气动控制系统设计
气动系统行程程序控制设计

这种能够逻辑“与”关系,可以用一个单独的逻辑“与”元 件来实现,也可以用一个行程阀两个信号的串联或两个 行程阀的串联来实现。
利用逻辑“非”排障法 利用原始信号经逻辑非运算得到反信号来排 除障碍。 为了排除障碍信号 m 中的障碍段,可以引入一 个辅助信号(制约信号)x , 经逻辑非运算 后得到信号m*。 原始信号作为逻辑非制约信号x 时,其起点 应在障碍信号m 的信号之后,有障碍段之前, 终点则在m的障碍段之后。
行程程序控制
行程程序控制的优点是结构简单,维护容易,动作稳定,特别是当程序运行中某节拍出现故障时, 整个程序动作就停止而实现自动保护。因此,行程程序控制方式在气动系统中被广泛采用。
混合程序控制
混合程序控制通常是在行程程序控制系统中包含了一些时间信号,实质上是把时间信号看作行程信 号处理的一种行程程序控制。
b、脉冲回路法排障
利用脉冲回路或脉冲阀的方法将有障信号 变为脉冲信号。图所示为脉冲信号原理图。 当有障信号a发出后,阀K立即有信号输出。 同时,信号又经气阻、气容延时,当阀K控制 端的压力上升到切换压力后,输出信号a即 被切断,从而使其边变为脉冲信号。
利用常通型延时阀消除障碍信号方法。
下图为工作程序A1B1B0A0 用脉冲信号消障的 X-D线图。
2.画动作(D线)
用横向粗实线画出各执行元件的动作状态线。 动作状态线的起点是该动作程序的开始处,用 符号“Ο”画出; 动作状态线的终点是该动作状态变化的开始 处,用符号“Χ”画出。例如缸A伸出的状态A1 , 变化成缩回状态A0 ,此时A1 的动作线的终点必 然在A0 的开始处。
3.画主令信号线(X线) 用细实线画出主令信号线
7.2.2 X—D线图法常用的符号 1.用大写A、B、C等表示气缸,用下标1和0分别表示气缸的 伸出和缩回,如A1表示气缸A伸出,A0表示A缸回缩。 2.用带下标的a1、a0等分别表示与A1、A0等相对应的机控阀 及其输出信号。如a1表示气缸活塞杆伸出终端位置的行程 阀和其所发出的信号。 3.控制气缸对应的主控阀也用相对应的控制气缸的文字符号 表示。 4.经过逻辑处理而排除障碍后的执行信号在右上角加“*” 号,如a*, 不加表示原始信号。 5.在工作程序图中,“ ”箭头指向表示控制顺序, “ ”表示信号(或行程阀)b0控制缸A的伸出。
气动系统的设计计算

气动系统的设计计算
浏览字体设置:
+
10pt
放入我的网络收藏夹
气动系统的设计计算
气动系统的设计一般应包括: 1)回路设计;
2)元件、辅件选用; 3)管道选择设计; 4)系统压降验算; 5)空压机选用;
6)经济性与可靠性分析。
以上各项中,回路设计是一个“骨架”基础,本章着重予以说明,然后结合实例对气对系统的设计计算进行综合介绍。
1 气动回路
1.1 气动基本回路
气动基本回路是气动回路的基本组成部分,可分为:压力与力控制回路、方向控制(换向)回路、速度控制回路、位置控制回路和基本逻辑回路。
1.1.2换向回路(见表4
2.6-2)
表42.6-2 气动换向回路及特点说明
1.1.3速度控制回路(见表4
2.6-3)
位置停止)
表42.6-4 气动位置控制回路及特点说明
1.1.5 基本逻辑回路(见表4
2.6-5)
实际应用中经常遇到的典型回路简称常用回路。
1.2.1 安全保护回路(见表42.6-6)
1.2.2往复动作回路(见表42.6-7、8)
表42.6-6 气动安全保护回路及特点说明
1.2.3程序动作控制回路
程序动作控制回路(表42.6-8)在实际中应用广、类型多。
下面仅举一个双缸程序动作(A1-B1-B0-A0)为例(表42.6-8)说明。
而不同执行缸以及各种不同程序动作的回路,将在本章第2节中介绍其基本设计方法。
1.2.4同步动作控制回路(见表42.6-9)
表42.6-9 气动同步动作控制回路及特点说明。
气动机械手控制系统设计

气动机械手控制系统设计气动机械手是一种应用气动技术的机械手执行器,通过气动元件驱动来实现抓取、搬运、装配等动作。
