函数教学设计
数学八年级上册《函数》教案

基于课程标准的学科教学设计义,能根据所给信息确定一次函数表达式.4.能画一次函数的图象,理解一次函数图象的变化情况,并利用一次函数图象解决简单的实际问题.5.在画一次函数的图象、探索一次函数图象的变化情况、利用一次函数的图象解决实际问题等过程,体会数形结合的思想方法与一次函数中k与b的实际意义.3.单元整体教学思路(教学结构图)课时教学设计课题《一次函数》第一课时课型新授课☑章/单元复习课□专题复习课□习题/试卷讲评课□学科实践活动课□其它1.课程标准分析1.体验从具体情境中抽象出数学符号的过程,理解函数的概念;探索具体问题中的数量关系和变化规律,掌握用函数进行表述的方法.2.通过用函数表述数量关系的过程,体会建模思想,建立符号意识;能独立思考,体会数学的基本思想和思维方式.6.学习活动设计教师活动学生活动环节一:创设情境、导入新课教的活动1播放洋葱数学有关函数的数学史。
学的活动1观看洋葱数学有关函数的数学史。
活动意图说明:承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。
环节二:展现背景,提供概念抽象的素材教的活动1问题 1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式2300vs ,其中v表示刹车前汽车的速度(单位:千米/时).(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?学的活动1畅所欲言,分享体验。
举手回答:摩天轮上一点的高度h与旋转时间t之间的关系。
高中数学第59课函数教案

高中数学第59课函数教案
一、教学目标
1. 了解函数的定义和性质。
2. 掌握函数与方程或不等式的联立解法。
3. 培养学生分析问题、解决问题的能力。
二、教学重点与难点
1. 函数的定义和性质。
2. 函数与方程或不等式的联立解法。
3. 函数的应用问题。
三、教学过程
1. 导入新知识:通过举例让学生认识函数的概念和定义。
2. 学习函数的性质:奇偶性、周期性、单调性等。
3. 学习函数与方程或不等式的联立解法:通过实例演练。
4. 完成相关练习题,巩固所学内容。
5. 总结本节课的重点内容,解答学生提出的问题。
四、教学资源
1. 教材《高中数学》。
2. 教具:PPT、黑板、彩色粉笔等。
五、教学评价
在课堂上通过提问、讨论、练习等形式进行评价,以检验学生是否掌握了函数的相关知识和解题方法。
六、作业布置
1. 完成课后练习题。
2. 预习下节课内容。
七、教学反思
本节课注重培养学生的解决问题能力,并通过实例让学生学会应用函数的解决方法。
在教学过程中,可以多采用启发式的教学方法,激发学生的学习兴趣,提高课堂效果。
初中数学函数备课教案

初中数学函数备课教案知识与技能:1. 学生能理解函数的概念,掌握常量和变量的定义。
2. 学生能够通过实际问题建立函数模型,解决简单的生活问题。
过程与方法:1. 学生通过实例感受函数的模型思想,培养观察、交流、分析的思想意识。
2. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。
情感、态度与价值观:1. 学生培养对数学的兴趣和积极参与数学活动的热情。
2. 学生在解决问题的过程中体会数学的应用价值,感受成功的喜悦,建立自信心。
二、教学重难点重点:认识函数的概念,了解常量与变量的含义。
难点:对函数中自变量取值范围的确定。
三、教学准备教具:PPT、黑板、粉笔、函数图像展示板。
学具:每人一份函数实例材料、练习题。
四、教学过程1. 导入:以生活中的实例引入,如“气温与海拔的关系”、“票价与购票数量的关系”等,让学生感受到函数在日常生活中的应用。
2. 探索函数概念:让学生通过实例,分析常量与变量的关系,引导学生发现函数的定义。
3. 理解函数概念:通过PPT展示函数的定义,让学生明确自变量与函数的关系。
4. 函数模型的建立:让学生通过实例,建立函数模型,如“y = 2x + 1”。
5. 函数图像的展示:通过函数图像展示板,展示函数图像,让学生直观地理解函数。
6. 练习与巩固:让学生通过练习题,巩固所学知识,提高解题能力。
7. 总结与反思:让学生总结本节课所学内容,反思自己的学习过程。
五、教学评价1. 学生能正确理解函数的概念,掌握常量和变量的定义。
2. 学生能通过实际问题建立函数模型,解决简单的生活问题。
3. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。
4. 学生培养对数学的兴趣和积极参与数学活动的热情。
初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。
2、直线y = — 2X — 2 不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。
4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。
5、过点(0,2)且与直线y=3x平行的直线是:。
6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。
7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
函数单调性教学设计

函数的单调性教学设计一、教学内容解析1.教材内容及地位《函数单调性》是高中数学新教材必修一第三章第二节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。
如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用。
掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力. 因此,它是高中数学核心知识之一,是函数教学的战略要地。
2.教学重点函数单调性的概念,判断和证明简单函数的单调性。
3.教学难点归纳抽象函数单调性的定义以及根据定义证明函数的单调性.二、学生学情分析1.从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,能画出一些简单函数的图像,从图像的直观变化,学生能粗略的得到函数增减性的定义,所以引入函数的单调性的定义应该是顺理成章的。
2.从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。
3.从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。
函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心理是学生学好本节课的情感基础。
但是如何运用数学符号将自然语言的描述提升为形式化的定义,学生接受起来比较困难?在教学中要多引导,让学生真正的理解函数单调性的定义。
三、课堂教学目标1.知识目标:理解函数单调性的相关概念。
函数概念的教学设计

