EIGRP路由协议配置实验

一、实验目的

掌握EIGRP的配置

掌握EIGRP负载均衡的配置

掌握EIGRP中地址的手工汇总

二、实验内容与实验要求

实验内容、原理分析及具体实验要求。

实现网络的互连互通,从而实现信息的共享和传递。

R1和R2之间连接的两条线路形成负载均衡关系;

进行指定的地址手工汇总。

三、实验环境

实验所使用的设备名称及规格、网络结构图。

路由器3台

四、实验过程与分析

根据具体实验,记录、整理相应命令、运行结果等。

详细记录在实验过程中发生的故障和问题,并进行故障分析,说明故障排除的过程及方法。

1.在所有路由器上进行IP地址基本配置,并测试直连链路的连通性。

R1:

F0/0

Router>EN

Router#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#interface F0/0

Router(config-if)#ip address 21.21.21.1 255.255.255.0

Router(config-if)#no shut

%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up Router(config-if)#exit

S0/2/0

Router(config)#int s0/2/0

Router(config-if)#ip address 12.12.12.1 255.255.255.0

Router(config-if)#clock rate 64000

Router(config-if)#no shut

%LINK-5-CHANGED: Interface Serial0/2/0, changed state to down

Router(config-if)#exit

Lo1

Router(config)#int lo1

Router(config-if)#ip address 1.1.1.1 255.255.255.0

Router(config-if)#no shut

R2:

F0/0

Router>en

Router#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#int f0/0

Router(config-if)#ip address 21.21.21.2 255.255.255.0

Router(config-if)#no shut

%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

Router(config-if)#exit

S0/2/0

Router(config)#int s0/2/0

Router(config-if)#ip add 12.12.12.2 255.255.255.0

Router(config-if)#no shut

%LINK-5-CHANGED: Interface Serial0/2/0, changed state to up

S0/2/1

Router(config)#int s0/2/1

Router(config-if)#ip add 23.23.23.2 255.255.255.0

Router(config-if)#clock rate 64000

Router(config-if)#no shut

%LINK-5-CHANGED: Interface Serial0/2/1, changed state to up

Router(config-if)#

%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/2/1, changed state to up

Lo1

Router(config)#int lo 1

Router(config-if)#

%LINK-5-CHANGED: Interface Loopback1, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback1, changed state to up

Router(config-if)#ip add 2.2.2.2 255.255.255.0

Router(config-if)#no shut

Router(config-if)#exit

R3:

S0/2/0

Router>en

Router#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#int s0/2/0

Router(config-if)#ip address 23.23.23.3 255.255.255.0

Router(config-if)#no shut

%LINK-5-CHANGED: Interface Serial0/2/0, changed state to down

Router(config-if)#exit

Lo1

Router(config)#int lo 1

Router(config-if)#ip address 3.3.3.3 255.255.255.0

Router(config-if)#no shut

Router(config-if)#exit

测试连通性

R1 ping R2

Router>ping 12.12.12.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 12.12.12.2, timeout is 2 seconds: !!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 3/5/6 ms Router>ping 21.21.21.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 21.21.21.2, timeout is 2 seconds: .!!!!

Success rate is 80 percent (4/5), round-trip min/avg/max = 20/20/20 ms R3 ping R2

Router>ping 23.23.23.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 23.23.23.2, timeout is 2 seconds: !!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 20/21/26 ms 2.在各路由器上用eigrp进行配置

R1:

Router(config)#router eigrp 1

Router(config-router)#network 12.12.12.0 0.0.0.255

Router(config-router)#network 21.0.0.0

Router(config-router)#network 1.0.0.0

R2:

Router(config)#router eigrp 1

Router(config-router)#network 23.0.0.0

Router(config-router)#network 12.0.0.0

Router(config-router)#

%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 12.12.12.1 (Serial0/2/0) is up: new adjacency

Router(config-router)#network 21.0.0.0

Router(config-router)#

%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 21.21.21.1 (FastEthernet0/0) is up: new adjacency

Router(config-router)#network 2.0.0.0

R3:

Router(config)#router eigrp 1

Router(config-router)#network 3.0.0.0

Router(config-router)#network 23.0.0.0

Router(config-router)#

%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 23.23.23.2 (Serial0/2/0) is up: new adjacency