气动机械手控制系统设计是指设计控制气动机械手运动的电气、电子、液压等各种控制设备和控制方式。
本文将从气动机械手的工作原理、控制系统的设计要点和实现方法三方面进行详细介绍。
一、气动机械手的工作原理具体来说,气源通常会提供一定的压力,一般使用压缩空气。
气控元件包括气缸、气阀等,用于对压缩空气进行控制,如控制气缸的进气和排气,实现气缸的伸缩和运动方向的改变。
而工作执行器则是机械手的关键组成部分,它是气缸和机械手夹具的组合,通过气缸的控制,实现机械手的抓取、搬运等动作。
二、气动机械手控制系统设计要点1.选择合适的气源和气控元件:在设计气动机械手控制系统时,需要根据机械手的负载要求选择合适的气源和气控元件。
气源的压力和流量要满足机械手的工作需求,而气控元件的类型和数量要根据机械手的动作来确定。
2.设计合理的控制回路:气动机械手的控制回路包括气源控制回路和气缸控制回路。
气源控制回路主要控制气源的启动和停止,而气缸控制回路则控制气缸的进气和排气,实现机械手的运动。
控制回路的设计要合理布置元件,使其在工作过程中能够有序工作,减少能量损失。
3.合理安排气缸的布局:气缸的布局对机械手的工作效果有很大影响。
在布置气缸时,需要考虑机械手的工作空间、抓取点的位置和安全性等因素,尽量将气缸设在合适的位置,以提高机械手的工作效率和稳定性。
三、气动机械手控制系统的实现方法1.纯气动控制:纯气动控制是指完全依靠气源和气控元件来控制机械手的运动。
这种控制方式结构简单,控制精度较低,主要适用于对动作精度要求不高的场合。
2.气动与电气联合控制:在气动机械手的控制系统中,可以结合电气元件和电气控制方式,与气动元件共同控制机械手的运动。
在这种控制方式下,电气元件可用于控制气控元件的工作,提高气动机械手的控制精度。
3.PLC控制:PLC控制是指使用可编程序控制器(PLC)对气动机械手进行控制。
气动控制系统的参数优化设计

气动控制系统的参数优化设计气动控制系统作为重要的工业自动化控制系统,广泛应用于生产制造、机械加工、自动化装配等领域。
在气动控制系统的设计和运行中,参数优化是实现系统高效稳定运行的关键因素之一。
本文从气动控制系统参数的含义和影响出发,探讨气动控制系统的参数优化设计方法与技术。
一、气动控制系统参数的含义及影响气动控制系统的参数指各种控制元件的参数和运行特性,包括压力、流量、速度、时间、阻力等。
这些参数的大小和变化对于整个系统的控制效果和质量具有重要影响。
例如,在气动系统中,压力差是控制阀门和气缸动作的重要参数,过小或过大都会导致控制效果不理想;另外,在节流元件中,阻力大小和形状对气体流量和速度控制起到重要作用,适当的阻力设定可以快速实现气动元件的动作,而过大或过小的阻力则会影响系统的响应速度和动作稳定性。
二、气动控制系统参数优化设计方法气动控制系统的参数优化设计是指在满足系统要求的前提下,通过合理的参数设置和调整,使系统响应速度更快、动作更为平稳、能耗更为节约。
下面结合压力控制和流量控制两个方面,介绍气动控制系统参数优化设计方法。
1、压力控制在气动系统中,压力控制是实现阀门和气缸动作的关键因素之一。
为了实现压力控制的优化,需要注意以下几点:(1)坚持优先选择质量可靠的气动元件,例如优化设计气缸的避免气缸漏气,以此增加压力稳定性。
(2)合理设置压差,例如在控制阀开关时,设置适当的压差可以有效减少空气浪费。
(3)将调压器和压力传感器设置在合理的位置,以获得准确的压力信号,并根据实际需求进行调整。
2、流量控制流量控制是气动控制系统中另一个重要的参数之一,通过对气源、过滤器、调节阀、气管以及节流元件的设计和调整,实现系统流量控制的优化。
具体方法如下:(1)流量选择:在不同的气缸、阀门、执行器等气动元件中选择适当的流量匹配,以确保流量控制的合理性。
(2)管路设计:对于气动控制系统的管路设计,应该注意管路截面和长度的优化设计,以保证气流的稳定性和流量的可控性。
基于PLC的气动机械手控制系统设计

基于PLC的气动机械手控制系统设计一、本文概述随着工业自动化技术的飞速发展,气动机械手作为实现生产自动化、提高生产效率的重要工具,在各个领域得到了广泛应用。
基于可编程逻辑控制器(PLC)的气动机械手控制系统,以其稳定可靠、易于编程和维护的特性,成为当前研究的热点之一。
本文旨在探讨基于PLC 的气动机械手控制系统的设计方法,包括系统构成、硬件选择、软件编程以及调试与优化等方面,以期为我国工业自动化领域的发展提供参考和借鉴。
本文将简要介绍气动机械手及其控制系统的基本原理和特点,为后续的设计工作奠定理论基础。
将详细阐述PLC在气动机械手控制系统中的应用优势,包括其可靠性、灵活性以及扩展性等方面的优势。
在此基础上,本文将深入探讨基于PLC的气动机械手控制系统的设计方法,包括系统架构的设计、硬件设备的选择、软件编程的实现以及系统调试与优化等方面。
本文将总结基于PLC的气动机械手控制系统的设计要点和注意事项,为相关工程实践提供指导和借鉴。
通过本文的研究,旨在为我国工业自动化领域的发展提供新的思路和方法,推动气动机械手控制系统的技术进步和应用推广。
也期望本文的研究成果能对相关领域的学者和工程师产生一定的启示和借鉴作用,共同推动工业自动化技术的发展和创新。
二、气动机械手控制系统概述气动机械手控制系统是以可编程逻辑控制器(PLC)为核心,结合气动执行元件、传感器以及相应的控制逻辑,实现对机械手的精确控制。
该系统结合了气动技术的快速响应和PLC的灵活编程特性,使得机械手的动作更加准确、迅速且易于调整。
PLC控制器:作为整个控制系统的核心,PLC负责接收和处理来自传感器的信号,根据预设的程序逻辑,控制气动执行元件的动作。
PLC 具有高度的可靠性和稳定性,能够适应各种复杂的工作环境。
气动执行元件:包括气缸、气阀和气压调节器等。
气缸是实现机械手抓取、移动等动作的主要执行机构;气阀用于控制气缸的运动方向和速度;气压调节器则用于调节气缸的工作压力,以保证机械手的稳定性和精确性。
气动机械手控制系统设计

X20
输出端子 名称
机械手下降 夹紧/松开 机械手上升 机械手右移 机械手左移 原点指示灯
代号
YV3 YV5 YV4 YV1 YV2 L1
端子编号
Y0 Y1 Y2 Y3 Y4 Y5
2.PLC外部接线图
根据对机械手的输 入输出信号的分析以及 所选的外部输入设备的 类型及PLC的机型,设 计机械手PLC控制外部 接线如图 8-63所示 。
(2)“无工件”检测信号采用光电开关作检测元件, 需要1个输入端子;
(3)“工作方式”选择开关有手动、单步、单周期、 和连续4种工作方式,需要4个输入端子;
三、确定输入输出点数并选择PLC
1.输入信号
输入信号是将机械手的工作状态和操作的信息提供给 PLC。PLC的输入信号共有17个输入信号点,需占用17个输 入端子。具体分配如下:
3.控制要求
(3)单周期工作方式
按下启动按钮,从原点开始,机械手按工序自动 完成一个周期的动作,返回原点后停止 。
(4)连续工作方式
按下启动按钮,机械手从原点开始按工序自动反 复连续循环工作,直到按下停止按钮,机械手自动停 机。或者将工作方式选择开关转换到“单周期”工作 方式,此时机械手在完成最后一个周期的工作后,返 回原点自动停机 。
图8-63 机械手PLC控制外部接线图
五、控制程序设计
1.总体设计
(1)设计思想
该机械手控制程序较复杂,运用模块化设 计思想,采用“化整为零”的方法,将机械手控 制程序分为:公共程序、手动程序和自动程序, 分别编出这些程序段后,在“积零为整”,用条 件跳转指令进行选择,用这种设计思想设计的控 制程序运行效率高,可读性好。
暂时等待。为此设置了一只光电开光,以检测“无工件”信号 。
气动系统设计

气动回路的设计
1)根据执行元件的数目、动作要求画出方框图或动作
程序,根据工作速度要求确定每个气缸或其它执行元件
双稳元件
原理:有控制
信号a,气源p
从S1输出,撤
除控制信号a, S1保持有输出, 元件记忆了ห้องสมุดไป่ตู้制信号a;当有了控制信号b,则S1关闭,气源 p 从S2输出,撤除控制信号 b ,S2仍保持有输出。
逻辑符号:图b)
气动系统设计
气动基本回路是组成气动控制系统的基本单元,也是设计 气动控制回路的基础气动基本回路分为压力控制、速度控 制和方向控制基本回路。
在一分钟内的动作次数。
2)根据执行元件的动作程序,按本节气动程序控制回 路设计方法设计出气动逻辑原理图,然后进行辅助设计, 此时可参考各种基本回路,设计出气控回路来。 3)使用电磁气阀时,要绘制出电气控制图。
表气动控制方案选择比较
气阀控制 压力(Mpa) 元件响应时间 信号 传递速度 输出功率 流体通道尺寸 耐环境影 响的能力 耐部干扰能力 配管或配线 0.2~0.8 较慢 较慢 大 大 防爆、较耐振、耐灰尘、较耐潮湿 不受辐射、磁力、电场干扰 较麻烦 逻辑元件控制 0.01~0.8 较快 较慢 较大 较大 电--气控制 直动式0~0.8 较慢 最快 大 大 易爆和漏电 受磁场、电场、辐射干扰 容易 先导式0.2~0.8
或门元件 与门元件 非门元件 禁门元件 双稳元件
截止式元件 滑阀式元件 按结构形式分 膜片式元件
机械工程中的气动系统设计规范要求

机械工程中的气动系统设计规范要求在机械工程中,气动系统设计是一个至关重要的环节。
气动系统广泛应用于各类工业和制造领域,包括航空、汽车、机械制造等。
为了确保气动系统的有效性和安全性,设计人员必须遵循一系列的规范要求。
1.设计原则在开始气动系统设计之前,设计人员首先要了解气动系统的设计原则。
这些原则包括流体力学、热力学和材料力学等方面的知识。
设计人员需要理解气动系统中液压力、流速、流量、压降、温度和密封等基本概念,并且要掌握这些参数的计算方法和实际应用。
2.元件选择在气动系统设计过程中,设计人员需要根据具体的应用要求选择合适的气动元件。
常见的气动元件包括气缸、阀门、过滤器、压力表和连接件等。
设计人员需要根据系统的工作压力、流量和环境条件等因素选择合适的元件,并且要确保元件的质量和可靠性。
3.系统布局在气动系统设计中,系统布局是一个关键环节。
设计人员需要考虑气动元件的相互配合和布置,以确保气动系统的正常工作。
布局要合理,避免气动元件之间的干扰和冲突。
此外,设计人员还要考虑气动系统的维护和维修便利性,以及防止泄漏和能量损失等问题。
4.压力控制在气动系统设计中,压力控制是非常重要的。
设计人员需要通过合理调整气源和气缸之间的压力差,控制系统的工作效果。
压力控制还涉及到压力传感器、调压阀和安全阀等元件的选型和设置。
设计人员还要根据系统的工作要求,选择合适的压力控制方法,包括恒压和调节压力两种方式。
5.安全性考虑在气动系统设计中,安全性是至关重要的。
设计人员需要考虑气动系统在运行过程中的安全性和稳定性。
设计人员要特别关注气动系统的压力和温度变化,以及磨损和老化等因素对系统的影响。
此外,设计人员还要注意防止气体泄漏和爆炸等安全隐患,并且要合理设置安全装置,保证操作人员的安全。
6.性能测试在气动系统设计完成后,设计人员需要进行性能测试,以验证系统的设计是否满足要求。
性能测试包括流量测试、压力测试、泄漏测试和温度测试等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气动控制系统设计
2007-08-23 11:43
气动控制系统设计
1、气动控制系统的组成。
在气动控制系统中,气动发生装置一般为空气压缩机,它将原动机供给的机械能转换为气体的压力能;气动执行元件则将压力能转化为机械能,完成规定动作;在这两部分之间,根据机械或设备工作循环运动的需求、按一定顺序将各种控制元件(压力控制阀、流量控制阀、方向控制阀和逻辑元件)、传感元件和气动辅件连接起来。
设计程序有关事项
2.1设计程序
2.1.1调研主机工作要求,明确设计依据。
A.了解主机结构、循环动作过程、执行元件操作力、运动速度及调整范围、运动平稳性、定位精度、传感器元件安装位置、信号转换、联锁要求、紧急停车、操作距离和自动化程度等。
B.工作环境,如温度及变化范围、湿度、振动、冲击、灰尘、腐蚀、防爆要求等。
C.是否要和电气、液压系统相配合,如需要须了解相应的安装位置等。
D.其他要求,如气控装置的重量、外形尺寸、价格要求等要求。
2.1.2气动回路设计
A.由执行元件数目、工作要求和循环动作过程,拟出执行元件的工作程序图。
根据工作速度要求确定每一个气缸在一分钟内的动作次数。
B.根据元件的工作程序,参考各种气动基本回路,按程序控制回路设计方法,设计气动回路。
为了得到最合理的气动回路,设计时可做几种法案比较,如气控制,气-----电控制,射流控制方案等进行选择,绘出气动回路图,使用电磁阀的场合,同时还绘出电气回路图。
2.1.3执行元件选择和计算
气动执行元件的类型一般应与主机相协调,即直线往复运动应选择气缸,回转运动应选择气动马达,往复摆动应选择摆动缸。
2.1.4控制元件选择
根据系统或执行元件的工作压力和通过阀的最大流量,选用各生产厂制造的阀和气动元件。
选择各种控制阀或逻辑元件时应考虑的特性有:
1工作压力
2额定流量
3响应速度
4使用温度范围
5最低工作压力和最低控制压力
6使用寿命
7空气泄漏量
8尺寸及联接形式
9电气特性等
选择控制阀时除了根据最大流量外,还应考虑最小稳定流量,以保证气缸稳定工作。
2.1.5气动辅件选择
根据气缸装置的用气量进行辅件选择:
A过滤器:不同的执行元件和控制元件对过滤器的要求一般为
气缸、截止阀等50~75u
气动马达等10~25u
金属硬配滑柱式、射流元件等5u
B减压器:根据压力调整范围和流量确定减压器或定植器的型号
C油雾气:根据流量和油雾颗粒大小要求。
一般10平方米空气中应加润滑油量1毫升左右。
D消声器:根据工作场合对噪声的要求选择。
2.1.6压缩机选择
由于使用压缩空气单位的负载波动不同,故压缩机容量的确定要充分了解不同用户的用气规律性,根据实际情况最后确定,压缩机供气量Qg可按下式简单估算
Qg=(1.2~1.5)求和(QZ+QO)m3/min
式中QZ-------------------------一台机器的用气量
QO-------------------------机器和配管的漏气量
N--------------------工作台数
根据上式可选择相应的空气压缩机,当样本上的压缩机供气量与计算结果不一致时,一般选偏大的压缩机。
2.1.7管道直径的确定
在管道计算中,常常是先按计算流量及经验流速计算出各区段的管径,然后计算出管径校核各区段的压力降,以使最远点压力降在允许的范围内。
若压力降超过额定值,应重新选择较低流速,再确定新的管径,在新的管径基础上再计算阻力损失,直到使压力降在允许范围内。
2.2气动控制系统设计有关事项
1气源处理
供给气动装置的压缩空气,除了保证其压力和流量外还必须除去其中的含油污水和灰尘等,以减少气动元件的磨损避免其零件的锈蚀,否则将引起系统工作效率降低,并常产生误动作而发生事故。
故在气动装置前除直接安装减压----过滤------油雾三联件外,在压缩机之后一般应设有冷却器、过滤器和气罐等,以保证气动系统正常运行。
在要求更高的情况下,应加干燥器或特殊过滤器。
三联件应安装在外部,以便排水,观察和维修。
必要时应装有压力继电器和主机电器部分互锁
2管路安装
进行管路设计时,应注意管内的水分,在这前面虽然经过一些处理,但其中还是含有些未除掉的水分,是管道、机件生锈而工作失常。
所以必须采取措施除掉残余的水分。
3控制箱
为满足一定操作要求,常将各种控制元件集中在控制箱内,对控制箱设计时的注意点有:
A保证线路正常工作,阻力损失小,布置合理。
B面板及结构安排要考虑操作方便
C便于维修,易于检查
D经济美观
4特殊情况处理
在设计时,应考虑系统在停电、发生事故需要紧急停车以及重新开车而必须联锁保护元件等等,在这里我就不细说了,欢迎大家对这方面处理的经验拿出来讨论!
5环境保护
气动系统工作时,由于压缩空气从换向阀排到大气中而发生排气噪声和油雾而污染空气等,故应注意环境保护问。