函数概念的教学设计教学目标:1.了解函数的概念和作用;2.掌握函数的定义和使用;3.能够灵活运用函数解决问题。
教学内容:1.函数的概念和作用;2.函数的定义和调用;3.函数的参数和返回值;4.函数的递归调用;5.函数的作用域和局部变量。
教学步骤:第一步:导入问题引入问题:在日常生活中,我们常常需要将一系列操作封装成一个整体,以便在需要时调用。
那么,你知道如何实现这个功能吗?第二步:引入函数的概念1.通过实例引入函数的概念:比如,在日常生活中,我们常常会使用机器来完成一些操作,比如洗衣机用来洗衣服,电视遥控器用来控制电视,那么这些机器和遥控器其实就是函数的概念。
2.定义函数:引导学生定义函数,即封装一系列操作的代码块,以便在需要时调用。
第三步:函数的定义和调用1.函数的定义:通过示范将一个简单的操作封装成一个函数的示例,如求两个数的和。
2.函数的调用:通过示范调用已定义的函数来实现封装的功能。
第四步:函数的参数和返回值1.函数的参数:引导学生通过例子,引入函数参数的概念,并进行函数定义和调用。
2.函数的返回值:通过例子引导学生理解函数的返回值,并进行函数定义和调用。
第五步:函数的递归调用1.引导学生理解递归的概念和原理;2.通过实例展示函数的递归调用,并指导学生进行实践。
第六步:函数的作用域和局部变量1.通过示例引导学生理解变量的作用域;2.通过函数和外部变量的示例引导学生理解函数的作用域和局部变量。
第七步:综合练习与巩固结合实际问题和练习题进行实践,巩固学生对函数概念和使用的理解。
第八步:总结与扩展1.总结函数的概念和作用、定义与调用、参数和返回值、递归调用、作用域与局部变量;2.引导学生思考函数的扩展应用,并引入匿名函数等扩展内容。
教学评价:在教学过程中,可以通过让学生进行问题解决和程序设计的实践,评价学生对函数概念的掌握程度以及能否熟练地使用函数解决问题。
可以通过课堂练习和作业、小组讨论等方式进行评价,确保学生掌握函数的概念和使用。
高一数学上册《函数的基本性质》教案、教学设计

3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。
初中《函数》教案设计

初中《函数》教案设计教学目标:1. 理解函数的概念,能够识别函数的各个组成部分。
2. 掌握函数的表示方法,包括解析式和表格法。
3. 能够运用函数解决实际问题,提高解决问题的能力。
教学重点:1. 函数的概念及组成部分。
2. 函数的表示方法。
教学难点:1. 函数概念的理解。
2. 函数表示方法的运用。
教学准备:1. 教学课件或黑板。
2. 函数相关例题和练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的数学知识,如变量、自变量、因变量等。
2. 提问:同学们,你们认为什么是函数呢?函数有哪些组成部分?二、新课讲解(15分钟)1. 讲解函数的概念,引导学生理解函数的定义。
2. 解释函数的各个组成部分,如定义域、值域、对应关系等。
3. 举例说明函数的表示方法,包括解析式和表格法。
4. 引导学生通过实例理解函数的实际应用。
三、课堂练习(10分钟)1. 布置一些简单的函数题目,让学生独立完成。
2. 选取部分学生的作业进行讲解和点评。
四、巩固知识(10分钟)1. 通过课件或黑板,展示一些常见的函数图像,如正比例函数、一次函数、二次函数等。
2. 引导学生观察图像,分析函数的特点和性质。
五、拓展提高(10分钟)1. 引导学生思考:函数在实际生活中有哪些应用?2. 举例说明函数在生活中的应用,如温度与海拔的关系、商品价格与数量的关系等。
六、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念和表示方法。
2. 强调函数在实际生活中的重要性。
教学反思:本节课通过讲解、练习、巩固和拓展等环节,帮助学生理解和掌握函数的基本概念和表示方法。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。
同时,结合实际生活中的例子,让学生感受函数的应用价值,提高学生的数学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.1.1变量与函数教学设计
长垣县苗寨乡中心学校徐红波
一、教材分析
(一)教学目标
1.知识技能
(1)通过实际例子,了解变量、常量的意义。
(2)结合具体实例了解函数的概念。
2. 数学思考
(1)经历常量与变量的学习过程,体会分类的思想。
(2)经历函数概念的形成过程,感悟变化与对应的思想。
3.解决问题
(1)能指出具体问题中的变量与常量。
(2)能结合具体实例判断两个变量之间是否存在函数关系。
4. 情感态度
(1)在经历函数概念的形成过程中,体会数学的应用价值。
(2)在探索两个变量之间的对应关系过程中,感悟事物之间相互联
系并不断运动、变化、发展的哲学思想。
二、教学过程
行驶,行驶里程为s km,行驶时间为t h,请填写下面的表格.
t/h 1 2 3 4 5
s/km
问题2:电影票的售价为10元/张.第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各多少元?设一场电影售出x张票,收入为y元,y 的值随x的值的变化而变化吗?问题3:某地在24小时内的气温变化图如下,图中有哪些量?。