3.用show ip route命令检查路由是否正确,查看关键信息

R1

R2

R3

4.用show ip eigrp topology、show ip eigrp neighbor查看拓扑表和邻居表R1

R2

R3

5.关闭R1的f0/0,在R1上查看到达3.0.0.0/8的metric值,在R1上配置正确的variance

值,以达到不等价负载平衡(可以在s0/0接口上调整bandwidth值)。

R1

Router(config)#int f0/0

Router(config-if)#shutdown

Router(config-if)#exit

配置variance 值

Router(config)#router eigrp 1

Router(config-router)#variance 10

Router(config-router)#exit

6.在R2上关闭自动汇总,在R1、R2、R3上再次查看路由掩码的变化

Router(config)#router eigrp 1

Router(config-router)#no auto-summary

%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 21.21.21.1 (FastEthernet0/0) is up: new adjacency

%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 12.12.12.1 (Serial0/2/0) is up: new adjacency

%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 23.23.23.3 (Serial0/2/1) is up: new adjacency

7.在R2上s0/2/1接口上进行手工汇总,汇总地址为:12.12.0.0 255.255.0.0,在R3上查

看路由的变化。

Router(config)#int s0/2/1

Router(config-if)#ip summary-address eigrp 1 12.12.0.0 255.255.255.0

R3

EIGRP和RIP单播实验

EIGRP和RIP单播实验 试验拓扑图如下: 根据拓扑图,做好相应基本配置并启用EIGRP协议 一 RA(config)#router eigrp 99 RA(config-router)#passive-int s1/0 *Aug 8 03:25:24.827: %DUAL-5-NBRCHANGE: IP-EIGRP(0) 99: Neighbor 12.1.1.2 (Seria l1/0) is down: interface passive RA#show ip eig nei IP-EIGRP neighbors for process 99 将RTA的s1/0接口被动掉并查看邻居表,发现此时邻居表为空,即A丢失与B的邻居关系,为了得到更详细的信息,查看一下Hello包的发送情况RA#debug eigrp packets EIGRP Packets debugging is on (UPDATE, REQUEST, QUERY, REPLY, HELLO, IPXSAP, PROBE, ACK, STUB, SIAQUE RY, SIAREPLY) RA# *Aug 8 03:27:51.179: EIGRP: Sending HELLO on Loopback0 *Aug 8 03:27:51.179: AS 99, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0 *Aug 8 03:27:51.179: EIGRP: Received HELLO on Loopback0 nbr 1.1.1.1 *Aug 8 03:27:51.179: AS 99, Flags 0x0, Seq 0/0 idbQ 0/0 *Aug 8 03:27:51.179: EIGRP: Packet from ourselves ignored RA# *Aug 8 03:27:55.747: EIGRP: Sending HELLO on Loopback0 *Aug 8 03:27:55.747: AS 99, Flags 0x0, Seq 0/0 idbQ 0/0 iidbQ un/rely 0/0 *Aug 8 03:27:55.747: EIGRP: Received HELLO on Loopback0 nbr 1.1.1.1 *Aug 8 03:27:55.747: AS 99, Flags 0x0, Seq 0/0 idbQ 0/0 *Aug 8 03:27:55.747: EIGRP: Packet from ourselves ignored 发现此时RTA在接口s1/0上既不能发送也不能接受Hello包,测试一下RTA到RTB环回接口的连通性 RA#ping 2.2.2.2 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 2.2.2.2, timeout is 2 seconds: .....

CISCO核心 Vlan 配置实例

CISCO Vlan配置实例 如何配置三层交换机创建VLAN 以下的介绍都是基于Cisco交换机的VLAN。Cisco的VLAN实现通常是以端口为中心的。与节点相连的端口将确定它所驻留的VLAN。将端口分配给VLAN的方式有两种,分别是静态的和动态的。形成静态VLAN的过程是将端口强制性地分配给VLAN的过程。即我们先在VTP (VLAN Trunking Protocol)Server上建立VLAN,然后将每个端口分配给相应的VLAN的过程。这是我们创建VLAN最常用的方法。动态VLAN形成很简单,由端口决定自己属于哪个VLAN。即我们先建立一个VMPS(VLAN Membership Policy Server)VLAN管理策略服务器,里面包含一个文本文件,文件中存有与VLAN映射的MAC地址表。交换机根据这个映射表决定将端口分配给何种VLAN。这种方法有很大的优势,但是创建数据库是一项非常艰苦而且非常繁琐的工作。下面以实例说明如何在一个典型的快速以太局域网中实现VLAN。所谓典型的局域网就是指由一台具备三层交换功能的核心交换机接几台分支交换机(不一定具备三层交换能力)。我们假设核心交换机名称为:COM;分支交换机分别为:PAR1、PAR2、PAR3……,分别通过Port 1的光线模块与核心交换机相连;并且假设VLAN名称分别为COUNTER、MARKET、MANAGING…… 设置VTP DOMAIN VTP DOMAIN 称为管理域。交换VTP更新信息的所有交换机必须配置为相同的管理域。如果所有的交换机都以中继线相连,那么只要在核心交换机上设置一个管理域,网络上所有的交换机都加入该域,这样管理域里所有的交换机就能够了解彼此的VLAN列表。COM#vlan database 进入VLAN配置模式 COM(vlan)#vtp domain COM 设置VTP管理域名称COM COM(vlan)#vtp server 设置交换机为服务器模式 PAR1#vlan database 进入VLAN配置模式 PAR1(vlan)#vtp domain COM 设置VTP管理域名称COM PAR1(vlan)#vtp Client 设置交换机为客户端模式 PAR2#vlan database 进入VLAN配置模式 PAR2(vlan)#vtp domain COM 设置VTP管理域名称COM PAR2(vlan)#vtp Client 设置交换机为客户端模式 PAR3#vlan database 进入VLAN配置模式 PAR3(vlan)#vtp domain COM 设置VTP管理域名称COM PAR3(vlan)#vtp Client 设置交换机为客户端模式 注意:这里设置交换机为Server模式是指允许在本交换机上创建、修改、删除VLAN及其他一些对整个VTP域的配置参数,同步本VTP域中其他交换机传递来的最新的VLAN信息;Client 模式是指本交换机不能创建、删除、修改VLAN配置,也不能在NVRAM中存储VLAN配置,但可以同步由本VTP域中其他交换机传递来的VLAN信息。 配置中继为了保证管理域能够覆盖所有的分支交换机,必须配置中继。Cisco交换机能够支持任何介质作为中继线,为了实现中继可使用其特有的ISL标签。ISL(Inter-Switch Link)是一个在交换机之间、交换机与路由器之间及交换机与服务器之间传递多个VLAN信息及VLAN数据流的协议,通过在交换机直接相连的端口配置ISL封装,即可跨越交换机进行整个网络的VLAN分配和进行配置。 在核心交换机端配置如下: COM(config)#interface gigabitEthernet 2/1 COM(config-if)#switchport

EIGRP协议

<EIGRP(Enhanced Interior Gateway Routing Protocol )>增强的内部网关路由协议 EIGRP的特点: ·EIGRP是Cisco私有的路由协议,采用DUAL(扩散更新算法)。·EIGRP属于IGP,是Hybrid协议,基于IP Pro 88。 ·组播、单播更新,组播地址224.0.0.10 ·支持等价/不等价的负载均衡。 ·支持VLSM,手工汇总。 ·支持多种网络协议(IP/IPX)。 EIGRP为各种协议都维护的3张表: 1)Neighbor Table: 保存直连的邻居的IP地址,确保直接邻居之间能够双向通信。 2)Topology Table: 拓扑表中存放着前往目标地址的所有路由。 3)Routing Table: 从拓扑表中选择到达目标地址的最佳路由放入路由表。 DUAL算法: 扩散更新算法,也叫弥散更新算法 AD(通告距离)-------------邻居通告的到达目的的Metric FD(可行距离)-------------本路由器到达目的的Metric successor路由 -------------具有最优Metric值的路由 Feasible successor路由-----符合条件的次优路由 次优路由成为Feasible Successor的条件:也叫可行性条件 FD of Best Route > AD of Second best Route (Successor)

为什么AD

路由协议选择OSPFvsEIGRP-V3.1

目录Table of Contents 1路由协议规划选择原则 (4) 2OSPF vs. EIGRP路由协议特性比较 (5) 2.1OSPF协议 (5) 2.1.1OSPF协议简介 (5) 2.1.2OSPF协议特点 (6) 2.2EIGRP协议 (8) 2.2.1EIGRP协议简介 (8) 2.2.2EIGRP协议特点 (8) 2.3OSPF和EIGRP的比较 (9) 2.3.1OSPF的缺点 (10) 2.3.2EIGRP的缺点 (10) 2.3.3OSPF与EIGRP的比较总结 (11) 2.4从EIGRP网络到OSPF网络的迁移 (12)

表目录List of Tables 表1 OSPF和EIGRP比较总结 (12)

