求异面直线之间距离的常用策略
求异面直线距离的常用方法

求异面直线距离的常用方法
1、辅助平面法
(1)线面垂直法,用于两条异面直线互相垂直情况。
若已知两条异面直线互相垂直,那么可以寻找一个辅助平面,使它过其中一条直线且垂直于另一条直线,在辅助平面上,过垂足引前一条直线的垂线,就得到这两条异面直线的公垂线,并求其长度。
(2)线面平行法,用于一般情况。
其用法为:过其中一条直线作与另一条直线平行的平面,这样可把求异面直线间的距离转化为求点到面的距离
(3)面面平行法,求两异面直线的距离,除了上面(2)介绍的转化为线面的距离外,还可以转化为面面的距离,即作两平行的辅助平面,分别过其中的一条,两平行平面间的距离就为此两异面直线的距离。
2、等积法
在一般情况下,求异面直线间的距离可转化为
(1)一异面直线与过另一异面直线且平行于第一条异面直线的平面之间的距离。
(2)分别过两异面直线的两个平行平面之间的距离。
上述两种距离总是通过直线上(或平面上)一点到另一平面之间的距离求出,除直接求出外,一般都要通过等面积计算再求高的办法来求得的。
异面直线的距离向量法

异面直线的距离向量法异面直线的距离向量法是一种通过向量运算来求解异面直线之间距离的方法。
以下是具体的步骤:首先,设两条异面直线分别由向量a和b确定,且这两条异面直线的公垂线的一个方向向量为n。
公垂线与两直线分别交于点A和B。
为了找到点A和B,我们可以在两条直线上分别任取一点P和Q。
然后,通过向量运算,我们可以得到向量PQ。
接下来,我们需要计算向量PQ在公垂线方向向量n上的投影。
这个投影的长度就是异面直线之间的距离,记作d。
具体地,投影长度d可以通过以下公式计算:d=∣n∣∣PQ⋅n∣其中,PQ⋅n表示向量PQ和n的点积,∣n∣表示向量n的模长。
然而,需要注意的是,上述公式中的n应该是单位向量,即模长为1的向量。
如果n不是单位向量,我们需要先将其单位化。
单位化向量的公式为:n unit=∣n∣n然后,将单位化后的n unit代入上述公式中计算距离d。
但这里有一个问题:上述解释中提到的公式实际上并不适用于计算异面直线之间的距离。
正确的做法应该是找到两条异面直线的公垂线,并计算这条公垂线的长度。
然而,直接通过向量运算找到公垂线并计算其长度是比较复杂的。
一种更实用的方法是使用以下公式:d=∣a×b∣∣(a×b)⋅c∣其中,a和b是两条异面直线上的两个方向向量(可以通过直线上的两点相减得到),c是连接两条异面直线上任意两点的向量(即上述的PQ),而a×b表示a和b的叉积,其结果是一个与a和b都垂直的向量,也就是公垂线的方向向量。
这个公式的几何意义是计算向量c在公垂线方向上的投影长度,即异面直线之间的距离。
但请注意,这个公式中的分母∣a×b∣实际上是公垂线的方向向量的模长,而不是公垂线本身的长度。
因此,这个公式实际上并不直接给出异面直线之间的距离。
正确的做法应该是先通过其他方法(如几何方法或优化方法)找到公垂线与两条异面直线的交点,然后计算这两点之间的距离。
但在实际应用中,由于很难找到公垂线与两条异面直线的确切交点位置,因此通常使用近似方法或数值方法来估计异面直线之间的距离。
向量法求异面直线所成的距离

向量法求异面直线所成的距离
异面直线是指不在同一平面上的两条直线。
求解这两条异面直线所成的距离,可以使用向量法。
向量法可以通过向量的数量积和向量的模长求得两条直线之间的距离。
下面我们通过实例来详细说明向量法如何求解两条异面直线之间的距离。
假设有两条异面直线,它们的方程分别为:
直线1:
$x = 3 + 2t$
$y = 1 - t$
$z = -2 + 3t$
首先我们需要确定两条直线上的任意两个点,然后用这两个点之间的连线构成的向量来表示两条直线之间的直线向量。
所以我们任意选择直线1上的两个点 $A(3,1,-2)$ 和$B(5,-1,4)$ ,计算它们之间的向量:
$\vec{AB} = \overrightarrow{AB} = \begin{pmatrix} 5 - 3 \\ -1 - 1 \\ 4 - (-2) \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 6 \end{pmatrix}$
同样,我们任意选择直线2上的两个点 $C(1,2,5)$ 和 $D(5,6,15)$,计算它们之间的向量:
然后,我们需要求解两条直线之间的最短距离,也就是求解这两个向量的数量积:
$\vec{AB} \cdot \vec{CD} = 2 \times 4 + (-2) \times 4 + 6 \times 10 = 52$
接下来,我们需要计算两个向量的模长:
因此,两条直线之间的距离为:
因此,两条异面直线所成的距离为 $\frac{13}{19}$。
求异面直线的距离的各种方法

异面直线的距离确定和计算两条异面直线间的距离,关键在于实现两个转化:一是转化为一条异面直线和另一条异面直线所在而与它平行的平面之间的距离;二是转化为两条异面直线分别所在的两个平行平面之间的距离。
1.直接法根据定义,找出或作出异面直线的公垂线段,再计算此公垂线段的长。
例:正四棱锥S-ABCD中,底面边长为a,侧棱长为b(b>a).求:底面对角线AC与侧棱SB间的距离.解:作SO⊥面ABCD于O,则点O是正方形ABCD的中心.∵SO⊥AC,BO⊥AC,∴AC⊥面SOB.在△SOB中,作OH⊥SB于H①,根据①、②可知OH是AC与SB的距离.∵OH·SB=SO·OB,2.转化法把所求的异面直线间的距离转化为线面间的距离或转化为面面间的距离.例:在等边圆锥(轴截面为等边三角形的圆锥叫做等边圆锥)S-ABC中,母线长为a,底面圆的直径为AC,∠CAB=60°.求:异面直线SA与BC的距离.解:如图L2-17,易知SA与BC不垂直,可考虑过SA作一个平面与BC平行,转化为求直线与平面间的距离.作AD∥BC交底面圆⊙O于D点.∵BC∥AD,∴BC∥平面SAD,取AD、BC的中点E、F,则平面ADS⊥平面SEF,过F点作FH⊥SE于H,则FH⊥平面SAD.所以FH为直线BC与平面SAD间的距离,也就是异面直线SA与BC 的距离.在△SEF中,由FH·SE=EF·SO,3.等积法不用作出异面直线间的距离,利用同一个几何体的体积为定值,布列方程来求异面直线间的距离.例如上面的例2,在求SA与BC间的距离时,我们转化为求平行的BC与平面SAD间的距离,可由同一个三棱锥换取不同的底面来计算.设BC与平面SAD间的距离为d,则以B为顶点,△SAD为底面的三棱锥的体积为而以S为顶点,△ABD为底面的三棱锥的体积为4.极值法不必作出异面直线间的距离,利用异面直线上两点间距离的最小值的性质,适当列出函数式,求此函数的最小值.还是以例2来说,在求异面直线SA与BC间的距离时,可先在SA任取一点D,作DE⊥直径AC于E,则DE⊥底面圆.再作EF⊥BC于F,则有DF⊥BC,于是DF的最小值就是SA与BC间的距离.宏志网校俊杰。
空间向量求异面直线的距离方法

空间向量求异面直线的距离方法1. 直接法!嘿,你看,就像你要直接找到两个异面直线之间最短的那条线一样,非常直白地去求啊。
比如正方体里的两条异面棱,你就直观地去找到它们之间最短距离的那个线段。
2. 转化法呀!哎呀,这就像你走不通一条路,那咱就换条路走嘛。
把异面直线的距离转化成别的容易求的距离呀。
比如在三棱锥里,把异面直线的距离转化成求某个面到另一条线的距离。
3. 向量法呗!哇塞,这可厉害啦。
利用向量来搞定异面直线的距离。
就像有了个神奇的工具!比如在一个复杂的几何体中,用向量来算算异面直线的距离,超酷的好不好!4. 定义法呢!这不就跟你找东西按照规定的方法去找一样嘛。
按照异面直线距离的定义去求解呀。
就像找一个特定的宝藏,按照线索去找。
比如在一个棱柱里,根据定义慢慢找异面直线的距离。
5. 等体积法呀!嘿呀,这就好像不同的方法可以解决同一个问题一样。
通过等体积来求出异面直线的距离哟。
比如在一个四面体中,通过等体积的巧妙变换来求出需要的距离。
6. 最值法啦!想想看呀,就跟我们追求最好的结果一样。
找到某个关联量的最值来得到异面直线的距离。
像在一个特殊的图形中,通过巧妙地找最值来求出异面直线的距离。
7. 射影法哟!哇,这就像影子一样,通过它来找到距离呢。
比如在一个有特点的几何体中,利用射影的原理来求异面直线的距离。
8. 公式法咯!简单直接啊,用专门的公式来算。
就好像有个现成的答案等你用一样。
比如在某些典型的模型中,用适用的公式快速求出异面直线的距离。
9. 拼凑法呀!哈哈,就像是把零碎的东西拼凑起来一样。
通过巧妙地拼凑来找到异面直线的距离呢。
比如在一个不规则的几何体中,一点点拼凑出求解异面直线距离的条件。
我的观点结论是:这些方法各有特点,我们要根据具体情况灵活运用,总能找到异面直线的距离呀!。
计算异面直线距离的几种方法

龙源期刊网
计算异面直线距离的几种方法
作者:吐尔逊·阿布都卡地尔买买提依明·阿木提
来源:《读写算》2013年第03期
摘要:在本文中主要介绍计算异面直线距离的垂面法,平移法,公式法,转化法,极值法等方法。
关键词:异面直线距离
计算异面直线的距离是高考辅导中的一个难点,它在高考辅导中又很重要的应用。
我在本文中对我在本文中讨论异面直线距离的概念有关的问题,主要介绍计算异面直线距离的几种方法。
1.垂面法
其想路是若直线a和b是异面直线,过b(或a)作平面a,使得
解:延长B1C1到N,使B1C1=C1N,连接D1N,MN。
容易得到D1N∥A1C1,而
A1C1∥AC,故D1N∥AC,∴AC∥平面D1MN。
因此,异面直线AC和D1M的距离就是直线AC到平面D1MN的距离,从而,只需求出点C到平面D1MN的距离即可,设这个距离为d,我们用体积法来求。
;故异面直线AC和D1M的距离为;
5.总结
本文介绍的是常用的方法,这些方法有各自的特点和优越性,当我们计算异面直线距离适当地应用上述的方法,给我们带来一些方便和特殊效果。
异面直线间的距离(高中全部8种方法详细例题)

异面直线间的距离求异面直线之间距离的常用策略: 求异面直线之间的距离是立体几何重、难点之一。
常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转为求一元二次函数的最值问题,或用等体积变换的方法来解。
常用方法有: 1、 定义法2、 垂直平面法(转化为线面距)3、 转化为面面距4、 代数求极值法5、 公式法6、 射影法7、 向量法8、 等积法1 定义法 就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。
例1 已知:边长a 为的两个正方形ABCD 和CDEF 成1200的二面角,求异面直线CD 与AE 间的距离。
思路分析:由四边形ABCD 和CDEF 是正方形,得CD ⊥AD ,CD ⊥DE ,即CD ⊥平面ADE ,过D 作DH ⊥AE 于H ,可得DH ⊥AE ,DH ⊥CD ,所以DH 是异面直线AE 、CD 的公垂线。
在⊿ADE 中,∠ADE=1200,AD=DE=a ,DH=2a。
即异面直线CD 与AE 间的距离为2a 。
2 垂直平面法:转化为线面距离,若a 、b 是两条异面直线,过b 上一点A 作a 的平行线a /,记a /与b 确定的平面α。
从而,异面直线a 、b 间的距离等于线面a 、α间的距离。
例1 如图,BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d ,求两条异面直线BF 、AE 间的距离。
思路分析:BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,∠EAB=α,∠FAB=β,AB=d ,在平面Q 内,过B 作BH ‖AE ,将异面直线BF 、AE 间的距离转化为AE 与平面BCD 间的距离,即为A 到平面BCD 间的距离,又因二面角P-AB-Q 是直二面角,过A 作 AC ⊥AB 交BF 于C ,即AC ⊥平面ABD ,过A 作AD ⊥BD 交于D ,连结CD 。
向量法求异面直线的距离公式

向量法求异面直线的距离公式
异面直线之间的距离公式可以通过向量法来求解。
假设有两条异面直线,它们的方向向量分别为a和a,直线上的一点分别为a和a。
则异面直线的距离可以通过以下步骤来计算:
1.首先,我们计算两条直线上的一点,记为aa和aa,它们为两条直线的最近点。
2.然后,我们计算直线上的向量,记为a=aa−aa,它表示从一条直线上的点到另一条直线上的点的向量。
3.最后,我们计算异面直线的距离,记为a,它等于向量a在两条直线的法向量上的投影长度。
根据以上步骤,异面直线的距离公式可以表示为:
a=|a⋅(a×a)|/|a×a|
其中,⋅表示向量的内积,×表示向量的叉积,|a⋅(a×a)|表示向量a在向量(a×a)上的投影长度,|a×a|表示向量(a×a)的模长。
需要注意的是,如果向量a和a不垂直,则上述公式给出的结果为两条直线之间的最短距离。
如果向量a和a垂直,则它们之间的夹角为a/2,此时两条直线之间的距离为0。
这就是使用向量法求解异面直线的距离公式。
通过计算两条直线之间的最短距离,我们可以更好地理解两条异面直线之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求异面直线之间距离的常用策略
求异面直线之间的距离是立体几何重、难点之一。
常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转化为求一元二次函数的最值问题,或用等体积变换的方法来解。
1 定义法
就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。
例1 已知:边长a 为的两个正方形ABCD 和CDEF 成1200的二面角,求异面直线CD 与AE 间的距离。
思路分析:由四边形ABCD 和CDEF 是正方形,得
CD ⊥AD ,CD ⊥DE ,即CD ⊥平面ADE ,过D 作DH ⊥AE 于H ,可得DH ⊥AE ,DH ⊥CD ,所以DH 是异面直线AE 、CD 的公垂
线。
在⊿ADE 中,∠ADE=1200
,AD=DE=a ,DH=2a 。
即异面直线CD 与AE 间的距离为2
a。
2 转化为线面距离
若a 、b 是两条异面直线,过b 上一点A 作a 的平行线a /,记a /与b 确定的平面α。
从而,异面直线a 、b 间的距离等于线面a 、α间的距离。
例2 如图,BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d ,求两条异面直线BF 、AE 间的距离。
思路分析:BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,∠EAB=α,∠FAB=β,AB=d ,在平面Q 内,过B 作BH ‖AE ,将异面直线BF 、AE 间的距离转化为AE 与平面BCD 间的距离,即为A 到平面BCD 间的距离,又因二面角P-AB-Q 是直二面角,过A 作
AC ⊥AB 交BF 于C ,即AC ⊥平面ABD ,过A 作AD ⊥BD
交于D ,连结CD 。
设A 到平面BCD 的距离为h 。
由体积法V A-BCD =V C-ABD , 得 h=
β
αβα2
2
cos cos 1sin sin -d
3转化为面面距离
若a 、b 是两条异面直线,则存在两个平行平面α、β,且a ∈α、b ∈β。
求a 、b 两条异面直线的距离转化为平行平面α、β间的距离。
例3已知:三棱锥S-ABC 中,SA=BC=13,SB=AC=14,SC=AB=15,求异面直线AD 与BC 的距离。
思路分析:这是一不易直接求解的几何题,把它补成一个易求解的几何体的典型例子,常常有时还常把残缺形体补成完整形体;不规则形体补成规则形体;不熟悉形体补成熟悉形体等。
所以,把三棱锥的四个面联想到长方体割去四个直三棱锥所得,因此,将三棱锥补形转化为长方体, 设长方形的长、宽、高分别为x 、y 、z ,
则⎪⎩
⎪⎨⎧==+==+==+22222
2222222131415BC x z AC z y AB y x
解得x=3,y=2,z=1。
由于平面SA ‖平面BC ,平面SA 、平面BC 间的距离是2,所以异面直线AD 与BC 的距离是2。
4 代数求极值法
根据异面直线间距离是分别在两条异面直线上的两点间距离的最小值,可用求函数最小值的方法来求异面直线间的距离。
例4 已知正方体ABCD-A 1B 1C 1D 1的棱长为a ,
求A 1B 与D 1B 1的距离。
思路分析:在A 1B 上任取一点M ,作
MP ⊥A 1B 1,PN ⊥B 1D 1,则MN ⊥B 1D 1,只要求
出MN 的最小值即可。
设A 1M=x ,则MP=
2
2x ,
A 1P=22x 。
所以P
B 1=a –22x ,PN=(a –22x )
sin450=
2
1
(2a –x ),MN=22PN PM + =
222
23
2)32(23a x +-。
当x=a 32时,MN min =a 33。
5公式法
异面直线间距离公式: d=
ϕcos 2222mn n m AB -++
例5 已知圆柱的底面半径为3,高为4,A 、B 两点分别在两底面圆周上,并且AB=5,求异面直线AB 与轴OO /之间的距离。
思路分析:在圆柱底面上AO ⊥OO /,BO /⊥OO /,又OO /是圆柱的高,AB=5,所以d=
2
3
3。
即异面
1
A C
C A
B
直线AB 与轴OO /之间的距离为
2
3
3。
6 射影法
将两条异面直线射影到同一平面内,射影分别是点和直线或两条平行线,那么点和直线或两条平行线间的距离就是两条异面直线射影间距离。
例6 在正方体ABCD-A 1B 1C 1D 1中,AB=1,M 、N 分别是棱AB 、CC 1的中点,E 是BD 的中点。
求异面直线D 1M 、EN 间的距离。
思路分析:两条异面直线比较难转化为
线面、面面距离时,可采用射影到同一平面
内,把异面直线D 1M 、EN 射影到同一平面
BC 1内,转化为BC 1、QN 的距离,显然,
易知BC 1、QN 的距离为
42。
所以异面直
线D 1M 、EN 间的距离为4
2。
1
N
C。