63塔吊十字形基础的计算

63塔吊十字形基础的计算
63塔吊十字形基础的计算

十字形基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。

一. 参数信息

本计算书依据塔吊规范JGJ187-2009进行验算。

二. 荷载计算

1. 自重荷载及起重荷载

1) 塔机自重标准值

F k1=540kN

2) 基础以及覆土自重标准值

G k=(2×8×1.3-1.3×1.3-4×0.5×0×0)×0.9×25=429.98kN

3) 起重荷载标准值

F qk=60kN

2. 风荷载计算

1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值

a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)

W k=0.8×1.59×1.95×1.245×0.2=0.62kN/m2

q sk=1.2×0.62×0.35×2.5=0.65kN/m

b. 塔机所受风荷载水平合力标准值

F vk=q sk×H=0.65×35.00=22.70kN

c. 基础顶面风荷载产生的力矩标准值

M sk=0.5F vk×H=0.5×22.70×35.00=397.21kN.m

2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值

a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.30kN/m2)

W k=0.8×1.62×1.95×1.245×0.30=0.94kN/m2

q sk=1.2×0.94×0.35×2.5=0.99kN/m

b. 塔机所受风荷载水平合力标准值

F vk=q sk×H=0.99×35.00=34.69kN

c. 基础顶面风荷载产生的力矩标准值

M sk=0.5F vk×H=0.5×34.69×35.00=607.05kN.m

3. 塔机的倾覆力矩

工作状态下,标准组合的倾覆力矩标准值

M k=-200+0.9×(890+397.21)=958.49kN.m

非工作状态下,标准组合的倾覆力矩标准值

M k=-200+607.05=407.05kN.m

三. 地基承载力计算

依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算1. 荷载计算

梁的计算简图如下:(图中 B=8000mm,L1=3540mm,L2=2233mm)

交叉梁基础底面积: A=2×8×1.3-1.3×1.3-4×0.5×0×0=19.11m2条基加腋基础底面积:A0=8×1.3+(1.3+1.3+0×2)×0×2=10.4m2

塔机工作状态下:

当轴心荷载作用时:

=(600+429.98)/19.11=53.90kN/m2

当偏心荷载作用时:

=(600+429.98)×10.4/19.11=560.53kN

=(958.49+22.70×0.9)/560.53=1.75m≤b/4=2.00m满足要求! 由于偏心距e>b/6=1.33m,所以按大偏心计算:

=2×560.53/[3×1.3×(4-1.75)]=127.55kN/m2

由于梁底荷载为三角形荷载,所以按下式计算P1:

=127.55×[3×(4-1.75)-2.2325]/[3×(4-1.75)]=85.43kN/m2塔机非工作状态下:

当轴心荷载作用时:

=(540+429.98)/19.11=50.76kN/m2

当偏心荷载作用时:

=(540.00+429.98)×10.4/19.11=527.88kN

=(407.05+34.69×0.9)/527.88=0.83m≤b/4=2.00m满足要求! 由于偏心距e≤b/6=1.33m,所以按小偏心计算:

=527.88/(8×1.3)+(407.05+34.69×0.9)/13.87=82.36kN/m2

=527.88/(8×1.3)-(407.05+34.69×0.9)/13.87=19.15kN/m2

由于梁底荷载为梯形荷载,所以按下式计算P1:

=19.15+(8-2.2325)×(82.36-19.15)/8=64.72kN/m2

四. 基础配筋计算

比较上述两种工况的计算,可知本案塔机在工作状态时,基础截面弯矩最大,故应按工作状态的荷载组合进行基础设计

1. 基础弯矩计算:

基础自重在基础底面产生的压力标准值

P kG=G k/A=429.98/19.11=22.5kN/m2

基底均布荷载设计值

=1.35×[(127.55+85.43)/2-22.50]×1.3=147.41 kN/m

1-1截面弯矩设计值

M1=q1×L22/2=147.41×2.232/2=367.34kN.m

2. 纵向钢筋面积计算

依据《混凝土结构设计规范》GB 50010-2010

式中α1──系数,当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,α1取为0.94,期间按线性内插法确定

f c──混凝土抗压强度设计值

h0──承台的计算高度

经过计算得αs=367.34×106/(1.00×16.70×1.30×103×8502)=0.023419 ξ=1-(1-2×0.023419)0.5=0.023700

γs=1-0.023700/2=0.988150

As=367.34×106/(0.988150×850×360.00)=1214.86mm2

实际选用钢筋为:钢筋直径20mm,钢筋根数为4

十字梁基础实际配筋面积为A s0 = 3.14×202/4 × 4=1257mm2

实际配筋面积大于计算需要配筋面积,满足要求!

3. 基础箍筋面积计算

最大剪力设计值:

V max=q1×L2=147.41×2.23=329.09kN

依据《混凝土结构设计规范》(GB50010-2010)的第6.3.3条。

我们考虑承台配置箍筋的情况,斜截面受剪承载力满足下面公式:

式中βh──承台受冲切承载力截面高度影响系数;βh=0.985

b──承台的计算宽度,b=1300mm

h0──承台计算截面处的计算高度,h0=850mm

f y──钢筋受拉强度设计值,f y=360N/mm2

S──箍筋的间距,S=200mm

经过计算基础已满足抗剪要求,只需构造配箍筋!

五. 地基基础承载力验算

修正后的地基承载力特征值为:f a=160.00kPa

轴心荷载作用:由于 f a≥P k=53.90kPa 所以满足要求!

偏心荷载作用:由于1.2×f a≥P kmax=127.55kPa 所以满足要求!塔吊计算满足要求!