路由协议选择:从EIGRP到OSPF 关键词Key words: OSPF,EIGRP,SPF,DUAL 摘要Abstract: 本文首先介绍了在部署网络时,选择路由协议需要注意的地方,然后分别介绍了两种常用的路由协议EIGRP和OSPF,并对其特点和优缺点进行了技术上的比较,最后给出了一个已经部署了EIGRP协议的网络平滑迁移到OSPF的步骤。 缩略语清单List of abbreviations:

1 路由协议规划选择原则 在互联网飞速发展的今天,TCP/IP协议已经成为数据网络互联的主流协议。各种网络上运行的大大小小各种型号路由器,承担着控制本世纪或许最重要信息的流量,而这成百上千台路由器间的协同工作,离不开路由协议。因此在大型网络的规划构建中,选择适当的路由协议是非常重要的。目前常用的单播路由协议有多种,如RIP、OSPF、IS-IS、BGP,以及Cisco私有的IGRP/EIGRP协议等。不同的路由协议有各自的特点,分别适用于不同的条件之下。 互连是网络构建最基础和最本质的要求,选择适当的路由协议需要以此为目标,并综合考虑以下因素: 1)路由协议的开放性:开放性的路由协议保证了不同厂商都能对本路由协议进行支持,这不 仅保证了目前网络的互通性,而且保证了将来网络发展的扩充能力和用户构建网络时的设备选择空间,这点在很多情况下是需要重点考虑的。 2)网络的拓扑结构:网络拓扑结构直接影响协议的选择。例如RIP这样比较简单的路由协议 不支持分层次的路由信息计算,对复杂网络的适应能力较弱。对于比较复杂的网络,需要使用处理能力更强的协议,如OSPF、EIGRP等。 3)网络节点数量:不同的协议对于网络规模的支持能力有所不同,需要按需求适当选择,有 时还需要采用一些特殊技术解决适应网络规模方面的扩展性问题。农发展银行全国网络节点较多,路由信息也非常多,而且网络状况会千变万化,将导致路由刷新相对频繁,所以对路由协议的性能提出很高的要求。如能支持的节点数、路由选径是否最佳、路由算法必须具有鲁棒性、快速收敛性、灵活性等。 4)网络间的互通及关联要求:通过划分成相对独立管理的网络区域,可以减少网络间的相关 性,有利于网络的管理和扩展。可通过划分区域等形式,路由协议要能支持减少网络间的相关性。必要时还要考虑路由信息安全因素和对路由交换的限制策略管理。 5)管理和安全上的要求:通常要求在可以满足功能需求的情况下尽可能简化管理。但有时为 了实现比较完善的管理功能或为了满足安全的需要,例如对路由的传播和选用提出一些人为的要求,就需要路由协议对策略的支持。 根据以上原则,现在各种大型网络构建中,为节省投资、保证网络的持续扩展性,都在使

CCNP级别的EIGRP综合实验2

EIGRP综合实验2 配置要点 ●帧中继交换机以及PVC的配置 ●帧中继多点子接口配置 ●帧中继点对点子接口配置 ●EIGRP基本配置(包括静态邻居的配置) ●NTP配置 ●EIGRP认证配置 实验拓扑 配置概述 ●在FRSW上配置帧中继交换机,PVC的设计如下: ?R41--S1/0--S1/0.12------412------S1/0--FRSW--S1/1------421------S1/0--R42; ?R41--S1/0--S1/0.12------415------S1/0--FRSW--S1/3------451------S1/0--R45; ?R41--S1/0--S1/0.14------414------S1/0--FRSW--S1/2------441------S1/0--R44;

●各站点的IP地址设计如下: ?R41--S1/0--S1/0.12--172.14.12.41/24------172.14.12.42/24--S1/0--R42; ?------172.14.12.45/24--S1/0--R45; ?R41--S1/0--S1/0.14--172.14.14.41/24------172.14.14.44/24--S1/0--R44; ●EIGRP的基本配置,包括静态邻居的配置; ●NTP的配置: ?把R41配置为NTP的服务器; ?把R42、R45和R44配置为NTP的客户端 ●以R41为中心与其他各个站点(R42、R45和R44)配置EIGRP认证。

FRSW3(config-if)#frame intf-type dce FRSW3(config-if)#frame route 441 int s 1/0 414 FRSW3(config-if)#no sh FRSW3(config-if)#^Z FRSW3# 配完之后看看接口 继续点对点子接口的配置 R41(config)#int s 1/0.14 ? multipoint Treat as a multipoint link point-to-point Treat as a point-to-point link

