

当液体开始流动时,由于上下游方向的超声波传播速度不同,信号在液体中传播所需时间变为T2和T3。

由于T2和T3之间的时间差可以用来计算出液体的平均流速和体积流量。

四、应用场景1.石油行业:时差法超声波流量计可以用来测量石油、天然气等介质的流速和体积流量。

2.化工行业:时差法超声波流量计可以用来测量各种化工介质的流速和体积流量。

3.冶金行业:时差法超声波流量计可以用来测量冶金行业中的各种液态金属的流速和体积流量。

4.电力行业:时差法超声波流量计可以用来测量各种液态介质在电力输送管道中的流速和体积流量。

五、总结时差法超声波流量计是一种常用的非接触式流量计,它利用超声波的传播速度和反射原理来测量液体的流速和体积流量。

超声波时差法的原理和应用

超声波时差法的原理和应用1. 超声波时差法的原理超声波时差法是一种基于声学原理来测量距离和位置的方法。

它利用声速恒定的特性和超声波在不同介质中传播速度的差异,通过计算超声波的传播时间差来确定目标物体的距离或位置。

1.1 超声波的传播特性•超声波是一种高频声波,频率通常在20kHz到100MHz之间。

•超声波在大多数介质中传播速度是恒定的,一般为343m/s。

•超声波的能量较强,能够穿透大多数物质。

1.2 超声波时差法的工作原理超声波时差法通常由两个超声波传感器组成,一个作为发送器,另一个作为接收器。

其工作原理如下: 1. 发送器发射超声波脉冲信号。

2. 超声波信号在空气或介质中传播,当遇到目标物体时会发生反射。

3. 接收器接收到反射回来的超声波信号。

4. 根据发送和接收的时间差,可以计算出目标物体与传感器的距离。

2. 超声波时差法的应用2.1 超声波测距仪超声波测距仪是超声波时差法最常见的应用之一。

它通常被用于测量目标物体与测距仪之间的距离。

具体应用包括: - 工业领域中,用于测量物体的位置和距离,如机械装置的定位和测量。

- 自动驾驶车辆中,用于测量车辆与障碍物之间的距离,以便进行避障操作。

- 渔业中,用于测量水下设备与鱼群之间的距离,以便进行捕鱼操作。

2.2 超声波流量计超声波流量计是利用超声波时差法来测量液体或气体流动速度和流量的设备。

它的工作原理如下: - 发送器发射超声波脉冲信号,通过流体中的传感器接收到反射回来的超声波信号。

- 根据超声波信号的传播时间差和介质的流速,可以计算出流体的流速和流量。

超声波流量计在工业领域中广泛应用,例如: - 石油和化工行业中,用于测量管道中液体和气体的流量。

- 水处理领域中,用于测量水流量,监控供水系统和排水系统的运行情况。

2.3 超声波层厚测量超声波层厚测量用于测量材料的厚度,其原理是通过测量超声波在材料中的传播时间来计算材料的厚度。

这种测量方法广泛应用于工业生产中,例如: - 金属加工中,用于测量金属板材的厚度,以确保产品符合标准要求。

超声衍射时差(TOFD)技术原理简介(含图表)

超声衍射时差(TOFD)技术原理简介(含图表)1.超声衍射时差(TOFD)技术介绍“TOFD”即Timeofflightdiffraction,译成中文是“超声波衍射时差法检测”,TOFD检测技术原理是利用超声波遇到诸如裂纹等的缺陷时,将在缺陷尖端发生迭加到正常反射波上的衍射波,探头探测到衍射波,从而判定缺陷的大小和深度。

极大地提高了缺陷检出率。

TOFD检验技术具有缺陷检出能力强、缺陷定位精度高、节省设备的制造时间等特点,在检测资料上保证安全,并且可以用数字型式永久保存,恰好弥补了常规超声波检测技术的不足。

此技术首先是应用于核工业设备检验,如今在电力、石化、管道、压力容器、钢结构等方面多有应用。

上个世纪七十年代早期,英国原子能管理局(UnitedKingdomAtomicEnergyAuthority,即UKAEA)的国家无损检测研究中心的Harwell实验室提出了了超声波衍射在UT中应用的原理。

UKAEA为了开发比常规超声波检测更精确的缺陷定量技术,最早由史可·毛瑞斯(SILKMG)博士开发出了超声衍射时差技术- 1 -(TimeofFlightDiffraction,简称TOFD)。

后来欧美国家的有关机构进行了大量的试验,到80年代早期证实,对于核反应堆的压力容器和主要部件,TOFD技术作为超声检测是可行的,其可靠性和精度要高于常规超声检测(即脉冲回波)技术;相比常规的脉冲回波技术,当时的TOFD 技术有几个最明显的不同,一是很高的定量精度,绝对误差<±1mm,而裂纹监测的误差<±0.3mm;二是对缺陷的方向和角度不敏感,不向脉冲回波技术那样对某些方向的缺陷有“盲区”;三是对缺陷的定量不是基于信号的波幅,而是基于缺陷尖端衍射信号的声程和时间。

后来开发了便携的设备系统(即国际无损检测中心的ZIPSCAN),TOFD技术被国际工业界广泛公认。

90年代,该项技术开始应用与石油化工管线的检测。

TOFD–超声波衍射时差法培训课件


TOFD检测技术的优势
高效性
TOFD检测技术具有高效性,能够快速准确 地检测出缺陷的位损伤,使用安全。
可靠性
由于其非接触性,TOFD检测技术不易受到 外界因素的干扰,检测结果可靠。
可视化
TOFD检测技术能够提供高清晰度的图像, 使缺陷可视化。
检测设备的组成
01
02
03
04
发射器
产生高频超声波信号,发射到 被检测物体上。
接收器
接收从被检测物体反射回来的 超声波信号。
控制器
控制发射器和接收器的操作, 处理和显示检测数据。
显示器
显示检测结果,便于观察和分 析。
检测设备的操作流程
准备工作
检查设备是否完好,确定被检测物体 的材质、尺寸和形状等参数。
检测设备的维护与保养
定期清洁
定期清洁发射器和接收器的探 头表面,保持清洁以免影响检
测结果。
检查电缆
定期检查电缆是否完好,如有 破损应及时更换。
定期校准
定期对设备进行校准,确保检 测结果的准确性。
存储环境
保持设备存储环境的干燥、通 风,避免高温和潮湿等恶劣环
境。
03
TOFD检测技术在实际应用 中的优势与局限性
与其他技术的融合
分析TOFD技术与其他无损 检测技术的融合应用,提 高检测效率和准确性。
应用领域的拓展
展望TOFD技术在更多领域 的应用前景,如航空航天、 新能源等领域。
如何将TOFD技术更好地应用于实际工作中
实践操作技巧
分享实际操作中的技巧和经验,提高 检测效率和准确性。
与其他技术的协同工作
标准与规范的学习
设备操作与维护
讲解了TOFD设备的操作 步骤、日常维护和常见故 障排除,确保学员能够熟 练操作和维护设备。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时差法超声波流量计的原理和设计
王润田
1 引言
超声波用于气体和流体的流速测量有许多优点。

和传统的机械式流量仪表、电磁式流量仪表相比它的计量精度高、对管径的适应性强、非接触流体、使用方便、易于数字化管理等等。

近年来,由于电子技术的发展,电子元气件的成本大幅度下降,使得超声波流量仪表的制造成本大大降低,超声波流量计也开始普及起来。

经常有读者回询问有关超声波流量测量方面的问题。

作为普及,我们将陆续撰写一些专题文章,来介绍一些相关知识,以便推广和普及超声波流量技术的普及和提高。

本文主要介绍目前最为常用的测量方法:时差法超声波流量计的原理和设计。

2 时差法超声波流量计的原理
时差法超声波流量计(Transit Time Ultrasonic Flowmeter)其工作原理如图1所示。

他是利用一对超声波换能器相向交替(或同时)收发超声波,通过观测超声波在介质中的顺溜和逆流传播时间差来间接测量流体的流速,在通过流速来计算流量的一种间接测量方法。

图1 时差法超声波流量测量原理示意图
图1中有两个超声波换能器:顺流换能器和逆流换能器,两只换能器分别安装在流体管线的两侧并相距一定距离,管线的内直径为D,超声波行走的路径长度为L,超声波顺流速度为tu,逆流速度为td,超声波的传播方向与流体的流动方向加角为θ。

由于流体流动的原因,是超声波顺流传播L长度的距离所用的时间比逆流传播所用的时间短,其时间差可用下式表示:
式中X是两个换能器在管线方向上的间距。

为了简化,我们假设,流体的流速和超声波在介质中的速度相比是个小量。

即:
图2 超声波流量计的电原理框图
4 结语
时差法超声波流量计的换能器安装方式可以有多种。

常见的有外加式和管段式,也有介入式,比如家用煤气表一般可采用介入式。

无论何种安装方式其原理大同小异。

比如介入式就是取上面公式中的θ=0。

超声波波用于流体的测量还有其他几种基于不同原理的测量方法:多卜勒频移法、相位差法和相关法等等,各有优缺点,可根据不同的使用条件和计量精度等因素加以选取。

随着电子技术的迅速发展、超声波技术的普及以及产品成本的降低和可靠性的提高,我们相信,超声波流量仪表将成为流体计量中最为普遍采用的手段。

参考文献:。

相关文档
最新文档