塔吊基础计算书模板

假设塔吊型号:6010/23B,最大4绳起重荷载10t; 塔吊无附墙起重最大高度H=59.8m,塔身宽度B=2.0m; 承台基础混凝土强度:C35, 厚度Hc=1.35m,承台长度Lc或宽度Bc=6.25m; 承台钢筋级别:Ⅱ级,箍筋间距S=200mm,保护层厚度:50mm; 承台桩假设选用4根φ400×95(PHC-A)预应力管桩,已知每1根桩的承载力特征值为1700KN; 参考塔吊说明书可知: 塔吊处于工作状态(ES)时: 最大弯矩Mmax=2344.81KN·m 最大压力Pmax=749.9KN 塔吊处于非工作状态(HS)时: 最大弯矩Mmax=4646.86KN·m 最大压力Pmax=694.9KN 2、对塔吊基础抗倾覆弯矩的验算 取塔吊最大倾覆力矩,在工作状态(HS)时:Mmax=4646.86KN·m,计算简图如下:

2.1 x、y向,受力简图如下:

以塔吊中心O点为基点计算: M1=M=4646.86KN·m M2=2.125·R B M 2=M1 ·R B=4646.86 B=2097.9KN <2×1800=3600KN(满足要求) 2.2 z向,受力简图如下: 以塔吊中心O点为基点计算: M1=M=4646.86KN·m M2=3·R B

M R B=4646.86 <1800KN(满足要求) 3、承台桩基础设计 3.1 塔吊基础承台顶面的竖向力与弯矩计算 计算简图如下: 上图中X轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。 3.1.1 桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第5.1.1条) 其中 n——单桩个数,n=4; F——作用于桩基承台顶面的竖向力设计值,等同于前面塔吊说明书中的P;

塔吊基础设计计算书(桩基础)

塔吊基础设计计算书(桩基础) 一、编制依据 1、《建筑地基基础设计规范》(GB50007-2002 ); 2、《建筑地基基础设计规范》(DBJ 15-31-2003 ); 3、《建筑结构荷载规范》(GB 50009-2001 ); 4、《混凝土结构设计规范》(GB 50010-2002 ); 5、《简明钢筋混凝土结构计算手册》; 6、《地基及基础》(高等学校教学用书)(第二版); 7、建筑、结构设计图纸; 8、塔式起重机使用说明书; 9、岩土工程勘察报告。 二、设计依据 1、塔吊资料 根据施工现场场地条件及周边环境情况,选用1台QTZ160 自升塔式起重机。塔身自由高度56m,最大吊运高度为203米,最大起重量为10t,塔身尺寸为1.70m x 1.70m,臂长65m。 2、岩土力学资料,(BZK8孔) 3、塔吊基础受力情况

基础顶面所受垂直力 基础顶面所受水平力 基础所受倾翻力矩 基础所受扭矩 三、基础设计主要参数 基础桩: 4①800钻孔桩, 桩顶标高-2.90m ,桩长为15.96m ,桩端入微风化0.5m 。 承台尺寸:平面4.0 X 4.0m ,厚度h=1.50m ,桩与承台 中心距离为1.20m ;桩身混凝土等级:C25。 承台混凝土等级:C35 ; 承台面标高:-1.50m (原地面标高为-0.6m ,建筑物基坑开挖深度 为-11.9m )。 比较桩基础塔吊基础的工作状态和非工作状态的受力情况,桩基础 按非工作状态计算,受力如上图所示: F k =850.0kN G k = 25 X 4 X 4 X 1.50=600kN F h =70kN M k =3630+70 X 1.50=3735kN.m 四、单桩允许承载力特征值计算 1、单桩竖向承载力特征值: 1 )、按地基土物理力学指标与承载力参数计算 A p = n r 2 = 0.5027m 2 R a R sa R ra R pa (DBJ15-31-2003 ) ( 10.2.4-1 ) C 1 0.40; C 2 0.05; f rs 10MPa; f rp 10MPa R sa u q sia l i 3.1415926 0.8 (40 13.76 60 0.7) 1488.9kN F (1= /OlkliL 团 / =3630kN,tn J 丈h 80( 1 2400 -- 4000 d Fk -- Fh-- M ---- M Z ---- 塔吊基础受力示意图 Fk=850kN

塔吊基础设计计算书

塔吊基础设计计算书 计算:闫宗权 审核:陈俊 一、工程概况 施工项目为13层住宅,其中地下室一层,建筑总高为42米,结构形式为框剪;塔吊选用昆明产*** 型塔吊。 二、基础计算 1、已知条件: 塔吊总重:920KN[=(自重+其他活载)×增大系数],塔吊搭设总高为50米,塔吊基础采用桩上承台基础,桩身混凝土采用C20,钢筋采用一级钢;承台基础混凝土为C30,钢筋采用二级钢;根据工程实际情况,采用工程桩桩径进行塔吊基础桩的施工,即桩采用426桩管,振动沉管灌注,成桩直径不少于450mm。 2、受力分析: 从塔式起重设备的工作原理进行分析,该生产设备在以下方面对设备的安全使用关系相当重要:设备的基础,设备结构,设备结构的材料,设备的工作性能和操作系统;在计算中重点求出设备基础的稳定性及设备抗倾覆的能力;因该工程的塔吊设备由生产厂家进行安装和施工中的施工材料垂直运输操作,现只对设备基础进行计算。 根据设备厂家的要求,结合工程实际情况,本设备基础(以下简称基础)不能完全按厂家提供的基础图进行施工,根据基础的受力特点,除求出基础的垂直承载力外,还应求出塔吊在最不利荷载组合下对桩基的抗拔能力。因此,根据前面的已知条件,同时按由昆明市建筑设

计研究院对本施工项目进行的地质勘察报告中第33孔的土层勘察情况对桩基进行设计,该孔土层力学性能指标如下: 土层号名称 Li qisk λi ui(1.413) ①, 杂填土 1.3 ②粉质粉土 0.6 35 ④3 粉土 1.8 45 ④1 砾砂 4.1 50 0.6 ⑥粘土 2 42 0.75 ⑥4 粉砂 1.7 48 0.60 ⑥1 有机质土 2.4 48 0.75 ⑥4 粉砂 2 48 0.6 3、计算 为满足塔吊对基础的稳定性要求,采用四桩承台,则: 920000÷4=230000 N (即单桩最大承载力) 按上述土层力学参数,求单桩极限抗拔力,考虑到本工程基坑开挖3米后对单桩抗拔力的影响,因此,从自然地面下3米开始根据各土层的力学性能指标进行计算: UK=Σλi .qsik .ui li =0.60×50×1.413×4.1+0.75×42×1.413×2.0+0.60×48×1.413×1.7+0.75×48×1.417×2.4+0.6×48×1.4 17×2=536.05Kqa<230Kpa(满足) 桩身配筋计算: 不考虑混凝土的抗拉强度,根据已知单桩总抗拔力为23000N计算,如采用一级钢筋,则:As=N/fC=230000/210=1095.24mm2

