非线性目标函数的线性规划问题

合集下载

第六讲线性规划与非线性规划

第六讲线性规划与非线性规划
f=f(x); •
(2)若有非线性约束条件:c1 x 0 或c2 x 0, 则建立M
文件c.m定义函数c1 x,c2 x, 一般形式为
function [c1,c2]=c(x)
c1=…
c2=… (3)建立主程序。求解非线性规划的函数是fmincon,
调用格式为 x=fmincon(‘fun’,x0,A1,b1);
故它属于一个整数线性规划问题,这里当成一个线 性规划求解,求得最优解刚好是整数x1=9,x2=0, 故它就是该整数规划的最优解.若用线性规划解法求 得的最优解不是整数,将其取整后不一定是相应整 数规划的最优解,这样的整数规划应用专门的方法 求解.
二、非线性规划
1、二次规划

标准形式:min
z
1
xT
x1 4x2 5

x1, x2 0

改写成标准形式:min z
x1 2x2
1 2
x12
1 2
x22
s.t.
2x1 3x2 x1 4x2
6 5
0 0
0 0
x1 x2
❖ 建立M文件fun1.m
❖ 建立主程序(见MATLAB程序(feixianxingguihua1))
工费用如下表.问怎样分配车床的加工任务,才能既满足加
工工件的要求,又使加工费用最低?
车床 类型


单位工件所需加工台时数 工件 1 工件 2 工件 3
0.4
1.1
1.0
0.5
1.2
1.3
单位工件的加工费用 工件 1 工件 2 工件 3
13
9
10
11
12
8
可用台 时数
800

简单的线性规划问题(附答案)

简单的线性规划问题(附答案)

简单的线性规划问题(附答案)简单的线性规划问题[学习目标]知识点一线性规划中的基本概念知识点二线性规划问题1.目标函数的最值线性目标函数z=ax+by(b≠0)对应的斜截式直线方程是y=-ab x+zb,在y轴上的截距是zb,当z变化时,方程表示一组互相平行的直线.当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B 解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A时,z 取得最大值.由⎩⎨⎧ y =2,x -y =1⇒⎩⎨⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求 (1)x 2+y 2的最小值;(2)y x 的最大值.解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎨⎧x +2y -4=0,y =2x 的解,即⎝ ⎛⎭⎪⎪⎫45,85, 又由⎩⎨⎧ x +2y -4=0,2y -3=0,得C ⎝ ⎛⎭⎪⎪⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝ ⎛⎭⎪⎪⎫322=132,所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v =y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大,由(1)知C ⎝⎛⎭⎪⎪⎫1,32,所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案10解析画出可行域(如图所示).(x+3)2+y2即点A(-3,0)与可行域内点(x,y)之间距离的平方.显然AC长度最小,∴AC2=(0+3)2+(1-0)2=10,即(x+3)2+y2的最小值为10.题型三线性规划的实际应用例3某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少? 解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z=300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800, 即该公司可获得的最大利润是2 800元. 反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解. 跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行? 解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y ,把所给的条件表示成不等式组,即约束条件为⎩⎪⎪⎨⎪⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎨⎧50x +20y =2 000,y =x ,解得⎩⎪⎨⎪⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎪⎪⎫2007,2007. 由⎩⎨⎧50x +20y =2 000,y =1.5x ,解得⎩⎨⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎪⎪⎫25,752.所以满足条件的可行域是以A ⎝⎛⎭⎪⎪⎫2007,2007,B ⎝⎛⎭⎪⎪⎫25,752,O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎪⎪⎫25,752,但注意到x ∈N *,y ∈N *,故取⎩⎨⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( ) A .-1 B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z =10x+10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为()A .-6B .-2C .0D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x 的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z=2x +y 的最大值为7,最小值为1,则b ,c 的值分别为( )A .-1,4B .-1,-3C .-2,-1D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z=x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x+2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示). 9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y 给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________. 三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1 m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B解析如图,当y=2x经过且只经过x+y-3=0和x=m的交点时,m取到最大值,此时,即(m,2m)在直线x +y-3=0上,则m=1.2.答案 C解析该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎪⎪⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方,故z min =⎝ ⎛⎭⎪⎫122=12.课时精练答案一、选择题1.答案 A解析画出可行域,如图所示,解得A(-2,2),设z=2x-y,把z=2x-y变形为y=2x-z,则直线经过点A时z取得最小值;所以z min=2×(-2)-2=-6,故选A.2.答案 D解析作出可行域,如图所示.联立⎩⎨⎧ x +y -4=0,x -3y +4=0,解得⎩⎨⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C解析不等式组所表示的平面区域如图阴影部分所示,当a=0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a=-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C.5.答案 D解析由题意知,直线x+by+c=0经过直线2x +y=7与直线x+y=4的交点,且经过直线2x +y=1和直线x=1的交点,即经过点(3,1)和点(1,-1),∴⎩⎨⎧ 3+b +c =0,1-b +c =0,解得⎩⎨⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎨⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3;当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案13解析 |x |+|y |≤2可化为⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C(3,1)方法一∵可行域内的点都在直线x+2y-4=0上方,∴x+2y-4>0,则目标函数等价于z=x+2y-4,易得当直线z=x+2y-4在点B(7,9)处,目标函数取得最大值z max=21.方法二z=|x+2y-4|=|x+2y-4|5·5,令P(x,y)为可行域内一动点,定直线x+2y-4=0,则z=5d,其中d为P(x,y)到直线x+2y-4=0的距离.由图可知,区域内的点B与直线的距离最大,故d的最大值为|7+2×9-4|5=215.故目标函数z max=215·5=21.三、解答题12.解z=2x-y可化为y=2x-z,z的几何意义是直线在y轴上的截距的相反数,故当z取得最大值和最小值时,应是直线在y轴上分别取得最小和最大截距的时候.作一组与l0:2x-y=0平行的直线系l,经上下平移,可得:当l移动到l1,即经过点A(5,2)时,z max=2×5-2=8.当l移动到l2,即过点C(1,4.4)时,z min=2×1-4.4=-2.4.13.解先画出可行域,如图所示,y=a x必须过图中阴影部分或其边界.∵A(2,9),∴9=a2,∴a=3.∵a>1,∴1<a≤3.14.解由题意可画表格如下:(1)设只生产书桌x张,可获得利润z元,则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300. 所以当x =300时,z max =80×300=24 000(元), 即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元.(2)设只生产书橱y 个,可获得利润z 元,则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450. 所以当y =450时,z max =120×450=54 000(元), 即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0. 把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎨⