平行四边形章节知识点总结表
平行四边形的判定知识点小结

平行四边形的判定知识点小结一、平行四边形的判定方法。
1. 定义判定。
- 两组对边分别平行的四边形是平行四边形。
- 用符号语言表示:如果AB∥CD,AD∥BC,那么四边形ABCD是平行四边形。
这是平行四边形最基本的判定方法,它是从平行四边形的定义直接得出的。
2. 边的判定。
- 两组对边分别相等的四边形是平行四边形。
- 符号语言:若AB = CD,AD = BC,则四边形ABCD是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
- 符号语言:若AB∥CD且AB = CD(或者AD∥BC且AD = BC),则四边形ABCD 是平行四边形。
3. 角的判定。
- 两组对角分别相等的四边形是平行四边形。
- 符号语言:若∠A = ∠C,∠B = ∠D,则四边形ABCD是平行四边形。
4. 对角线的判定。
- 对角线互相平分的四边形是平行四边形。
- 符号语言:若OA = OC,OB = OD(其中O为对角线AC、BD的交点),则四边形ABCD是平行四边形。
二、平行四边形判定方法的证明思路。
1. 定义法证明。
- 一般通过已知条件中的平行关系,如角相等推出直线平行(同位角、内错角相等,两直线平行)等方法来证明两组对边分别平行。
- 例如:已知∠1 = ∠2,∠3 = ∠4,可推出AD∥BC,AB∥CD,从而证明四边形ABCD是平行四边形。
2. 边的判定证明。
- 对于两组对边分别相等的判定方法,通常利用三角形全等的知识来证明。
- 例如:连接AC,在△ABC和△CDA中,已知AB = CD,BC = DA,AC = CA(公共边),通过SSS(边 - 边 - 边)全等判定定理证明△ABC≌△CDA,进而得出∠1 = ∠2,∠3 = ∠4,所以AD∥BC,AB∥CD,四边形ABCD是平行四边形。
- 对于一组对边平行且相等的判定方法,可通过平移线段构造平行四边形或者利用三角形全等和平行线的判定来证明。
- 例如:已知AB∥CD且AB = CD,延长AB到E,使BE = CD,连接CE,可证明四边形BECD是平行四边形,从而得出BD∥CE,再结合已知条件证明四边形ABCD是平行四边形。
平行四边形知识点总结

平行四边形知识点总结一、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。
需要注意的是,平行四边形的定义既是它的一个性质,即两组对边分别平行;也是判定一个四边形是否为平行四边形的依据之一。
二、平行四边形的性质1、边的性质(1)平行四边形的两组对边分别平行且相等。
(2)平行四边形的邻边之和等于周长的一半。
2、角的性质(1)平行四边形的两组对角分别相等。
(2)平行四边形的邻角互补,即相邻的两个角之和为 180 度。
3、对角线的性质(1)平行四边形的对角线互相平分。
(2)两条对角线把平行四边形分成的四个三角形的面积相等。
4、对称性平行四边形是中心对称图形,对称中心是两条对角线的交点。
三、平行四边形的判定1、两组对边分别平行的四边形是平行四边形。
这是根据平行四边形的定义直接得出的判定方法。
2、两组对边分别相等的四边形是平行四边形。
如果一个四边形的两组对边分别相等,那么可以通过平移其中一组对边,使其与另一组对边重合,从而证明该四边形是平行四边形。
3、一组对边平行且相等的四边形是平行四边形。
先证明一组对边平行,如果再能证明这组对边相等,就可以判定为平行四边形。
4、两组对角分别相等的四边形是平行四边形。
因为平行四边形的两组对角分别相等,所以如果一个四边形的两组对角分别相等,那么它就是平行四边形。
5、对角线互相平分的四边形是平行四边形。
通过证明对角线互相平分,可以得出四边形的两组对边分别平行,从而判定为平行四边形。
四、平行四边形面积的计算平行四边形的面积=底×高需要注意的是,底和高必须是相对应的,即底边上对应的高。
五、平行四边形中的常见题型1、利用性质求边长、角度或对角线的长度已知平行四边形的一些边、角或对角线的关系,通过性质列方程求解。
2、证明一个四边形是平行四边形根据给定的条件,选择合适的判定方法进行证明。
3、求平行四边形的面积给出底和高的长度,或者通过其他条件求出底和高,进而计算面积。
4、与三角形结合的问题例如,平行四边形的对角线把平行四边形分成两个全等的三角形,或者通过三角形的全等或相似来解决平行四边形中的问题。
人教版八年级下册数学平行四边形知识点归纳及练习教学总结

平行四边形复习
C
D
A
O
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方
形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式:
1.S 菱形 =2
1
ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =2
1
(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:
※1.若n 是多边形的边数,则对角线条数公式是:2
)3n (n . 2.规则图形折叠一般“出一对全等,一对相似”.
3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.
平行四边形
矩形
菱形正
方
形。
(完整版)平行四边形基本知识点总结

(完整版)平行四边形基本知识点总结平行四边形基本知识点总结
平行四边形是一种特殊的四边形,它具有一些独特的性质和特点。
以下是平行四边形的基本知识点总结:
定义
平行四边形是指具有两组对边分别平行的四边形。
性质
1. 对边平行性质:平行四边形的两组对边分别平行。
2. 对角线性质:平行四边形的对角线互相平分,并且长度相等。
3. 内角和性质:平行四边形的内角的和为180度。
4. 外角性质:平行四边形的外角的和为360度。
5. 对边长度性质:平行四边形的对边长度相等。
6. 同底角性质:与平行四边形的一条边相邻,另一条边平行的两个内角相等。
7. 同旁内角性质:与平行四边形的两条边相邻,另一条边平行的两个内角互补。
判定方法
1. 对边平行判定:如果一个四边形中有两组对边分别平行,则它是一个平行四边形。
2. 对角线平分判定:如果一个四边形的对角线互相平分,并且长度相等,则它是一个平行四边形。
特殊类型
1. 矩形:具有四个内角都为90度的平行四边形。
2. 正方形:具有四个内角都为90度,且四条边长度相等的平
行四边形。
相关公式
1. 平行四边形的面积公式:面积 = 底边长度 ×高度。
2. 平行四边形的周长公式:周长= 2 ×(底边长度+ 侧边长度)。
以上是关于平行四边形的基本知识点总结。
通过了解这些性质
和定理,可以更好地理解和解决相关的数学问题。
特殊的平行四边形章节知识点归纳(全)

5. 矩形的性质
A
D
) )
O
B
C
(1)∵四边形 ABCD 是矩形
∴∠DAB=∠ABC =∠BCD=∠CDA=90°(
)
(2)∵四边形 ABCD 是矩形 ∴AC=BD( OA=OC= OB=OD(
) )
6. 矩形的判定
A
D
O
B
C
(1)∵四边形 ABCD 是平行四边形,且∠BAD=90°
∴□ABCD 是矩形(
(2)∵四边形 ABCD 是正方形
∴AC=BD(
)
AC⊥BD,且 OA=OC= OB=OD(
8. 正方形的判定
A
D
) )
)
O
B
C
(1)∵四边形 ABCD 是平行四边形,且∠BAD=90° ,AB=BC
∴□ABCD 是正方形(
)
(2)∵四边形 ABCD 是菱形,且∠BAD=90°
∴菱形 ABCD 是正方形(
)
(2)∵四边形 ABCD 是平行四边形,且 AC=BD
∴□ABCD 是矩形(
)
(3)∵∠DAB=∠ABC =∠BCD =90°
∴四边形 ABCD 是矩形(
)
7. 正方形的性质
A
D
O
B
C
(1)∵四边形 ABCD 是正方形 ∴AB= BC =CD=AD( ∠DAB=∠ABC =∠BCD=∠CDA=90°(
(正方形既是菱形也是矩形)
4. 菱形的判定:有一组邻边相等的平行四边形是菱形 对角线互相垂直的平行四边形是菱形; 四条边相等的四边形是菱形.
5. 矩形的判定:有一个角是直角的平行四边形是矩形 对角线相等的平行四边形是矩形; 有三个角是直角的四边形是矩形.
数学四年级下平行四边形知识点总结

数学四年级下平行四边形知识点总结
一、平行四边形的定义
平行四边形是指具有两对对边分别平行且相等的四边形。
二、平行四边形的特性
1. 对边特性:平行四边形的对边相等。
2. 对角线特性:平行四边形的对角线相互平分。
3. 角特性:平行四边形的内角相邻互补,对角互补。
4. 等腰特性:具有两对相等对边的平行四边形是等腰平行四边形。
5. 等边特性:具有四条边都相等的平行四边形是等边平行四边形。
三、求解平行四边形相关问题的方法
1. 利用对边特性:已知平行四边形的一对相等对边,可以求解其它对边的长度。
2. 利用角特性:已知平行四边形的一对相邻内角或对角,可以求解其它内角或对角的大小。
3. 利用对角线特性:已知平行四边形的一条对角线以及对角线
的长度,可以求解其它对角线的长度。
4. 利用等边特性:已知平行四边形的四条边都相等,可以求解
其它未知的角或边的性质。
四、练题示例
1. 已知平行四边形的一对相等对边分别为10cm,求解其它对
边的长度。
2. 已知平行四边形的一对相邻内角分别为60°和120°,求解其
它内角的大小。
3. 已知平行四边形的一条对角线为8cm,求解另一条对角线的
长度。
4. 已知平行四边形的四条边都相等,求解它的角或边的性质。
五、注意事项
1. 在求解平行四边形问题时,要根据已知条件选择合适的方法,并注意运用相关定理和公式。
2. 理解平行四边形的特性和性质,能够帮助提高解题的效率和
准确性。
以上是数学四年级下关于平行四边形的知识点总结,希望对你的学习有所帮助。
四年级数学平行四边形知识点
四年级数学平行四边形知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!四年级数学平行四边形知识点四年级数学平行四边形知识点你们知道有哪些知识点吗?平行四边形和梯形是四年级学习中的一个重点知识章节。
平行四边形知识点总结
角菱形的对角相等
菱形的邻角互补
对角线菱形的两条对角线互相平分且互相垂直,并且每一条对角线平分一组对角
判定:
边有一组邻边相等的平行四边形是菱形
四条边都相等的四边形是菱形
对角线对角线互相垂直的平行四边形是菱形
菱形是轴对称图形,两条对角线为它的对称轴。
正方形
定义:四条边都相等,四个角都是直角的四边形叫做正方形
角两组对角分别相等的四边形是平行四边形对角线对角线互相平分四边形是平行四边形矩形
定义:有一个角是直角的平行四边形叫做矩形
性质:
边矩形的对边平行且相等
角矩形的四个角都是直角
对角线矩形的对角线互相平分且相等
判定:
角有一个角是直角的平行四边形是矩形
有三个角是直角的四边形是矩形
对角线对角线相等是平行四边形是矩形
提示:判断一个四边形是正方形,关键是先判定这个四边形是平行四边形,再判定这个四边形是菱形(或矩形),最后判定这个平行四边形还是矩形(或菱形)。但由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不尽相同,所以判定一个四边形的具体过程方法也得视情况而定。
矩形是轴对称图形,有两条对称轴。
相关性质
平行线段:两条平行线之间的任何两条平行线段都相等
两条平行线之间的距离相等
连接三角形两边中点的线段叫做三角形的中位线
三角形的中位线平行于三角形的第三边,并且等于第三边的一半
直角三角形斜边上的中线等于斜边的一半。
菱形
定义:有一组邻边相等的平行四边形叫做菱形
性质:
边菱形的对边互相平行
平行四边形知识点总结
平行四边形
定义:两组对边分别平行的四边形叫做平行四边形
性质:
初二数学平行四边形知识点归纳
初二数学平行四边形知识点归纳一、平行四边形的定义与性质。
1. 定义。
- 两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“▱”表示,例如平行四边形ABCD记作“▱ABCD”。
2. 性质。
- 边的性质。
- 平行四边形的两组对边分别平行且相等。
即AB∥CD,AD∥BC,AB = CD,AD = BC。
- 角的性质。
- 平行四边形的两组对角分别相等,邻角互补。
即∠A = ∠C,∠B = ∠D,∠A+∠B = 180°,∠B + ∠C=180°等。
- 对角线的性质。
- 平行四边形的对角线互相平分。
即若AC、BD是▱ABCD的对角线,则AO = CO,BO = DO(O为AC、BD交点)。
二、平行四边形的判定。
1. 边的判定。
- 两组对边分别平行的四边形是平行四边形(定义判定)。
- 两组对边分别相等的四边形是平行四边形。
即若AB = CD,AD = BC,则四边形ABCD是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
例如AB∥CD且AB = CD,则四边形ABCD是平行四边形。
2. 角的判定。
- 两组对角分别相等的四边形是平行四边形。
即若∠A = ∠C,∠B = ∠D,则四边形ABCD是平行四边形。
3. 对角线的判定。
- 对角线互相平分的四边形是平行四边形。
若AO = CO,BO = DO,则四边形ABCD 是平行四边形。
三、平行四边形的面积。
1. 面积公式。
- 平行四边形的面积 = 底×高,即S = ah(a为底边长,h为这条底边对应的高)。
例如在▱ABCD中,若以AB为底,AB边上的高为h,则S▱ABCD=AB×h。
2. 等底等高的平行四边形面积关系。
- 等底等高的平行四边形面积相等。
如果有▱ABCD和▱EFGH,AB = EF,且它们对应的高相等,那么S▱ABCD = S▱EFGH。
四、特殊的平行四边形(矩形、菱形、正方形)与平行四边形的关系。
平行四边形和梯形知识点总结
人教版四年级上册三单元平行四边形和梯形知识点总结(正反打印版)1、在(同一个平面内不相交)的两条直线叫做平行线,也可以说这两条直线互相平行。
2、两条直线相交成直角就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
3、过直线上一点画一条直线的垂线,只能画一条。
过直线外一点画一条直线的垂线,只能画一条。
4、平行于同一条直线的两条直线互相平行。
垂直于同一条直线的两条直线互相平行。
5、两组对边分别平行的四边形叫做平行四边形,平行四边形的对边互相平行且相等。
6、从平行四边形的一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
7、平行四边形具有(容易变形)的特点。
利用这一原理的有:伸缩门和升降机8、只有一组对边平行的四边形叫做(梯形)。
(两腰相等)的梯形叫等腰梯形。
有一个角是直角的梯形叫做直角梯形。
9、两组对边(分别平行)的四边形叫做平行四边形。
平行四边形(不是)轴对称图形。
10、右图中有( 3 )个平行四边形,( 3 )个梯形。
11、两条平行线之间的距离是6厘米,在这两条平行线之间作一条垂线,这条垂线的长是(6)厘米。
12、(长方形)和(正方形)都是特殊的平行四边形。
13、从平行四边形的一条边上的一点到对边可以引(一条)垂线。
14、从直线外一点到这条直线所画的线段中,(垂直线段)最短,它的长度叫做这点到直线的距离。
15、端点分别在两条平行线上,且与平行线垂直的所有线段长度相等。
16、常见的四边形有(平行四边形、长方形、正方形、梯形)。
17、两条直线相交成(直角)时,这两条直线互相垂直。
下午3时,钟面上的时针与分针互相垂直。
18、长方形相邻的两条边互相(垂直)。
相对的两条边互相(平行)。
19、任意四边形的内角和都是(360)度。
20、在梯形中,互相平行的一组对边叫做梯形的(上底和下底)21、从直线外一点到这条直线的距离,是指这一点到这条直线的(垂直线段)的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形矩形菱形正方形图形
定义两组对边分别平行的四边形。
有一个角是直角的平行四边
形是矩形
有一组邻边相等的平行四边
形是菱形
有一组邻边相等且有一个直角的平行四边形
叫做正方形
质
边
对边平行(位置关系);
对边相等(数量关系);
对边平行(位置关系);
对边相等(数量关系);
对边平行;
对边相等;
四边相等
对边平行(位置关系);
对边相等(数量关系);
四边相等
角
对角相等对角相等
四个角都是直角
对角相等对角相等
四个角都是直角
对角线
对角线互相平分对角线互相平分;
对角线相等。
对角线互相平分;
对角线互相垂直;
每一条对角线平分一组对角。
对角线互相平分;
对角线相等;
对角线互相垂直;
每一条对角线平分一组对角,即对角线与
边的夹角为450。
定边
两组对边分别平行的四边形;
两组对边分别相等的四边形;
一组平行且相等的四边形;
四条边都相等的四边形;
有一组邻边相等的平行四边形;
有一组邻边相等且有一个直角的平行四边形;
邻边相等的矩形;
四边相等四角相等的四边形;
角两组对角分别相等的四边形;
有一个角是直角的平行四边形;
三个角都是直角的四边形。
有一个角为直角的菱形;
可编辑范本
档可
编辑
改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]
可编辑范本。