七年级合并同类项练习及答案

合集下载

合并同类项 浙教版七年级上册练习题(含答案)

合并同类项 浙教版七年级上册练习题(含答案)
5.【答案】A
【解析】解:A、1是单项式,故本选项正确;
B、单项式 的系数是 ,故本选项错误;
C、 与 不是同类项,故本选项错误;
D、 与 不是同类项,故本选项错误;
故选:A.
根据同类项及多项式的定义,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,判断各选项可得出答案.
16.【答案】解: ,
因为不含三次项及一次项的多项式,依题意有
且 ,
, .
代入 ,
原式 .
【解析】此题考查了多项式的定义,合并同类项以及求代数式的值 解答本题必须先合并同类项,否则容易误解为 , .
先将关于x的多项式合并同类项 由于其不含三次项及一次项,即系数为0,可以先求得m,n,再求出 的值.
17.【答案】解: 由题意可知: , ,
10.【答案】B
【解析】解: 与 是同类项,

故选:B.
根据同类项的定义:所含字母相同,相同字母的指数相同,可得出n的值.
本题考查同类项的定义.熟练掌握同类项这一概念是解题的关键.
11.【答案】
【解析】解:由题意得: , ,
则 ,
故答案为: .
首先根据同类项定义可得 , ,再代入 进行计算即可.
此题主要考查了同类项,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
本题主要考查了多项式、单项式的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.
4.【答案】C
【解析】解: 和 为同类项,
, ,
, ,

故选:C.
根据同类项是字母相同,且相同的字母指数也相同,可得m、n的值,再根据乘方,可得答案.

苏科版七年级数学上《合并同类项》同步练习含答案

苏科版七年级数学上《合并同类项》同步练习含答案

3.4 合并同类项一.选择题1.已知与5x m+1y是同类项,那么m,n的值分别是()A.m=2,n=﹣1B.m=﹣2,n=﹣1C.m=﹣2,n=1D.m=2,n=2 2.若代数式2x2+7kxy﹣y2中不含xy项,则k的值为()A.0B.﹣C.D.13.下列说法正确的是()A.单项式的系数是3B.多项式2x2﹣3y2+5xy2是三次三项式C.单项式﹣22m4n的次数是7D.单项式2a2b与ab2是同类项4.若单项式与的差仍然是单项式,则m+n等于()A.6B.5C.4D.35.下列说法正确的是()A.0是单项式B.﹣a的系数是1C.a3+是三次二项式D.3a2b与﹣ab2是同类项6.已知2a m b+4a2b n=6a2b,则﹣2m+n的值为()A.﹣1B.2C.﹣3D.47.如果关于x多项式3x3+k2x2﹣4x2+x﹣5中不含x2项,则k的值为()A.0B.2C.﹣2D.2或﹣28.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1二.填空题9.已知单项式﹣3x3y n与5x m+4y3是同类项,则m﹣n的值为.10.当k=时,代数式x2﹣kxy﹣8y2﹣xy+5中不含xy项.11.已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n=.12.把(a﹣b)看作一个整体,合并同类项:3(a﹣b)+4(a﹣b)﹣2(a﹣b)=.13.化简xy2﹣3x2y﹣1+2xy2+5x2y=.14.计算:﹣5m2n+4mn2﹣2mn+6m2n+3mn=.15.若代数式2ax2y+3xy﹣4﹣5x2y﹣7x﹣7ax2y+m中,化简后不含x2y项,则a2019﹣4=.16.已知多项式4x2﹣3mx+2+m的值与m的大小无关,则x的值为.17.如果多项式x4﹣(a﹣1)x3+5x2+(b+3)x﹣1不含x3和x项,则a+b=.三.解答题18.合并同类项:(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)(2a2﹣1+2a)﹣3(a﹣1+a2)19.合并同类项:(1)5x+2y﹣3x﹣7y;(2)3a2﹣3ab﹣5﹣2a2+3ab+7.20.化简下列各题:(1)2a﹣5b﹣3a+b(2)3(a﹣b)﹣4(a﹣b)﹣5(a﹣b)(3)4(x2+xy﹣1)﹣2(2x2﹣xy)(4)a2﹣3[a2﹣2(a2﹣a)+1]21.计算(1)8(a﹣b)﹣5(a﹣b)﹣7(a﹣b)(2)3a2b﹣2[ab2﹣2(a2b﹣2ab2)]22.化简:写出必要的计算步骤和解答过程.(1)3a2﹣2a+4a2﹣7a(2)2x2﹣3xy+y2﹣2xy﹣2x2+5xy﹣2y+123.已知代数式4x2+ax﹣y+5﹣2bx2+7x﹣6y﹣3的值与x的取值无关,求代数式a3﹣2b2+3b3的值.24.若关于x,y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,求m,n的值.25.学习指导:同学们,我们即将在“整式的加减”一章中学习同类项和合并同类项法则.同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项,例如a,3a和7a是同类项.合并同类项法则:同类项的系数相加减,所得的结果作为系数,字母和字母的指数不变.例如﹣8ab+6ab﹣3ab=(﹣8+6﹣3)ab.请你解决下面问题,一定要化简哦.为了绿化校园,学校决定修建一块长方形草坪,长30米,宽20米,并在草坪上修建如图所示的等宽的十字路,小路宽为x米.(1)用代数式表示小路和草坪的面积是多少平方米?(2)当x=3米时,求草坪的面积.参考答案一.选择题1.解:由题意可知:m+1=3,n﹣1=1,∴m=2,n=2,故选:D.2.解:∵代数式2x2+7kxy﹣y2中不含xy项,∴7k=0.解得:k=0.故选:A.3.解:A、单项式的系数是,故原题说法错误;B、多项式2x2﹣3y2+5xy2是三次三项式,故原题说法正确;C、单项式﹣22m4n的次数是5,故原题说法错误;D、单项式2a2b与ab2不是同类项,故原题说法错误;故选:B.4.解:∵单项式与的差仍然是单项式,∴与是同类项,∴m=2,n+1=4.解得m=2,n=3,∴m+n=5.故选:B.5.解:A、0是单项式,故本选项正确,B、﹣a的系数是﹣1,故本选项错误,C、式子a3+是分式,不是多项式,故本选项错误,D、3a2b与﹣ab2不是同类项(相同字母的指数不同),故本选项错误.故选:A.6.解:因为2a m b+4a2b n=6a2b,所以2a m b与4a2b n是同类项.所以m=2,n=1,所以﹣2m+n=﹣2×2+1=﹣3,故选:C.7.解:3x3+k2x2﹣4x2+x﹣5=3x3+(k2﹣4)x2+x﹣5,由多项式不含x2,得k2﹣4=0,解得k=2或﹣2.故选:D.8.解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.二.填空题9.解:∵单项式﹣3x3y n与5x m+4y3是同类项,∴m+4=3,n=3,解得m=﹣1,n=3,∴m﹣n=﹣1﹣3=﹣4.故答案为:﹣4.10.解:x2﹣kxy﹣8y2﹣xy+5=x2﹣(k+1)xy﹣8y2+5.∵代数式不含xy项,∴﹣(k+1)=0.解得k=﹣1.故答案为:﹣1.11.解:﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.12.解:3(a﹣b)+4(a﹣b)﹣2(a﹣b)=(3+4﹣2)(a﹣b)=5(a﹣b),故答案为:5(a﹣b).13.解:xy2﹣3x2y﹣1+2xy2+5x2y=(1+2)xy2+(5﹣3)x2y﹣1=3xy2+2x2y﹣1.故答案为:3xy2+2x2y﹣1.14.解:﹣5m2n+4mn2﹣2mn+6m2n+3mn=m2n+4mn2+mn.故答案为:m2n+4mn2+mn.15.解:∵代数式2ax2y+3xy﹣4﹣5x2y﹣7x﹣7ax2y+m中,化简后不含x2y项,∴2ax2y﹣5x2y﹣7ax2y=0,∴2a﹣5﹣7a=0,解得:a=﹣1,故a2019﹣4=﹣5.故答案为:﹣5.16.解:∵多项式4x2﹣3mx+2+m的值与m的大小无关,∴4x2﹣3mx+2+m=4x2+2+(﹣3x+1)m,则﹣3x+1=0,解得:x=.故答案为:.17.解:由题意得:a﹣1=0,b+3=0,解得a=1,b=﹣3,∴a+b=1﹣3=﹣2.故答案为:﹣2.三.解答题18.解:(1)原式=3x2﹣x2﹣2x+3x﹣1﹣5=2x2+x﹣6(2)原式=2a2﹣1+2a﹣3a+3﹣3a2=﹣a2﹣a+219.解:(1)5x+2y﹣3x﹣7y=(5x﹣3x)+(2y﹣7y)=2x﹣5y;(2)3a2﹣3ab﹣5﹣2a2+3ab+7=(3a2﹣2a2)+(3ab﹣3ab)+(7﹣5)=a2+2.20.解:(1)原式=2a﹣3a﹣5b+b=﹣a﹣4b;(2)原式=(3﹣4﹣5)(a﹣b)=﹣6(a﹣b)=﹣6a+6b;(3)原式=4x2+4xy﹣4﹣4x2+2xy=6xy﹣4;(4)原式=a2﹣3(a2﹣2a2+2a+1)=a2﹣3(﹣a2+2a+1)=a2+3a2﹣6a﹣3=4a2﹣6a﹣3.21.解:(1)原式=(8﹣5﹣7)(a﹣b)=﹣4(a﹣b)=﹣4a+4b;(2)原式=3a2b﹣2(ab2﹣2a2b+4ab2)=3a2b﹣2ab2+4a2b﹣8ab2=7a2b﹣10ab2.22.解:(1)原式=(3+4)a2+(﹣2﹣7)a=7a2﹣9a;(2)原式=(2﹣2)x2+y2+(5﹣2﹣3)xy﹣2y+1=y2﹣2y+1.23.解:原式=4x2﹣2bx2+ax+7x﹣y﹣6y﹣3+5=(4﹣2b)x2+(a+7)x﹣7y+2由题意可知:4﹣2b=0,a+7=0,∴a=﹣7,b=2,∴原式=×(﹣7)3﹣2×4+3×8=﹣49﹣8+24=﹣33.24.解:∵关于x,y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4=(6m﹣1)x2+(4n+2)xy+2x+y+4不含二次项,∴6m﹣1=0,4n+2=0,∴m=,n=﹣.25.解:(1)小路的面积=30x+20x﹣x2.草坪的面积=20×30﹣(30x+20x﹣x2)=x2﹣50x+600.(2)把x=3代入,得到:草坪的面积=x2﹣50x+600=32﹣50×3+600=459(平方米).答:当x=3米时,求草坪的面积是459平方米.。