塔吊基础计算书

天然基础计算书 123工程;工程建设地点:;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天。 本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。 本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》 (GB50010-2002)等编制。 一、参数信息 塔吊型号:QTZ50,塔吊起升高度H:32.00m, 塔身宽度B:1.6m,基础埋深d:4.45m, 自重G:357.7kN,基础承台厚度hc:1.35m, 最大起重荷载Q:50kN,基础承台宽度Bc:5.50m, 混凝土强度等级:C35,钢筋级别:HRB335, 基础底面配筋直径:18mm 地基承载力特征值f ak:140kPa, 基础宽度修正系数ηb:0.15,基础埋深修正系数ηd:1.4, 基础底面以下土重度γ:20kN/m3,基础底面以上土加权平均重度γm:20kN/m3。 二、塔吊对交叉梁中心作用力的计算

1、塔吊竖向力计算 塔吊自重:G=357.7kN; 塔吊最大起重荷载:Q=50kN; 作用于塔吊的竖向力:F k=G+Q=357.7+50=407.7kN; 2、塔吊弯矩计算 风荷载对塔吊基础产生的弯矩计算: M kmax=1335kN·m; 三、塔吊抗倾覆稳定验算 基础抗倾覆稳定性按下式计算: e=M k/(F k+G k)≤Bc/3 式中 e──偏心距,即地面反力的合力至基础中心的距离; M k──作用在基础上的弯矩; F k──作用在基础上的垂直载荷; G k──混凝土基础重力,G k=25×5.5×5.5×1.35=1020.938kN; Bc──为基础的底面宽度; 计算得:e=1335/(407.7+1020.938)=0.934m < 5.5/3=1.833m; 基础抗倾覆稳定性满足要求! 四、地基承载力验算 依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。计算简图:

QTZ80(6013)塔吊基础天然基础计算书工程施工组织设计方案

目录 一、工程概况 (1) 二、塔吊概况 (1) 三、塔吊安装位置及基础型式选择 (1) 四、塔吊的使用与管理 (4) 五、塔吊基础 (4) 六、QTZ80(6013)塔吊天然基础的计算书 (5)

岗顶酒店工程塔吊基础施工方案 一、工程概况 二、塔吊概况 本工程施工计划设置塔吊1台,塔吊布设位置见平面布置图。采用QTZ80(6010)型塔吊,该塔吊独立式起升高度为45米,(本工程实际使用搭设高度约40米),工作臂长60米,最大起重量6吨,公称起重力矩为800KN.m。 综合本工程地质条件及现场实际情况,参照《兰田岙造船基地扩建项目岩土工程勘察报告》及工程设计图纸,本塔吊基础采用天然地基基础。 三、塔吊安装位置及基础型式选择 (一)塔吊生产厂家提供的说明书中对塔吊基础的要求: 1.地基基础的土质应均匀夯实,要求承载能力大于20t/㎡;底面为6000×6000的正方形。 2.基础混凝土强度C35,在基础内预埋地脚螺栓,分布钢筋和受力钢。 3.基础表面应平整,并校水平。基础与基础节下面四块连接板连接处应保证水平,其水平度不大于1/1000; 4.基础必须做好接地措施,接地电阻不大于4Ω。 5.基础必须做好排水措施,保证基础面及地脚螺栓不受水浸,同时做好基础保护措施,防止基础受雨水冲洗,淘空基础周边泥土。 6.基础受力要求:

H—基础所受水平力kN P V—垂直力kN M—倾覆力矩kN.m M Z—扭矩kN.m 基础受力图(二)本工程塔吊安装位置详见下图:

按塔吊说明书要求,塔吊铺设混凝土基础的地基应能承受0.2MPa的压力,根据本工程地质勘察报告及现场实际情况,塔吊基础位于4-2强风化砾岩层,该层土质的承载力达0.60MPa,满足塔吊基础对地基承载力的要求,且该土层也是建筑物基础所在持力层土层,以该土层作塔吊基础的持力层,既能满足塔吊使用要求,也不会有基坑开挖时引起塔吊基础变形的问题。

塔吊基础承载力计算书

塔吊基础承载力计算书 编写依据塔吊说明书要求及现场实际情况,塔基承台设计为5200m×5200m×1.3m,根据地质报告可知,承台位置处于回填土上,地耐力为4T/m2,不能满足塔吊说明书要求的地耐力≥24T/m2。为了保证塔基承台的稳定性,打算设置四根人工挖孔桩。 地质报告中风化泥岩桩端承载力为P=220Kpa。按桩径r=1.2米,桩深h=9米,桩端置于中风化泥上(嵌入风化泥岩1米)进行桩基承载力的验算。 一、塔吊基础承载力验算 1、单桩桩端承载力为: F1=S×P=π×r2×P=π×0.62×220=248.7KN=24.87T 2、四根桩端承载力为: 4×F1=4×24.87=99.48T 3、塔吊重量51T(说明书中参数) 基础承台重量:5.2×5.2×1.3×2.2=77.33T 塔吊+基础承台总重量=51+77.33=128.33T 4、基础承台承受的荷载 F2=5.2×5.2×4.0=108.16T 5、桩基与承台共同受力=4F1+F1=99.48+108.16=207.64T>塔吊基础总重量=128.33T 所以塔吊基础承载力满足承载要求。 二、钢筋验算 桩身混凝土取C30,桩配筋23根ф16,箍筋间距φ8@200。 验算要求轴向力设计值N≤0.9(fcAcor+fy’AS’+2xfyAsso) 必须成立。 Fc=14.3/mm2(砼轴心抗压强度设计值) Acor=π×r2/4(构件核心截面积) =π×11002/4=950332mm2 fy’=300N/MM2(Ⅱ级钢筋抗压强度设计值) AS’=23×π×r2/4=23×π×162/4 =4624mm2(全部纵向钢筋截面积) x=1.0(箍筋对砼约束的折减系数,50以下取1.0) fy=210N/mm2 (Ⅰ级钢筋抗拉强度设计值) dCor=1100mm (箍筋内表面间距离,即核心截面直径) Ass1=π×r2/4=π×82/4=16×3.14=50.24mm2(一根箍筋的截面面积) S螺旋箍筋间距200mm A’sso=πdCorAssx/s =π×1100×50.24/200=867.65mm2(螺旋间接环式或焊接,环式间接钢筋换算截面面积)因此判断式 N≤0.9(fcAcor+fy’AS’+2xfyAsso)=0.9(14.3×950332+300×4624+2×1.0×210×867.65)=15341360.6N 248.7KN<12382.87KN 经验算钢筋混凝土抗拉满足要求。

塔吊基础设计计算书(桩基础)

塔吊基础设计计算书(桩基础) 编制依据 《建筑地基基础设计规范》( GB50007-2002 ); 《建筑地基基础设计规范》( DBJ 15-31-2003 ); 《建筑结构荷载规范》( GB 50009-2001 ); 《混凝土结构设计规范》(GB 50010-2002 ); 《简明钢筋混凝土结构计算手册》; 《地基及基础》(高等学校教学用书)(第二版); 建筑、结构设计图纸; 塔式起重机使用说明书; 岩土工程勘察报告。 设计依据 塔吊资料 根据施工现场场地条件及周边环境情况,选用1台QTZ160自升塔式起重机。塔身自由高度56m,最大吊运高 度为203米,最大起重量为10t,塔身尺寸为1.70m x 1.70 m, 臂长65m。 岩土力学资料,(BZK8 孔) 塔吊基础受力情况

基础设计主要参数 4 ①800钻孔桩, 基础桩: 标高-2.90m ,桩长为15.96m ,桩端 桩顶 入微风化 0.5m 。 承台尺寸:平面 4.0 X 4.0 m,厚度 h=1.50m ,桩 与承台 中心距离为 1.20m ;桩身混凝土等级: C25。 承台混凝土等级: C35; 承台面标高:-1.50m (原地面标高 为-0.6m ,建筑物基 坑开挖深度 为-11.9m ) 比较桩基础塔吊基础的工作状态和非工作状态的受力 情况,桩基础按 非工作状态计算,受力如上图所示: Fk=850.0kN Gk=25X 4X 4X 1. 50=600kN Fk Fh M Mz 工作状态 950 30 2780 340 非工作状 态 850 70 3630 F k ----基础顶面所受垂直力 F h ----基础顶面所受水平力 M ----基础所受倾翻力矩 M----基础所受扭矩 Fh F k 塔吊基础受力示意图 Fk=8bOk \ =363%N.m 2430 =70kbL. 400C

塔吊(四桩)基础计算书

塔吊基础专项施工方案 一、工程概况: 1、工程名称:洲技产品研发、生产工业园车间四~十四、办公楼项目 2、工程地点:东西湖区长青街十五支沟东、革新大道北 3、建设单位:武汉炬辉照明有限公司 4、设计单位:国家发展和改革委员会国家物资储备局设计院 6、地质勘察单位:武汉百思特勘察设计有限公司 7、监理单位:湖北天慧工程咨询有限公司 8、施工单位:湖北鹏程建设工程有限公司 本工程为1栋16层的办公楼,框架剪力墙结构,总建筑面积19258.9㎡,;地上16层;地下1层;建筑高度:49.6m;标准层层高:3m 。另有11栋车间,框架结构,均为地上4层,建筑高度均为19.2m,工程相对标高±0.000相当于绝对标高21.3m。本工程塔吊1台,覆盖办公楼、12~14#车间共四栋楼。 二、编制依据: 1、洲技产品研发、生产工业园车间四~十四、办公楼工程施工总平图; 2、洲技产品研发、生产工业园车间四~十四、办公楼地质勘察报告; 3、 80(5710)塔式起重机使用说明书; 4、《塔式起重机设计规范》(13752-1992) 5、《地基基础设计规范》(50007-2002) 6、《建筑结构荷载规范》(50009-2001) 7、《建筑安全检查标准》(59-99) 8、《混凝土结构设计规范》(50010-2002) 9、《建筑桩基技术规范》(94-2008)。 三、塔吊平面布置: 本工程配置塔吊1台 80(5710)塔吊,位于地下室的南面,采用桩上承台式,其平面布置详见平面布置图。

四、塔吊基础设计: 1、塔吊采用桩上承台式,塔吊基础桩采用4根800钻孔灌注桩,桩中心距3400,桩身砼强度等级考虑进度要求采用C30,内配筋选用1014,螺旋箍 8@200,加强筋14@2000,钢筋笼长度全桩长配置,2/3以下钢筋减半,桩顶锚入承台100,桩筋锚入承台长度不少于500,桩上承台尺寸为5000×5000×1500,配筋16@160双层双向。塔吊承台做100厚C15砼垫层,基础砼强度等级为C30. 2、塔吊基础设计承台、桩顶、桩底标高 塔吊,位于地下室部位的南面,搭设高度70米,采用附着式高度,工程相对标高±0.000相当于绝对标高21.3m,承台面标高-3.400m,(黄海高程17.900m),桩顶标高-4.800m (黄海高程16.500m),有效桩长(计算桩长)35~36m,进入持力层6-2层≥7.5m为准。 五、塔吊的基本参数信息 塔吊型号:80,塔吊起升高度H:70.000m, 塔身宽度B:1.6m,基础埋深D:1.500m, 自重F1:440.02,基础承台厚度:1.50m, 最大起重荷载F2:80,基础承台宽度:5.000m, 桩钢筋级别400,桩直径或者方桩边长:0.800m, 桩间距a:3.4m,承台箍筋间距S:160.000, 承台混凝土的保护层厚度:50,承台混凝土强度等级:C30; 六、塔吊基础承台顶面的竖向力和弯矩计算 塔吊自重(包括压重)F1=440.02, 塔吊最大起重荷载F2=80.00, 作用于桩基承台顶面的竖向力1.2×(F12)=624.02, 风荷载对塔吊基础产生的弯矩计算: =1350·m; 七、承台弯矩及单桩桩顶竖向力的计算

塔吊基础计算书

F0/23C塔吊基础计算书 第一节、计算依据 1、建设单位提供的《某裙楼、附楼、地下车库岩土工程详细勘察报告》(以下简称《报告》) 2、《F0/23C塔式起重机安装使用说明书》(四川建筑机械厂,以下简称《说明书》)。 3、设计研究院设计的本工程施工图纸(以下简称《图纸》)。 4、《建筑桩基技术规范》JGJ94-94(以下简称《桩基规范》)。 5、《建筑地基基础设计规范》GB50007-2002(以下简称《基础规范》)。 6、《混凝土结构设计规范》GB50010-2002(以下简称《砼规范》)。 7、《钢筋混凝土承台设计规程》CECS88:97(以下简称《承台规程》)。 8、工程现场实际情况。 9、以下除说明外,标高值均为相对标高值(±0.000=29.010)。 第二节、现场情况说明 本次设计的塔吊其定位具体布置见附图一《塔吊定位图》。根据工程实际情况,选用F0/23C型塔吊,最大工作半径为50m,最大起重重量为10t,最大工作半径时起吊重量为2.3t,选用1.6×1.6m边长、3m高的标准节。根据《说明书》中的基础承台说明及现场实际情况,选用4000×6000×1350的钢筋混凝土承台作为塔吊的承台。 自然地面标高约为-4.000,塔吊基础承台面标高定为-9.370,基础坐落于基坑边坡坡中平台处,基坑边坡支护见附图二《塔吊所在区域边坡喷锚支护剖面图》。根据《报告》9-9’剖面中所示(孔ZC37),塔吊基

础处表层土为④2层Q3al+pl粘土(f ak=410kPa,E S=16.0MPa),基础设置4根ф900的人工挖孔灌注桩,桩长为7m,桩段端部土层为④3层Q3al+pl 粘土(f ak=460kPa,E S=18.3MPa)。塔吊承台砼强度等级为C30,塔吊桩砼强度等级为C25。塔吊承台配筋参照F0/23C标准承台,配筋稍做修改。具体附图三《塔吊基础配筋图》所示。以下将对塔吊基础承台及桩进行验算。 第三节、基本计算资料 1、荷载计算 根据工程实际情况,取塔吊安装高度为98.8m,需基础节(7.5m高)1节,标准节29节(3m高),附墙3道。 承台自重:4×6×1.35×25=81kN; 塔身自重:53.56吨(44.8m),74.02吨(98.8m); 单桩自重:π×(0.9/2)2×7×25=111.3kN; 活荷载:取为最大起重重量10吨。 2、基本资料 (1)符号说明 q sia-----------桩侧土的摩阻力特征值(kPa); q pa----------桩端土的端阻力特征值(kPa); ψsi、ψp------大直径桩侧阻力、端阻力尺寸效应系数; γs、γp------分别为桩侧阻抗力分项系数、桩端阻抗力分项系数; H t------------桩顶面标高(m);

塔吊基础计算

QTZ63塔吊天然基础的计算书 (一)参数信息 塔吊型号:QTZ63,自重(包括压重)F1=450.80kN,最大起重荷载F2=60.00kN,塔吊倾覆力距M=630.00kN.m,塔吊起重高度=70.00m,塔身宽度B=1.50m,混凝土强度等级:C35,基础埋深D=5.00m,基础最小厚度h=1.35m,基础最小宽度Bc=5.00m。 (二)基础最小尺寸计算 基础的最小厚度取:H=1.35m 基础的最小宽度取:Bc=5.00m (三)塔吊基础承载力计算 依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。 计算简图: 当不考虑附着时的基础设计值计算公式: 当考虑附着时的基础设计值计算公式: 当考虑偏心距较大时的基础设计值计算公式:

式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×510.8=612.96kN; G──基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc ×Bc×D) =4012.50kN; Bc──基础底面的宽度,取Bc=5.00m; W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3; M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4× 630.00=882.00kN.m; a──合力作用点至基础底面最大压力边缘距离(m),按下式计算: a=5.00/2-882.00/(612.96+4012.50)=2.31m。 经过计算得到: 无附着的最大压力设计值 Pmax=(612.96+4012.50)/5.002+882.00/20.83=227.35kPa 无附着的最小压力设计值 Pmin=(612.96+4012.50)/5.002-882.00/20.83=142.68kPa 有附着的压力设计值 P=(612.96+4012.50)/5.002=185.02kPa 偏心距较大时压力设计值 Pkmax=2×(612.96+4012.50)/(3×5.00×2.31)=267.06kPa (四)地基基础承载力验算 地基承载力设计值为:fa=270.00kPa 地基承载力特征值fa大于最大压力设计值Pmax=227.35kPa,满足要求! 地基承载力特征值1.2×fa大于偏心距较大时的压力设计值Pkmax=267.06kPa,满足要求!据安徽省建设工程勘察设计院《岩土工程勘察报告》,Ⅰ#塔吊参227号孔,Ⅱ#塔吊参243号孔,Ⅲ#塔吊参212号孔,Ⅳ#塔吊参193号孔,Ⅵ#塔吊参118号孔,Ⅶ#塔吊参108号孔。 (五)受冲切承载力验算 依据《建筑地基基础设计规范》GB 50007-2002第8.2.7条。 验算公式如下: 式中hp──受冲切承载力截面高度影响系数,取hp=0.95; ft──混凝土轴心抗拉强度设计值,取 ft=1.57kPa;

塔吊基础计算书

塔吊基础计算书 一、编制依据 2.1、《塔式起重机使用说明书》 2.2《岩土工程勘察报告》 2.3《建筑地基基础设计规范》(GB50007-2002) 2.6《地基与基础施工及验收规范》(GBJ202-83) 2.7《混凝土结构设计规范》(GB50010-2002) 2.8《混凝土结构工程施工及验收规范》(GB50204-92) 二、工程概况 一、计算系数 塔吊型号:广西QTZ80(TCT5512)工作幅度:50m;塔吊起升高度:128.50m;塔身宽度B:1.7m;标准节长度b:5.0m; 塔吊自重(包括压重)G:777KN,最大起重荷载Q:60KN。主弦杆材料:角钢/方钢;宽度/直径C:120mm; 定额起重力矩Me:885K N·M;基础所受水平力:30KN;基础形式:桩承台;承台宽度Bc:3.60m;承台高度Hc:1.0m;承台砼强度等级:C30;承台钢筋级别:HPB235,HRB400; 所处城市:广西玉林市,基本风压W0:0.25kn/㎡;地面粗糙度类别:C类有密集建筑群的城市郊区,风荷载高度变化系数Hz:1.7。 二、塔吊对基础中心作用力的计算 按受力最大的塔吊自由高度44m计算 1、塔吊竖向力计算: 塔吊自重G: G=523KN 塔吊最大起重荷载Q:Q=60KN 作用于塔吊基础的竖向力Fk: Fk=Q+G=60+523=583KN 2、塔吊风荷载计算:

依据《建筑结构荷载规范》(GB5009-2001)中风荷载体型系数: 地处广西玉林市,基本风压力W0=0.25KN/㎡ 查表得风荷载高度变化系数μz: μz=1.178 挡风系数计算ψ=[3B+2b+(4B2+b2/4)1/2].C/B.b =[3×1.7+2×5+(4×1.72+52/4) 1/2]×0.12/1.7×5 =0.273 塔吊主材料是角钢/方钢,体形系数μs =2.481 风振系数βz:βz=1.0 风荷载设计值为: W=0.8βz×μs×μz×W0=0.8×1.0×2.481×1.178×0.25 =0.585KN/㎡ 3、塔吊基础所受弯矩的计算: 风荷载对塔吊基础产生的弯矩计算 Mw=W×ψ×B×H×H×0.5=0.585×0.273×1.7×44×44×0.5=262.81KN-m Mkmax=Mw+Mc+P×hc=261.81KN.m+989 KN.m+30 KN×1.0m=1280.81 KN.m 三、承台内暗置挑梁配筋计算 暗梁宽度b: 500mm, 暗梁高度h: 1000mm 作用于桩基承台顶面的竖向力F: F=1.2Fk=1.2×583kn=699.6 kn 作用于桩基承台顶面的弯矩M: M=Mw+M c=261.81 KN.m +989 KN.m =1250.81 KN.m 暗梁端承受的竖向力Fh: Fh=F/4=699.6kn/4=174.9 KN 暗梁端承受的弯矩Mv: Mv=M/2=1250.81 KN.m /2=625.41 KN.m 圆桩直径1250mm等效为方桩a: a=1250mm×0.8=1000mm 计算简图: 不考虑梁另一端竖向力产生的反向力弯矩作用,偏于安全,梁计算截面处的弯矩M1:M1=(Mv+Fn×0.19m)=(625.41 KN.m +174.9 KN×0.19m)=658.641 KN.m 1、梁截面配筋计算 依据《砼结构设计规范》(GB50010-2002)第7.5条受弯构件承载力计算,采用双排配筋。 砼强度C30:fc=14.30N/㎜2; 钢筋HRB400:fy=360 N/㎜2;梁宽度b: b=500㎜;梁高度h: h=1000㎜, h。=1000㎜-60㎜=940㎜; 砼强度不超过C50:α1=1.0;αs=M1/α1fcb h。2=658.64×106/(1.0×14.30×500×9402)=0.104;

塔吊基础设计计算方案说明

1.塔吊基础设计计算方案 一、设计依据 1.《建筑桩基础技术规范》JGJ84—94 2.《混凝土结构设计规范》GB50040—2002 3.《建筑地基基础设计规范》GB50007—2002 4.《建筑地基基础设计规范》DB33/1001—2003 5.《建筑机械使用安全规程》JGJ33—2001 6.《建筑结构荷载规范》GB50009—2002 7.本工程《岩石工程勘察报告》 8.施工图纸 9.简明施工计算手册 10.塔吊使用说明书 二、塔吊选型 本工程为框剪结构,地下一层,总建筑面积246389m2、本标段72500m2。地上18~32层,地下室Ⅱ区地面结构标高为-5.6m,地下室Ⅱ区顶板结构标高为-1.20m,板厚500mm,5#--6#楼建筑物高度最大为98.6m, 5#--6#楼构架顶标高105.3m,7#--9#楼建筑物高度最大为55.3m, 7#--9#楼构架顶标高62m。根据本工程特点、布局,拟选用4台浙江凯达电梯制造有限公司制造的QTZ63型液压自升塔式起重机(简称塔吊),其相关技术参数适用于本工程垂直运输需要。 三、塔吊位置的确定 为最大限度的满足施工需要,拟将塔吊位置作如下确定: 塔吊基础:5#塔吊设置在5#楼E—F轴/24—25轴,7#塔吊设置在7#楼E—F轴/8—6轴,8#塔吊设置在8#楼Q轴/8—9轴,9#塔吊设置在9#楼B1轴/13轴,具体详见塔吊平面布置图。

四、塔吊基础的确定 1.地质参数以本工程《岩石工程勘察报告》中有关资料为计算依据(以Z50孔为依据), 其主要设计参数(见土层设计计算参数表)。 2.塔吊基础受力情况(说明书提供)

塔吊基础设计计算

塔式起重机方形独立基础的设计计算 余世章余婷媛 《内容提要》文章通过对天然基础的塔吊基础设计,详细论述整个基础的设计过程,经济适用,安全可靠、结构合理,思路清晰,论述精辟有据;在现场施工中,有着十分重要的指导意义。 关键词:塔机、偏心距、工况、一元三次方程、核心区、基底压力。 一、序言 随着建筑业迅猛发展,塔式起重机(简称塔机)在建筑市场中是必不可少的一项重要垂直运输机械设备;塔机基础设计,在建筑行业中是属于重大危险源的范畴,正因为如此,塔机基础设计得到各使用单位的高度重视;本人通过网络查阅过许多塔机基础设计方案,除采用桩基外,塔基按独立基础所设计的方形基础,绝大部分都按厂家说明书所提供的基础尺寸进行配筋,按规范设计计算的为数不多,厂家所提供基础大小数据有些是不满足规范要求,而塔机基础配筋绝大多数情况是配筋过大,浪费较为严重;厂家说明书所提供数据表明,地基承载力特征值小的基础外形尺寸就较大,承载力特征值较大,基础尺寸就相应的小点,似乎看起来这种做法是正确的,其实并非如此。 塔机基础型式方形等截面最为普遍,下面通过一些规范限定的条件,对方形截面独立基础规范化的设计,很有参考和实用价值。下面举例采用中联重科的塔吊类型进行论述和阐明。 二、塔吊基础设计步骤 2.1、确定塔吊型号