Cisco路由器静态路由配置实例

Cisco路由器静态路由配置实例 初学路由器的配置,下面就用Boson NetSim for CCNP 6.1模拟软件进行配置…这篇文章主要是对路由表进行静态路由配置… 拓扑结构图如下: 下面开始: 1.对Router1进行配置,配置命令如下: Router>enable进入特权模式 Router#configure terminal 进入配置模式 Enter configuration commands, one per line. End with CNTL/Z. Router(config)#interface ethernet0 进入E0端口模式

Router(config-if)#ip address 192.168.1.1 255.255.255.0 配置IP地址Router(config-if)#no shutdown 激活该端口 %LINK-3-UPDOWN: Interface Ethernet0, changed state to up Router(config-if)#exit 返回上一级 Router(config)#interface serial0 进入S0 端口模式 Router(config-if)#ip address 192.168.2.1 255.255.255.0 Router(config-if)#no shutdown %LINK-3-UPDOWN: Interface Serial0, changed state to up %LINK-3-UPDOWN: Interface Serial0, changed state to down %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0, changed state to down Router(config-if)#clock rate 6400 注意这里是设置时钟..如有不明白,可以打”?”.但是系统给的参数是 64000 .而我们要配置成 6400 ..可能是模拟软件的一个小BUG 吧!现在是在模拟软件中,如果是真实环境,我们要参照说 明书..按照说明书来配置参数…. Router(config-if)#exit Router(config)#ip route 192.168.3.0 255.255.255.0 192.168.2.2 配置路由表

EIGRP 路由协议的配置

EIGRP 路由协议的配置 一.实验目的 掌握路由器EIGRP 路由协议的配置方法。 二.实验要点 通过对路由器A和路由器B启用EIGRP路由协议,使路由器A可Ping通路由器B所连的各个网络, 反之,亦然。 三.实验设备 路由器Cisco 2621两台,交换机Cisco 2950两台,带有网卡的工作站PC 至少两台。 四.实验环境 S0/0:10.0.0.1/24 S0/0:10.0.0.2/24 F0/0:192.168.0.1/24 F0/0:192.168.1.1/24 Host A Host B IP Address:192.168.0.2/24 IP Address:192.168.1.2/24 Default Gateway:192.168.0.1 Default Gateway:192.168.1.1 图13 EIGRP 路由协议的配置 五.实验步骤 1. 如图对路由器A 及路由器B 的各个接口配置好IP地址 l 在路由器A (假设为DCE 端)上 router>en router#conf t

router(config)#hostname RouterA RouterA(config)#int s0/0 RouterA(config-if)#ip add 10.0.0.1 255.255.255.0 RouterA(config-if)#cl ra 64000 RouterA(config-if)#no sh RouterA(config)#int f0/0 RouterA(config-if)#ip add 192.168.0.1 255.255.255.0 RouterA(config-if)#no sh RouterA(config-if)#exit l 在路由器B (假设为DTE 端)上 router>en router#conf t router(config)#hostname RouterB RouterB(config)#int s0/0 RouterB(config-if)#ip add 10.0.0.2 255.255.255.0 RouterB(config-if)#no sh RouterB(config)#int f0/0 RouterB(config-if)#ip add 192. 168.1.1 255.255.255.0 RouterB(config-if)#no sh RouterB(config-if)#exit 实验结果: a. 在路由器A 上是否能ping 通路由器B 的串口S0/0 (10.0.0.2) b. 在路由器A 上是否能ping 通路由器B 的以太口F0/0 (192.168.1.1) 2. 在路由器A 和路由器B 上分别配置EIGRP 路由协议 在路由器A 上: RouterA (config)#router eigrp 100 RouterA(config-router)# net 10.0.0.0 RouterA(config-router)# net 192.168.0.0 在路由器B 上: RouterB (config)# router eigrp 100 RouterB(config-router)# net 10.0.0.0 RouterB(config-router)# net 192.168.1.0 实验结果: a. 在路由器A 上是否能ping 通路由器B 的串口S0/0 (10.0.0.2) b. 在路由器A 上是否能ping 通路由器B 的以太口F0/0

OSPF与EIGRP协议的路由重分布

各个路由器的配置(要求在Router0显示是E1的类型) Router0 Router>en Router#conf t Router(config)#int lo0 Router(config-if)#ip add 1.1.1.1 255.255.255.0 Router(config-if)#exit Router(config)#int s 0/0 Router(config-if)#ip add 192.168.1.1 255.255.255.0 Router(config-if)#no shut Router(config-if)#exit Router(config)#router ospf 1 Router(config-router)#net 192.168.1.0 0.0.0.255 a 0

Router(config-router)#end Router1 Router>en Router#conf t Router(config)#int lo0 Router(config-if)#ip add 2.2.2.2 255.255.255.0 Router(config-if)#exit Router(config)#int s0/0 Router(config-if)#ip add 192.168.1.2 255.255.255.0 Router(config-if)#no shut Router(config-if)#int s0/1 Router(config-if)#ip add 192.168.2.1 255.255.255.0 Router(config-if)#no shut Router(config-if)#clock rate 64000 Router(config-if)#exit Router(config)#router ospf 1 Router(config-router)#net 192.168.1.0 0.0.0.255 a 0 Router(config-router)#net 2.2.2.0 0.0.0.255 a 0 Router(config-router)#redistribute eigrp 1 metric-type 1(类型1) Router(config-router)#exit Router(config)#router eigrp 1

EIGRP协议word版本

E I G R P协议

EIGRP EIGRP简单实例 EIGRP:Enhanced Interior Gateway Routing Protocol 即增强网关内部路由线路协议。也翻译为加强型内部网关路由协议。 EIGRP是Cisco公司的私有 协议。Cisco公司是该协议的发明者和唯一具备该协议解释和修改权的厂商。EIGRP结合了链路状态和距离矢量型路由选择协议的Cisco专用协议,采用弥 散修正算法(DUAL)来实现快速收敛,可以不发送定期的路由更新信息以减少带宽的占用,支持Appletalk、IP、Novell和NetWare等多种网络层协议。EIGRP路由协议简介 是Cisco的私有路由协议,它综合了距离矢量和链路状态2者的优点,它的特点包括: 1.快速收敛 链路状态包(Link-State Packet,LSP)的转发是不依靠路由计算的,所以大型网络可以较为快速的进行收敛.它只宣告链路和链路状态,而不宣告路由,所以即使链路发生了变化,不会引起该链路的路由被宣告.但是链路状态路由协议使用的是Dijkstra算法,该算法比较复杂,并且较占CPU和内存资源和 其他路由协议单独计算路由相比,链路状态路由协议采用种扩散计算(diffusingcomputations ),通过多个路由器并行的记性路由计算,这样就可以在无环路产生的情况下快速的收敛.

2.减少带宽占用 EIGRP不作周期性的更新,它只在路由的路径和度发生变化以后做部分更新.当路径信息改变以后,DUAL只发送那条路由信息改变了的更新,而不是发 送整个路由表.和更新传输到一个区域内的所有路由器上的链路状态路由协 议相比,DUAL只发送更新给需要该更新信息的路由器。在WAN低速链路 上,EIGRP可能会占用大量带宽,默认只占用链路带宽50%,之后发布的IOS允许使用命令ip bandwidth-percent eigrp来修改这一默认值 . 3.支持多种网络层协议 EIGRP通过使用“协议相关模块”(即protocol- dependentmodule),可以支持IPX,ApplleTalk,IP,IPv6和NovellNetware等协议. 4.无缝连接数据链路层协议和拓扑结构 EIGRP不要求对OSI参考模型的层2协议做特别的配置.不像OSPF,OSPF 对不同的层2协议要做不同配置,比如以太网和帧中继,EIGRP能够有效的工作在LAN和WAN中,而且EIGRP保证网络不会产生环路(loop-free);而且配置起来很简单;支持VLSM;它使用多播和单播,不使用广播,这样做节约了带宽;它使用和IGRP一样的度的算法,但是是32位长的;它可以做非等价的路径的负载平衡. 编辑本段EIGRP的四个组件

EIGRP综合实验

基础知识点: EIGRP的metric计算 有K1(带宽)、K2(负载)、K3(延迟)、K4(可靠性)、K5(MTU)五个参数,默认情况下k值如下:K1=K3=1;K2=K4=K5=0 metric=256*(10000000/K1*bandwidth(kbit/s)+ total delay/10) BW和DLY值都可以在接口模式下手工指定,使用delay值时是tens of microseconds,在show interface 时实际值要乘以10. 使用metric weights 可以修改k值;但同一自制系统内的所有K值必须一致。 BW和DLY值可以使用show interface命令查看如 Ethernet0/1 is up, line protocol is up Hardware is AmdP2, address is cc00.0ffc.0001 (bia cc00.0ffc.0001) Internet address is 192.168.4.1/24 MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive set (10 sec) ARP type: ARPA, ARP Timeout 04:00:00 Last input 00:00:02, output 00:00:01, output hang never Last clearing of "show interface" counters never Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 816 packets input, 75702 bytes, 0 no buffer Received 808 broadcasts, 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 input packets with dribble condition detected 1172 packets output, 97655 bytes, 0 underruns 0 output errors, 0 collisions, 1 interface resets 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier 0 output buffer failures, 0 output buffers swapped out total delay可以通过show ip route x.x.x.x 查看到:如 RC#show ip route 192.168.3.0 Routing entry for 192.168.3.0/24 Known via "eigrp 100", distance 90, metric 307200, type internal Redistributing via eigrp 100 Last update from 192.168.4.2 on Ethernet0/1, 00:36:32 ago