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习(附答案)七年级数学整式加减合并同类项专项练1.合并同类项1) 4x^32) 03) x(6y-5)+x(7-5y)-10x4) -14x5) a^2-2ab6) -15xy2.合并单项式1) -2y2) 12a^2b^5-3a^2b-ab^23) -m^2n^3+m^3n^23.合并同类项1) 2m^2+2mn^22) -6a^2-ab-b^24.去括号并合并同类项1) -7a-5b2) -2x+105.化简3x^2+11x-36.化简1) -xy2) a-1/27.计算1) -x^2-11xy+4y^22) 4a^3b-13a^2b^2-10b^33) 6a8.计算3a+29.化简求值1) -10xy^32) -610.化简求值5a^2+8ab-6ab^211.先化简再求值2a^2b+11ab^21.答案:(1) 原式 = 4x2) 原式 = 03) 原式 = xy - 3x^2 + 5x4) 原式 = -14x5) 原式 = a^2 - 2ab6) 原式 = -13x^2y - 2xy^2解析:对每个题目进行代数计算,得出结果。

2.答案:(1) 解:原式 = x^22) 解:原式 = 6a^2b^5 - 3a^2b - ab^26a^2b^5 - 3a^2b - ab^23) 解:原式 = -m^2n^3 - m^3n^2m^2n^3 - m^3n^2解析:对每个题目进行代数计算,得出结果。

3.答案:(1) 原式 = m^2 + 2mn^22) 原式 = -3ab解析:对每个题目进行代数计算,得出结果。

4.答案:(1) 6a - (7a + 5b) = -a - 5b2) (3x + 4) - (5x - 6) = -2x + 10解析:对每个题目进行代数计算,得出结果。

5.答案:5x^3 - 3x解析:对原式进行合并同类项,得出结果。

6.答案:(1) x^2 - xy2) -a^2 + a - 1/23) -14) 6a + 4b解析:对每个题目进行代数计算,得出结果。

七年级数学合并同类项同步练习(附答案)

七年级数学合并同类项同步练习(附答案)

合并同类项一、选择题1 .计算223a a +的结果是( ) A.23a B.24a C.43a D.44a2 .下面运算正确的是( ).A.ab b a 523=+B.03322=-ba b aC.532523x x x =+ D.12322=-y y 3 .下列计算中,正确的是( )A 、2a +3b =5ab ;B 、a 3-a 2=a ;C 、a 2+2a 2=3a 2;D 、(a -1)0=1.4 .已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A.51x --B.51x +C.131x --D.131x + 5 .下列合并同类项正确的是A.2842x x x =+B.xy y x 523=+C.43722=-x xD.09922=-ba b a 6 .下列计算正确的是( )(A)3a+2b=5ab (B)5y 2-2y 2=3 (C)-p 2-p 2=-2p 2(D)7m-m=77 .加上-2a-7等于3a 2+a 的多项式是 ( )A 、3a 2+3a-7B 、3a 2+3a+7C 、3a 2-a-7D 、-4a 2-3a-7 8 .当1=a 时,a a a a a a 10099432-++-+- 的值为( )A. 5050B. 100C. 50D. -50 二、填空题9 .化简:52a a -=_________. 10.计算:=-x x 53_________。11.一个多项式与2x 2-3xy 的差是x 2+xy,则这个多项式是_______________. 三、解答题12.求多项式:10X 3-6X 2+5X-4与多项式-9X 3+2X 2+4X-2的差。13.化简:2(2a 2+9b)+3(-5a 2-4b)14.化简:2222343423x y xy y xy x -+--+.15.先化简,后求值.(1)化简:()()22222212a b ab ab a b +--+-(2)当()221320b a -++=时,求上式的值.16.先化简,再求值:x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2),其中x=1,y=3.17.计算:(1)()()32223232y xy y x xy y ---+-;(2)5(m-n)+2(m-n)-4(m-n)。18.先化简,再求值:)52338()5333(3122222y xy x y xy x x +++-+-,其中21-=x ,2=y .19.化简求值: )3()3(52222b a ab ab b a +--,其中31,21==b a .20.先化简,后求值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----,其中21-=a22.给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.23.先化简,再求值:()()2258124xy x xxy ---+,其中1,22x y =-=.24.先化简,再求值。(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中a=-1 b=125.化简求值(-3x 2-4y )-(2x 2-5y +6)+(x 2-5y -1) 其中 x =-3 ,y =-126.先化简再求值:(ab-3a 2)-2b 2-5ab-(a 2-2ab),其中a=1,b=-2。27.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-。”甲同学把“12x =”错抄成了“12x =-”但他计算的结果也是正确的,请你通过计算说明为什么?28.已知:21(2)||02x y ++-= ,求22222()[23(1)]2xy x y xy x y +----的值。3.4合并同类项参考答案一、选择题1 .B2 .B;3 .C ;4 .A5 .D6 .C7 .B8 .D 二、填空题9 .3a ; 10.-2x 11.3x 2-2xy 三、解答题12.粘贴有误,原因可能为题目为公式编辑器内容,而没有其它字符13.解:原式=4a 2+18b-15a 2-12b =-11a 2+6b14.解:原式=)44()32()33(2222y y xy xy x x -+-+- =-xy15.原式=21a b -=1.16.x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2)= x 2-x 2 +3xy +2y 2-x 2+xy-2y 2 = 4xy-x 2当x=1,y=3时 4xy-x 2=4×1×3-1=11。 17.(1)()()yx xy y xy y x xy y y xy y x xy y 2232223322232232232-=+--+-=---+-(2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n) =-2(m-n) =-2m+2n 。18.解:原式=2222252338533331y xy x y xy x x ++++--=)5253()33()38331(22222y y xy xy x x x ++-++- =2y 当21-=x ,y =2时,原式=4 .19.解:原式=3220.原式mn =,当2,1-==n m 时,原式2)2(1-=-⨯=;21.原式=692-+a a ;-2;22.(1) (212x x +)+(2132x y +)=23x x y ++ (去括号2分)当1,2x y =-=,原式=2(1)(1)326-+-+⨯=(2)(212x x +)-(2132x y +) =3x y - (去括号2分)当1,2x y =-=,原式=(1)327--⨯=- (212x x +)+(2113x +)=255166x x ++= (212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++= (2132x y +)-(2113x +)=21313166x y +-=23.解:原式2258124xy x x xy =-+- ()()2254128xy xy x x =-+- 24xy x =+当1,22x y =-=时,原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=024.解:原式=5a 2-3b 2+a 2+b 2-5a 2-3b 2=-5b 2+a 2当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4 25.33. 26. -827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+-3223(211)(33)(22)(11)x x y xy y =--+-++-++-- 32y =-∴此题的结果与x 的取值无关。28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+--=22(22)(21)(32)xy x y -+-+-=21x y + ∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y = ∴原式=21(2)12-⨯+=3。