首先根据施工总平面图,根据建筑物外形尺寸(长、宽、高)、及材料堆放场地和钢筋加工场地,根据塔机覆盖率情况,按塔机说明书中的主要参数确定塔机型号。 2.2、根据塔机型号确定荷载 厂家说明书中都有荷载说明,按塔吊自由独立高度条件提供两组数据(中联重科),一组为工作状态(工况)荷载,另一组为非工作状态(非工况)荷载,确定出一组最不利的工况荷载。 2.3、确定塔吊基础厚度h 根据说明书中塔机安装说明,基础固定塔基及有两种形式,一种是地脚螺栓,另一种是埋入固定支腿式;因此根据塔机地脚螺栓锚固长度和支腿的埋深,可以确定塔机基础厚度h。 2.4、基础外形尺寸的确定 根据荷载大小和基础厚度h,确定独立方形基础的边长尺寸。 2.5、基础配筋计算 求出内力进行基础配筋计算,并根据《规范》的构造要求进行配筋和验算。 2.6、基础冲切、螺杆(支腿)受拉或局部受压的验算 三、方形独立基础尺寸的确定 3.1方形基础宽度B的上限值 根据上面塔机基础计算步骤可以看出,塔机基础尺寸的确定是方形基础的计算关键。利用偏心距限定条件,可求出基础最小截面尺寸。根据偏心距e(荷载按标准组合):

TC5610-6塔吊基础的计算书

TC5610-6塔吊基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。 一. 参数信息 二. 荷载计算 1. 自重荷载及起重荷载 1) 塔机自重标准值 F k1=440.02kN 2) 基础以及覆土自重标准值 G k=5×5×1×25=625kN 承台受浮力:F lk=5×5×21.80×10=5450kN 3) 起重荷载标准值 F qk=80kN

2. 风荷载计算 1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2) =0.8×1.49×1.95×1.73×0.2=0.80kN/m2 =1.2×0.80×0.35×1.6=0.54kN/m b. 塔机所受风荷载水平合力标准值 F vk =q sk ×H=0.54×100=54.05kN c. 基础顶面风荷载产生的力矩标准值 M sk=0.5F vk×H=0.5×54.05×100=2702.25kN.m 2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.30kN/m2) =0.8×1.51×1.95×1.73×0.3=1.22kN/m2 =1.2×1.22×0.35×1.6=0.82kN/m b. 塔机所受风荷载水平合力标准值 F vk=q sk×H=0.82×100=82.16kN c. 基础顶面风荷载产生的力矩标准值 M sk=0.5F vk×H=0.5×82.16×100=4107.79kN.m 3. 塔机的倾覆力矩 工作状态下,标准组合的倾覆力矩标准值 M k=1552+0.9×(800+2702.25)=4704.03kN.m 非工作状态下,标准组合的倾覆力矩标准值 M k=1552+4107.79=5659.79kN.m 三. 地基承载力计算 依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算。塔机工作状态下:

塔吊基础设计计算

塔式起重机方形独立基础得设计计算 余世章余婷媛 《内容提要》文章通过对天然基础得塔吊基础设计,详细论述整个基础得设计过程,经济适用,安全可靠、结构合理,思路清晰,论述精辟有据;在现场施工中,有着十分重要得指导意义。 关键词:塔机、偏心距、工况、一元三次方程、核心区、基底压力。 一、序言 随着建筑业迅猛发展,塔式起重机(简称塔机)在建筑市场中就是必不可少得一项重要垂直运输机械设备;塔机基础设计,在建筑行业中就是属于重大危险源得范畴,正因为如此,塔机基础设计得到各使用单位得高度重视;本人通过网络查阅过许多塔机基础设计方案,除采用桩基外,塔基按独立基础所设计得方形基础,绝大部分都按厂家说明书所提供得基础尺寸进行配筋,按规范设计计算得为数不多,厂家所提供基础大小数据有些就是不满足规范要求,而塔机基础配筋绝大多数情况就是配筋过大,浪费较为严重;厂家说明书所提供数据表明,地基承载力特征值小得基础外形尺寸就较大,承载力特征值较大,基础尺寸就相应得小点,似乎瞧起来这种做法就是正确得,其实并非如此。 塔机基础型式方形等截面最为普遍,下面通过一些规范限定得条件,对方形截面独立基础规范化得设计,很有参考与实用价值。下面举例采用中联重科得塔吊类型进行论述与阐明。 二、塔吊基础设计步骤 2.1、确定塔吊型号

首先根据施工总平面图,根据建筑物外形尺寸(长、宽、高)、及材料堆放场地与钢筋加工场地,根据塔机覆盖率情况,按塔机说明书中得主要参数确定塔机型号。 2.2、根据塔机型号确定荷载 厂家说明书中都有荷载说明,按塔吊自由独立高度条件提供两组数据(中联重科),一组为工作状态(工况)荷载,另一组为非工作状态(非工况)荷载,确定出一组最不利得工况荷载。 2.3、确定塔吊基础厚度h 根据说明书中塔机安装说明,基础固定塔基及有两种形式,一种就是地脚螺栓,另一种就是埋入固定支腿式;因此根据塔机地脚螺栓锚固长度与支腿得埋深,可以确定塔机基础厚度h。 2.4、基础外形尺寸得确定 根据荷载大小与基础厚度h,确定独立方形基础得边长尺寸。 2.5、基础配筋计算 求出内力进行基础配筋计算,并根据《规范》得构造要求进行配筋与验算。 2.6、基础冲切、螺杆(支腿)受拉或局部受压得验算 三、方形独立基础尺寸得确定 3、1方形基础宽度B得上限值 根据上面塔机基础计算步骤可以瞧出,塔机基础尺寸得确定就是方形基础得计算关键。利用偏心距限定条件,可求出基础最小截面尺寸。

塔吊基础的设计和计算

塔吊基础的设计与计算 (刘宏林) 一、塔吊基础的设计依据 GB/T13752-1992 塔式起重机设计规范 JGJ/T187-2009 塔式起重机混凝土基础工程技术规程 GB50007-2011 建筑地基基础设计规范 JGJ94-2008 建筑桩基技术规范 GB50017-2003 钢结构设计规范 二、塔吊基础设计选型 塔吊基础形式应根据工程地质、荷载大小与塔机稳定性要求、现场条件、技术经济指标,并结合塔吊厂商提供的《塔机使用说明书》要求确定。 塔吊基础设计常用类型分为板式基础(矩形、方形)、十字形基础和桩基础、组合式基础。 板式基础是由钢筋混凝土筑成的平板形基础;十字形基础是由长度和截面相同的两条互相垂直等分且节点加腋的混凝土条形基础组成的基础;板式基础、十字形基础适用于地基承载力较高,基坑较浅的工程。

板式基础十字形基础应用工程有:建行灾备中心、光谷新世界等工程、武汉保利文化广场(利用底板) 桩基础是由预制混凝土桩、预应力混凝土管桩、混凝土灌注桩或钢管桩及上端连接的矩形板式或十字形梁式承台组成的基础;桩基础适用于在软弱土层,浅基础不能满足塔机对地基承载力和变形的要求或因场地限制,塔吊布置于地下室范围内且不需在土方开挖之前投入使用的工程。 桩基础 应用工程有:武汉万达广场(桩+承 台)、武商摩尔城(桩+承台)

组合式基础是由若干格构式钢柱或钢管柱与其下端连接的基桩以及上端连接的混凝土承台或型钢平台组成的基础;适用于因场地限制,塔吊布置于地下室范围内且需在土方开挖之前投入使用的工程。 应用工程有:天津117大厦(桩+钢格构柱+钢承台);福新惠誉(桩+钢格构柱+混凝土承台); 组合式基础 三、塔吊基础设计计算 ?1、基础荷载取值 采用塔机制造商提供的《塔机使用说明书》 的基础荷载,包括作用于基础顶的竖向荷载标准 值(F k)、水平荷载标准值(F vk)、倾覆力矩(包 括塔机自重、起重荷载、风荷载等引起的力矩) 荷载标准值(M k)及扭矩荷载标准值(T k);基础 荷载还包括基础及其上土的自重荷载标准值基础荷载 (G k)。 如:TC5613塔式起重机厂家给定的基础荷载如下表: M k(kN.M) F k(KN) F vk(kN) T k(kN.M) 工作状态1827.0 619.0 30.3 332.0 非工作状态2395.5 526.3 62 0.0 ?2、板式基础设计和计算 ⑴设计构造要求: 基础高度应满足塔机预埋件的抗拔要求,且不宜小于1000mm,不宜采用坡星或台阶形截面的基础。 基础的混凝土强度等级不应低于C25,垫层混凝土强度不应低于C10,厚度不小于100mm。 板式基础在基础表层和底层配置直径不应小于12mm、间距不应大于200mm 的钢筋,且上、下层主筋应用间距不大于500mm的竖向构造钢筋连接;架立筋

QTZ63塔吊基础计算书

朱巷拆迁安置小区三期二标段 塔吊基础施工方案 一、工程概况 建设单位:苏州市相城城市建设有限责任公司 设计单位:苏州东吴建筑设计院有限责任公司 监理单位:苏州相城建设监理有限公司 施工单位:苏州第五建筑集团有限公司 朱巷拆迁安置小区三期二标工程位于苏州市相城区采莲路西、富元路北侧。本工程共5幢住宅楼及1#地下车库,结构形式为框剪结构,车库为地下一层。1#、2#、5#、6#楼工程结构高度96.8米,1#、2#建筑面积为29729.74㎡,5#、6#楼建筑面积为27932.64㎡。10#楼工程结构高度79.4米,建筑面积为24299.14㎡。1#、2#、5#、6#、10#楼室内地面标高±0.000相当于黄海标高4.35米,1#地下车库相当于黄海标高3.35米。 二、编制依据 1、QTZ63型塔机说明书 2、根据勘察研究院《岩土工程勘察报告》的建设场地层划分 3、设计图纸及施工组织设计中的总平面布置图 三、塔吊概况 本工程共设塔吊5台,布设位置和塔吊编号见平面布置图。塔吊采用张家港市天运建筑机械有限公司生产的QTZ63型塔吊,该塔吊独立式起升高度为40米,附着式起升高度达140米,工作臂长50米,最大起重量6吨,额定起重力矩为63吨,最大起重力矩为76吨。 1#、2#、5#、6#楼工程结构高度96.8米,1#、2#建筑面积为29729.74㎡,5#、6#楼建筑面积为27932.64㎡。10#楼工程结构高度79.4米,建筑面积为24299.14㎡。 四、塔吊基础选择 厂家提供的说明书中要求基础混凝土强度采用C35,QTZ63型塔吊基础底面为5000×5000的正方形。 铺设混凝土基础的地基应能承受0.2MPa的压力,本工程③2层粘土层的承载力达0.27MPa,满足塔吊基础对地基承载力的要求,且该土层也是建筑物基础所在土层,以该

塔吊基础计算

矩形板式桩基础计算书计算依据: 1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009 2、《混凝土结构设计规范》GB50010-2010 3、《建筑桩基技术规范》JGJ94-2008 4、《建筑地基基础设计规范》GB50007-2011 一、塔机属性 塔机型号SCM--C5015 塔机独立状态的最大起吊高度H0(m) 40 塔机独立状态的计算高度H(m) 43 塔身桁架结构方钢管 塔身桁架结构宽度B(m) 1.6 二、塔机荷载 1、塔机传递至基础荷载标准值 工作状态 塔机自重标准值F k1(kN) 320 起重荷载标准值F qk(kN) 60 竖向荷载标准值F k(kN) 380 水平荷载标准值F vk(kN) 40 倾覆力矩标准值M k(kN·m) 900 非工作状态 竖向荷载标准值F k'(kN) 320 水平荷载标准值F vk'(kN) 50 倾覆力矩标准值M k'(kN·m) 1400 2、塔机传递至基础荷载设计值

工作状态 塔机自重设计值F1(kN) 1.35F k1=1.35×320=432 起重荷载设计值F Q(kN) 1.35F Qk=1.35×60=81 竖向荷载设计值F(kN) 432+81=513 水平荷载设计值F v(kN) 1.35F vk=1.35×40=54 倾覆力矩设计值M(kN·m) 1.35M k=1.35×900=1215 非工作状态 竖向荷载设计值F'(kN) 1.35F k'=1.35×320=432 水平荷载设计值F v'(kN) 1.35F vk'=1.35×50=67.5 倾覆力矩设计值M'(kN·m) 1.35M k=1.35×1400=1890 三、桩顶作用效应计算 承台布置 桩数n 4 承台高度h(m) 1.25 承台长l(m) 4.8 承台宽b(m) 4.8 承台长向桩心距a l(m) 3.8 承台宽向桩心距a b(m) 3.8 桩直径d(m) 0.5 承台参数 承台混凝土等级C25 承台混凝土自重γC(kN/m3) 25 承台上部覆土厚度h'(m) 0 承台上部覆土的重度γ'(kN/m3) 19 承台混凝土保护层厚度δ(mm)50 配置暗梁否

相关文档
最新文档