RIPv2配置实例

RIPv2配置实例 1.用户需求: 某企业总部计划和它的2个分公司联网。计划采用2条数字链路连接总部和分公司,并要求总部和分公司的IP网络段不能相同,并且划分广播域隔离广播;不采用三层交换设备;两个分公司联网后能够互相访问;总部和分公司联网后路由器能够自动学习。 2.方案分析与解决: 不采用三层交换技术,但要求采用数字链路,可以考虑用路由器。 3.网络拓扑: 4.规划网络地址: PC1:192.168.3.2 255.255.255.0 192.168.3.1 PC2:192.168.3.3 255.255.255.0 192.168.3.1 PC3:192.168.4.2 255.255.255.0 192.168.4.1 PC4:192.168.5.2 255.255.255.0 192.168.5.1 总部路由器A:F0/0:192.168.3.1 255.255.255.0 S1/0:192.168.1.1 255.255.255.0 S1/1:192.168.2.1 255.255.255.0 分公司路由器B:F0/0:192.168.4.1 255.255.255.0 S1/0:192.168.1.2 255.255.255.0 分公司路由器C:F0/0:192.168.5.1 255.255.255.0 S1/1:192.168.2.2 255.255.255.0 5.路由器配置: 总部A: Router>en Router#conf t Enter configuration commands, one per line. End with CNTL/Z. Router(config)#hostname routerA

EIGRP协议

增强的内部网关路由协议 ?EIGRP是Cisco私有的路由协议,采用DUAL (扩散更新算法)?EIGRP属于 IGP,是 Hybrid协议,基于 IP Pro 88。 ?组播、单播更新,组播地址224.0.0.10 ?支持等价/不等价的负载均衡。 -支持VLSM,手工汇总。 -支持多种网络协议(IP/IPX ) EIGRP为各种协议都维护的3张表: 1)Neighbor Table: 保存直连的邻居的IP地址,确保直接邻居之间能够双向通信 2)Topology Table: 拓扑表中存放着前往目标地址的所有路由。 3)Routing Table: 从拓扑表中选择到达目标地址的最佳路由放入路由表。 扩散更新算法,也叫弥散更新算法

? The DUAL finite state machine decision process is a follows: -Tracks all routes advertised by neighbors 一Selects loop-free path using a successor and remembers any feasible successors -If the successor is lost f uses a feasible successor —If there is no feasible successor, queries neighbors and recomputes a new successor AD (通告距离)--------- 邻居通告的到达目的的 Metric FD (可行距离)--------- 本路由器到达目的的 Metric success(路由------ 具有最优 Metric值的路由 Feasible success路由——符合条件的次优路由 次优路由成为Feasible Success的条件:也叫可行性条件 FD of Best Route > AD of Seco nd best Route (Successor) 为什么AD

EIGRP基本配置实验

EIGRP基本配置实验 一、实验目的 1.掌握EIGRP基本原理 2.掌握EIGRP基本配置 3.掌握EIGRP的验证配置 4.了解EIGRP的简单测试 二、实验拓扑图 三、实验内容 -配置IP地址实现直连互通 -在所有的路由器上配置EIGRP ,AS号位100, -查看R2的路由表和邻居表,并分析路由表中EIGRP路由条目的度量值的计算过程

-R1-R2之间启用EIGRP密文验证,密钥位KEY 12,KEY-STRING-QM_CCNA *若在路由表中出现汇总路由,建议在每一台路由器上配置 R1(config-if)#router eigrp 1 R1(config-router)#no auto-summary 四、实验具体操作截图 1.配置IP地址实现直连互通 (1)为R1配置IP地址 (2)为R2配置IP地址

(3)为R3配置IP地址 (4)验证是否直连互通 结果:可以直连互通 2.在所有的路由器上配置EIGRP ,AS号位100

3.查看R2的路由表和邻居表,并分析路由表中EIGRP路由条目的 度量值的计算过程。 (1)查看R2的路由表和邻居表 (2)分析路由表中路由条目的度量值的计算过程 Metric=[10^7/BW+延时总和/10US]*256 在R2的路由表中,根据度量值计算公式: Metric=[10^7/100+(5000+100)/10US]*256=156160 其中f口的最小带宽是100M,总延时为Loopback口的延时5000加上经过路由器F口的延时100之和。 注:对于计算度量值时,才开始总是算不对,将loopback口的延时当做是100,怎么算都不对,百思不得其解,最后上网查找,得知loopback口环路默认延时是5000,最终计算出的度量值与路由表中的度量值相等。

eigrp命令

EIGRP命令列表 ---------------- ◆{Router(config)#router eigrp [AS号]} 开启EIGRP路由协议 ◆{Router(config-router)#network [子网号]} 配置EIGRP子网 ◆{Router(config-router)#network [子网号] [掩码]} 配置EIGRP无类子网 ◆{no auto-summary} 关闭有类自动汇总 ◆{ip summary-address [AS号] [IP地址] [掩码]} 手动配置汇总 ◆{eigrp stub} 配置一个末梢路由 ◆{variance} 配置一个不平衡的均衡负载 ◆{ip hello-interval eigrp [AS号] [时间/s]} 改变Hello包发送频率 ◆{ip hold-time eigrp [AS号] [时间/s]} 改变Hold-Time长度 ◆{bandwidth} 改变一个接口上的带宽,最大化带宽将限制它自身的通路 ◆{ip bandwidth-percent eigrp [AS号]} 改变EIGRP通路使用的带宽。默认为50% ◆{Router(config)#interface s0 Router(config-if)#ip summary-address eigrp [AS号] [IP地址] [掩码]} 手工配置汇总 ◆{Router(config-router)#eigrp stub [receive-only | connected | redistributed | static | summary]} 配置末梢路由 ◆{Router(config-route)#variance multiplier} 配置不等开销负载均衡 ◆{Rout er(config-if)#ip hello-interval eigrp [AS号] [时间]} 配置Hello计时器 ◆{Router(config-if)#ip hold-time eigrp [AS号] [时间]} 配置Hold计时器 ◆{Router(config-if)#ip authentication mode eigrp [AS号] md5} 起用EIGRP的MD5认证 ◆{Router(config-if)#ip anthentication key-chain eigrp [AS号] [chain-name]} 配置MD5密匙 ◆{Router(config)#key chain [chain-name] Router(config-if)#key [key-id] Router(config-keychain-key)#key-string [key]}

思科设备eigrp协议配置

本次讲解路由器eigrp协议的配置: [1]EIGRP与IGRP在network命令的区别在于多了wildcard-mask参数,这是通配符掩码。如果网络定义使用的是默认掩码,则wildcard-mask参数可以省略:如果网络定义使用的不是默认掩码,则wildcard-mask参数必须标明。 [2]EIGRP在处理有类别(A、B、C类)网络地址时,会自动地汇总路由。这意味着即使规定RTC 连接的是10.0.3.0/24这个网络,但EIGRP仍然会发布其连接整个A类网络10.0.0.0。在EIGRP中,路由自动汇总功能默认是有效的。存在不连续子网的网络中,通常需要用no auto-summary命令来关闭该功能。 本例配置模型图 命令行: RA配置命令: Router> Router>enable Router#conf t

Enter configuration commands, one per line. End with CNTL/Z. ^ Router(config)#router eigrp 100 //使用eigrp协议。使用系统自制号100 Router(config-router)#network 202.1.1.5 0.0.0.3 //指定与该路由器直接相连的网络Router(config-router)#network 192.1.1.0 0.0.0.255 //指定与该路由器直接相连的网络Router(config-router)#no auto-summary //关闭自动汇总功能 Router(config-router)#exit Router(config)#int s1/0 Router(config-if)#ip address 202.1.1.5 255.255.255.252 //依照图配置IP Router(config-if)#clock rate 64000 //使用时钟频率 Router(config-if)#bandwidth 64 Router(config-if)#no shutdown %LINK-5-CHANGED: Interface Serial1/0, changed state to down Router(config-if)#exit Router(config)#int f0/0 //依照图配置IP Router(config-if)#ip address 192.1.1.1 255.255.255.0 Router(config-if)#no shutdown %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up Router(config-if)#exit Router(config)#exit Router# %SYS-5-CONFIG_I: Configured from console by console Router#wr Building configuration... [OK] Router#

相关文档
最新文档