初一合并同类项20道带答案过程

初一合并同类项20道带答案过程

初一合并同类项20道带答案过程例1、合并同类项(1)(3x-5y)-(6x+7y)+(9x-2y)(2)2a-[3b-5a-(3a-5b)](3)(6m2n-5mn2)-6(m2n-mn2)解:(1)(3x-5y)-(6x+7y)+(9x-2y)=3x-5y-6x-7y+9x-2y (正确去掉括号)=(3-6+9)x+(-5-7-2)y (合并同类项)=6x-14y(2)2a-[3b-5a-(3a-5b)] (应按小括号,中括号,大括号的顺序逐层去括号)=2a-[3b-5a-3a+5b] (先去小括号)=2a-[-8a+8b] (及时合并同类项)=2a+8a-8b (去中括号)=10a-8b(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)=(6-2)m2n+(-5+3)mn2 (合并同类项)=4m2n-2mn2例2.已知:A=3x2-4xy+2y2,B=x2+2xy-5y2求:(1)A+B (2)A-B (3)若2A-B+C=0,求C。

解:(1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)=3x2-4xy+2y2+x2+2xy-5y2(去括号)=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)=4x2-2xy-3y2(按x的降幂排列)(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)=3x2-4xy+2y2-x2-2xy+5y2 (去括号)=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)=2x2-6xy+7y2 (按x的降幂排列)(3)∵2A-B+C=0∴C=-2A+B=-2(3x2-4xy+2y2)+(x2+2xy-5y2)=-6x2+8xy-4y2+x2+2xy-5y2 (去括号,注意使用分配律)=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)=-5x2+10xy-9y2 (按x的降幂排列)例3.计算:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)(3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2]解:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)=m2-mn-n2-m2+n2 (去括号)=(-)m2-mn+(-+)n2 (合并同类项)=-m2-mn-n2 (按m的降幂排列)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)=8an+2-2an-3an-an+1-8an+2-3an (去括号)=0+(-2-3-3)an-an+1 (合并同类项)=-an+1-8an(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)=(1--+)(x-y)2 (“合并同类项”)=(x-y)2例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值,其中x=2。

七年级数学上册《第三章 合并同类项与移项》练习题附带答案-人教版

七年级数学上册《第三章 合并同类项与移项》练习题附带答案-人教版

七年级数学上册《第三章合并同类项与移项》练习题附带答案-人教版一、选择题1.下列移项中,不正确的是( )A.由x+2=5,得x=5-2B.由2y=y-3,得2y-y=-3C.由3m=2m+1,得2m-3m=1D.由-a=3a-1,得-a-3a=-12.解方程-2(x-5)+3(x-1)=0时,去括号正确的是( )A.-2x-10+3x-3=0B.-2x+10+3x-1=0C.-2x+10+3x-3=0D.-2x+5+3x-3=03.下列通过移项变形,错误的是( )A.由x+2=2x-7,得x-2x=-7-2B.由x+3=2-4x,得x+4x=2-3C.由2x-3+x=2x-4,得2x-x-2x=-4+3D.由1-2x=3,得2x=1-34.若x=-3是方程2(x-m)=6的解,则m的值为( )A.6B.-6C.12D.-125.关于x的一元一次方程2x a﹣2+m=4的解为x=1,则a+m的值为( )A.9B.8C.5D.46.当x=4时,式子5(x+m)-10与式子mx+4x的值相等,则m=( )A.-2;B.2;C.4;D.6;7.解方程4(x-1)-x=2x+12的步骤如下:①去括号,得4x-4-x=2x+1;②移项,得4x+x-2x=1+4;③合并,得3x=5;④系数化为1,得x=5 3.经检验可知:x=53不是原方程的解,说明解题的四个步骤中有错,其中做错的一步是( )A.①B.②C.③D.④8.若关于x的方程(m2-1)x2-(m+1)x+8=0是一元一次方程,有四位学生求得m的值分别如下:①m=±1;②m=1;③m=-1;④m=0.其中错误的个数是( ).A.1B.2C.3D.49.若x=1是方程3-m+x=6x的解,则关于y的方程m(y-3)-2=m(2y-5)的解是( )A.y=-10B.y=3C.y=43D.y=410.关于x的方程ax+3=4x+1的解为正整数, 则整数a的值为( )A.2B.3C.1或2D.2或3二、填空题11.若-x n+1与2x2n-1是同类项,则n= .12.如果2x+3的值与1-x的值互为相反数,那么x=________.13.解方程:3x﹣2(x﹣1)=8解:去括号,得:________;移项,得:________;合并同类型,得:________;系数化为1,得:________.14.如果4是关于x的方程3a﹣5x=3(x+a)+2a的解,则a=________.15.如果2(x+3)的值与3(1-x)的值互为相反数,那么x等于________.16.在等式3×(1- )-2×( -1)=15的两个方格中分别填入一个数,使这两个数互为相反数,且等式成立,则第一个方格中的数是。

七上计算:合并同类项50题(含答案)

七上计算:合并同类项50题(含答案)

合并同类项50题(一)1.5279a b a b --++ 2.223462x y y x -++.3.22753268x x x x --+-+4.12523a b a b ++-.5.22221350.7544ab a b a b ab --+6.322383649a a b a b a -+-7.223254xy y xy y --+-8.22676598a a a a +----9.222243224a b ab a b ab ++-+-.10.2223465x x x x -+--11.22223x xy x xy --+ 12.2267946a b a b +-+-+13.722a b a b +--. 14.222233224y x xy x y +---.15.2222324332x xy y xy y x +--+-16.22224335ab a b ab a b -+-17.22223567x y xy xy x y -+-18.2274233a a a a +-++19.3245a a --+.20.3233354229x x x x x x -+--+++-21.22222317326mn n m mn n m --+ 22.2332572x y x x x y -+--+23.2213(24)2(5)2x x x x ---+-+-. 24.2212(2)(612)102x y x y ---+.25.2(53)3(3)a a b a b +---26.23(2)m n --27.13(2)2(4)20092x y x y ---++.28.()(43)(53)a b a b c a b c --+---+-.29.222294(23)4m m mn n n --++.30.222212()(3)2x y x x x y +--.31.22225(3)(3)a b ab ab a b --+ 32.221[7(43)3]2x x x x ----33.22(24)(51)a a a a -+--- 34.22(4)8m mn n n ---.35.2242(231)a b ab a b ab +-+-36.116(1)(21)23x x +--37.[5(2)2]x y x z y --+-38.224(32)(21)x x x x +-+--.39.3(34)x -+40.22(212)(1)a a a a -+--+41.43[3(42)8]x x x ---+ 42.223(2)2(3)a b b a b b +--43.2()2()a a b a b ++-+ 44.22222(3)(5)1a b ab ab a b --++45.32234(3)(25)a b b a --+-+46.3(1)(5)x x ---47.22213(54)62a a a a a -+-+48.22(621)2(342)a a a a +---+49.223(2)2(3)a ab ab b ---+50.已知23A x =-,21312B x x =--,求2A B -的值.合并同类项50题(一)参考答案与试题解析1.计算:5279a b a b --++【解答】解:5279a b a b --++(57)(29)a a b b =-++-+27a b =+.2.化简:223462x y y x -++.【解答】解:原式223462x y y x =-++22(32)(46)x x y y =++-+252x y =+.3.22753268x x x x --+-+【解答】解:原式235x x =-+.4.12523a b a b ++-. 【解答】解:原式12(5)()23a ab b =++- 11123a b =+. 5.22221350.7544ab a b a b ab --+ 【解答】解:原式222213(0.75)(5)44ab ab a b a b =+-+ 22234ab a b =- 6.322383649a ab a b a -+- 【解答】解:322383649a ab a b a -+- 33228(3)(64)9a a ab a b =-+-+ 321929a ab =-. 7.化简:223254xy y xy y --+-【解答】解:223254xy y xy y --+-22(35)(24)xy xy y y =-+-+226xy y =-.8.化简:22676598a a a a +----【解答】解:原式22(65)(79)(68)a a a a =-+--+2214a a =-+-.9.合并同类项:222243224a b ab a b ab ++-+-.【解答】解:222243224a b ab a b ab ++-+-2222(42)(34)(2)a a b b ab ab =-+++-2227a b ab =++.10.合并同类项:2223465x x x x -+--【解答】解:原式22(24)(36)5x x x x =++---2695x x =--.11.化简:22223x xy x xy --+【解答】解:原式22223x x xy xy =--+22(2)(23)x x xy xy =-+-+2x xy =-+.12.2267946a b a b +-+-+【解答】解:原式22(64)(7)(96)a a b b =++-+-+21063a b =+-.13.化简:722a b a b +--.【解答】解:722a b a b +--(72)(12)a b =-+-5a b =-.14.合并同类项:222233224y x xy x y +---.【解答】解:原式22(32)2(34)x xy y =--+-222x xy y =--15.2222324332x xy y xy y x +--+-【解答】解:原式2222(32)(23)(43)x xy y x xy y =-+-+-+=--. 16.22224335ab a b ab a b -+-【解答】解:原式22224335ab ab a b a b =+--2278ab a b =-.17.化简:22223567x y xy xy x y -+-【解答】解:原式2222(37)(65)4x y xy x y xy =-+-=-+.18.2274233a a a a +-++【解答】解:原式22(72)(43)3a a a a =-+++2573a a =++.19.计算;3245a a --+.【解答】解:3245a a --+(34)(25)a a =-+-+3a =-+.20.3233354229x x x x x x -+--+++-【解答】解:3233354229x x x x x x -+--+++-3332(32)5(2)(49)x x x x x x =-++++-+--2513x x =+-.21.22222317326mn n m mn n m --+ 【解答】解:原式22317(1)326mn =--+ 283mn =-. 22.2332572x y x x x y -+--+【解答】解:233223572322x y x x x y x y x -+--+=--.23.去括号,合并同类项:2213(24)2(5)2x x x x ---+-+-.【解答】解:原式2223612210151611x x x x x x =-++-+-=-++.24.先去括号,再合并同类项:2212(2)(612)102x y x y ---+. 【解答】解:2212(2)(612)102x y x y ---+ 22243610x y x y =--++2210x y =-++.25.去括号,合并同类项:2(53)3(3)a a b a b +---【解答】解:2(53)3(3)a a b a b +---10639a a b a b =+--+83a b =+.26.化简:23(2)m n --【解答】解:原式236m n =-+.27.去括号,并合并同类项:13(2)2(4)20092x y x y ---++. 【解答】解:13(2)2(4)2009638200914220092x y x y x y x y x y ---++=-+--+=-++. 28.去括号,合并同类项:()(43)(53)a b a b c a b c --+---+-.【解答】解:原式435325a b a b c a b c a b =-++----+=--.29.计算:222294(23)4m m mn n n --++.【解答】解:原式2222981244m m mn n n =-+-+212m mn =+.30.化简:222212()(3)2x y x x x y +--. 【解答】解:原式222223x y x x x y =+-+2232x y x =-.31.化简:22225(3)(3)a b ab ab a b --+【解答】解:原式22221553a b ab ab a b =---22126a b ab =-.32.计算:221[7(43)3]2x x x x ----【解答】解:原式2217(43)32x x x x =-+-+ 22174332x x x x =-+-+ 27332x x =--. 33.计算:22(24)(51)a a a a -+---【解答】解:原式222451a a a a =-+-++, 2653a a =-++.34.化简:22(4)8m mn n n ---.【解答】解:原式2288m mn n n =-+- 22m mn =-.35.计算:2242(231)a b ab a b ab +-+-.【解答】解:原式224462a b ab a b ab =+--+ 52ab =-+.36.116(1)(21)23x x +-- 【解答】解:原式213633x x =+-+ 71933x =+. 37.[5(2)2]x y x z y --+-【解答】解:原式(1052)x y x z y =----, 1052x y x z y =-+++,115x y z =++.38.化简:224(32)(21)x x x x +-+--.【解答】解:原式2243221x x x x =+-+-+, 2224231x x x x =-+-++,224x x =-++.39.3(34)x -+【解答】解:3(34)912x x -+=--.40.化简:22(212)(1)a a a a -+--+【解答】解:原式222121a a a a =-+-+- 2a a =+.41.43[3(42)8]x x x ---+【解答】解:原式439(42)24x x x =-+-- 43361824x x x =-+--1712x =-+.42.化简:223(2)2(3)a b b a b b +--【解答】解:原式223626a b b a b b =+-+ 212a b b =+.43.化简:2()2()a a b a b ++-+【解答】解:原式222a a b a b =++-- a b =-.44.22222(3)(5)1a b ab ab a b --++【解答】解:原式22226251a b ab ab a b =---+ 22571a b ab =-+45.化简:32234(3)(25)a b b a --+-+【解答】解:原式322341225a b b a =-+-+ 3210a b =+.46.化简:3(1)(5)x x ---【解答】解:原式335x x =--+22x =+.47.计算:22213(54)62a a a a a -+-+ 【解答】解:原式222135462a a a a a =---+ 21112a a =--. 48.化简:22(621)2(342)a a a a +---+【解答】解:原式22621684a a a a =+--+- 22107a a =+-.49.化简:223(2)2(3)a ab ab b ---+【解答】解:原式22(36)(62)a ab ab b =---+ 223662a ab ab b =-+-2232a b =-.50.已知23A x =-,21312B x x =--,求2A B -的值. 【解答】解:221232(31)2A B x x x -=---- 61x =-.。

合并同类项 同步练习 2024--2025学年人教版七年级数学上册_46465798

合并同类项  同步练习   2024--2025学年人教版七年级数学上册_46465798

新人教版(2024版)第四章整式的加减同步作业3 4.2.1合并同类项班级姓名家长签名年月日知识要点:1、所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个常数项也是同类项.2、化简多项式的一般步骤:(1)找出同类项并做标记;(2)运用交换律、结合律将多项式的同类项结合;(3)合并同类项;(4)按同一个字母的降幂(或升幂排列).同步练习一.选择题1.计算4x2﹣x2的结果是()A.4B.3x2C.2x2D.4x22.下列计算正确的是()A.3x+3y=6xy B.ab﹣6ba=﹣5abC.3x2﹣2x=x D.4a2b+2ab2=6a2b3.已知单项式3a m+1b与﹣b n﹣2a3可以合并同类项,则m,n的值分别为()A.2,3B.2,2C.3,2D.3,34.下列运算正确的是()A.2x+3y=5xy B.6x﹣4x=2x2C.﹣a2﹣a2=0D.7a2b﹣3a2b=4a2b5.关于x,y的多项式1+4xy2+nxy2+xy中不含xy2项,则n的值是()A.0B.4C.﹣1D.﹣46.下列计算正确的是()A.2m3+3m2=5m5B.m+n=mnC.2m2n﹣nm2=m2n D.2m3﹣3m2=m7.若单项式3x 3y m 与−14x n+1y 2的和是单项式,则这两个单项式的和为( ) A .−34x 3y 2B .114x 2y 3C .114x 3y 2D .134x 3y 28.下列各项代数式相加能合并成一个单项式的是( ) A .3xy 与2ab B .2a 2b 与﹣0.5ba 2 C .3a 与2abD .13与x9.下列说法:①平方等于本身的数只有1;②若a ,b 互为相反数,且ab ≠0,则a b=−1;③若|a |=a ,则(﹣a )3的值为负数;④如果a +b +c =0,且|a |>|b |>|c |,那么ac <0;⑤2x 2+3x 3=5x 5;⑥多项式−2x 2y3+2xy −1是三次三项式;正确的个数为( )A .3个B .4个C .5个D .6个10.对于式子x +2x +3x +4x +…+99x +100x ,按照以下规则改变指定项的符号(仅限于正号与负号之间的变换):第一次操作改变偶数项前的符号,其余各项符号不变;第二次操作:在前一次操作的结果上只改变3的倍数项前的符号;第三次操作:在前一次操作的结果上只改变4的倍数项前的符号;第四次操作:在前一次操作的结果上只改变6的倍数项前的符号.下列说法:①第二次操作结束后,一共有51项的符号为正号;②第三次操作结束后,所有10的倍数项之和为170x ;③第四次操作结束后,所有项的和为825x .其中正确的个数是( ) A .0 B .1 C .2 D .3二.填空题(11.合并同类项:8m 2﹣5m 2= .12.若单项式12x 2y m与﹣2x n y 3的和仍为单项式,则m +n = .13.2x k y k +2与3x 2y n 的和是5x 2y n ,则k +n = . 14.若4x 2y 3+2ax 2y 3=4bx 2y 3,则3+a ﹣2b = .15.若a n +a n ⋯+a n ︸a 个a n=a 4(a 为大于1的整数),则n 的值是 .16.如图,某校的图书码共有7位数字,它是由6位“数字代码”和1位“校验码”构成,其中校验码是用来校验图书码中前6位数字代码的正确性的,它的编制是按照特定的算法得来的.以图1所示的图书码为例,其算法为:第1步,计算前6位数字中从左向右数偶数位上的数字之和为a ,即a =9+1+3=13;第2步,计算前6位数字中从左向右数奇数位上的数字之和为b ,即b =6+0+2=8; 第3步,计算3a 与b 的和为c ,即c =3×13+8=47;第4步,取大于或等于c 且为10的整数倍的最小数d ,即d =50; 第5步,计算d 与c 的差就是校验码X ,即X =50﹣47=3.如图2,某个图书码中的一位数字被墨水污染了,设这位数字为m ,则m 的值为 . (共9小题)17.计算:﹣3ab ﹣4ab 2+7ab ﹣2ab 2.18.单项式﹣2x 4y m ﹣1与5x n ﹣1y 2的和是一个单项式,求m ﹣2n 的值.19.已知单项式x 3y m +1与单项式12x n−1y 2的和也是单项式.(1)求m ,n 的值;(2)当x =1,y =2时,求x 3y m +1+12x n−1y 2的值.20.(1)已知x=3时,多项式ax3﹣bx+5的值是1,当x=﹣3时,求ax3﹣bx+5的值.(2)如果关于字母x的二次多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,求(m+n)(m﹣n)的值.21.已知T=3a+ab﹣7c2+3a+7c2.(1)化简T;(2)当a=3,b=﹣2,c=−16时,求T的值.22.(1)计算:3333+3+3=;7777+7+7=.(2)设aaa是一个三位数,表示这个三位数每一数位上的数字都是a.试说明:无论a取何值,aaaa+a+a的值为定值.23.(1)小丽在计算14a 2−617a 2−1117a 2时,采用了如下做法:解:14a 2−617a 2−1117a 2=14a 2−(617a 2+1117a 2)⋯① =14a 2−a 2 =−34a 2⋯②步骤①的依据是: ; 步骤②的依据是: . (2)请试着用小丽的方法计算:−37x 2y −4419x 2y −47x 2y +619x 2y .24.阅读材料:在合并同类项中,5a ﹣3a +a =(5﹣3+1)a =3a ,类似地,我们把(x +y )看成一个整体,则5(x +y )﹣3(x +y )+(x +y )=(5﹣3+1)(x +y )=3(x +y ).“整体思想”是中学教学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛. 尝试应用:(1)把(x ﹣y )2看成一个整体,合并3(x ﹣y )2﹣6(x ﹣y )2+2(x ﹣y )2的结果是 .(2)已知a 2﹣2b =1,求3﹣2a 2+4b 的值.25.【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”.通常的解题方法是把x,y看作字母,把a看作系数合并同类项.因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,其中a+3=0,则a=﹣3.(1)若关于x的多项式(2x﹣3)m+m2﹣3x的值与x的取值无关,求m的值;【能力提升】(2)7张如图(a)的小长方形,长为a、宽为b,按照图(b)的方式不重叠地放在大长方形ABCD内,将大长方形中未被覆盖的两个部分涂上阴影,设右上角的面积为S1,左下角的面积为S2,当AD变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级合并同类项练习
及答案
LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】
例1、合并同类项
(1)(3x-5y)-(6x+7y)+(9x-2y)
(2)2a-[3b-5a-(3a-5b)]
(3)(6m2n-5mn2)-6(m2n-mn2)
(1)(3x-5y)-(6x+7y)+(9x-2y)
=3x-5y-6x-7y+9x-2y (正确去掉括号)
=(3-6+9)x+(-5-7-2)y (合并同类项)
=6x-14y
(2)2a-[3b-5a-(3a-5b)] (应按小括号,中括号,大括号的顺序逐层去括号)=2a-[3b-5a-3a+5b] (先去小括号)
=2a-[-8a+8b] (及时合并同类项)
=2a+8a-8b (去中括号)
=10a-8b
(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)
=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)
=(6-2)m2n+(-5+3)mn2 (合并同类项)
=4m2n-2mn2
例2.已知:A=3x2-4xy+2y2,B=x2+2xy-5y2
求:(1)A+B (2)A-B (3)若2A-B+C=0,求C.
(1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)
=3x2-4xy+2y2+x2+2xy-5y2(去括号)
=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)
=4x2-2xy-3y2(按x的降幂排列)
(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)
=3x2-4xy+2y2-x2-2xy+5y2 (去括号)
=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)
=2x2-6xy+7y2 (按x的降幂排列)
(3)∵2A-B+C=0
∴C=-2A+B
=-2(3x2-4xy+2y2)+(x2+2xy-5y2)
=-6x2+8xy-4y2+x2+2xy-5y2 (去括号,注意使用分配律)=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)
=-5x2+10xy-9y2 (按x的降幂排列)
例3.计算:
(1)m2+(-mn)-n2+(-m2)-
(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)
(3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2]
(1)m2+(-mn)-n2+(-m2)-
=m2-mn-n2-m2+n2 (去括号)
=(-)m2-mn+(-+)n2 (合并同类项)
=-m2-mn-n2 (按m的降幂排列)
(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)
=8an+2-2an-3an-an+1-8an+2-3an (去括号)
=0+(-2-3-3)an-an+1 (合并同类项)
=-an+1-8an
(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]
=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)
=(1--+)(x-y)2 (“合并同类项”)
=(x-y)2
例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值,其中x=2.
分析:由于已知所给的式子比较复杂,一般情况都应先化简整式,然后再代入所给数值x=-2,去括号时要注意符号,并且及时合并同类项,使运算简便.
原式=3x2-2{x-5[x-3x+6x2-3x2+6x]-x+1} (去小括号)
=3x2-2{x-5[3x2+4x]-x+1} (及时合并同类项)
=3x2-2{x-15x2-20x-x+1} (去中括号)
=3x2-2{-15x2-20x+1} (化简大括号里的式子)
=3x2+30x2+40x-2 (去掉大括号)
=33x2+40x-2
当x=-2时,原式=33×(-2)2+40×(-2)-2=132-80-2=50
例5.若16x3m-1y5和-x5y2n+1是同类项,求3m+2n的值.
∵16x3m-1y5和-x5y2n+1是同类项
∴对应x,y的次数应分别相等
∴3m-1=5且2n+1=5
∴m=2且n=2
∴3m+2n=6+4=10
本题考察我们对同类项的概念的理解.
例6.已知x+y=6,xy=-4,求:(5x-4y-3xy)-(8x-y+2xy)的值.
(5x-4y-3xy)-(8x-y+2xy)
=5x-4y-3xy-8x+y-2xy
=-3x-3y-5xy
=-3(x+y)-5xy
∵x+y=6,xy=-4
∴原式=-3×6-5×(-4)=-18+20=2
说明:本题化简后,发现结果可以写成-3(x+y)-5xy的形式,因而可以把x+y,xy的值代入原式即可求得最后结果,而没有必要求出x,y的值,这种思考问题的思想方法叫做整体代换,希望同学们在学习过程中,注意使用.
三、练习
(一)计算:
(1)a-(a-3b+4c)+3(-c+2b)
(2)(3x2-2xy+7)-(-4x2+5xy+6)
(3)2x2-{-3x+6+[4x2-(2x2-3x+2)]}。

相关文档
最新文档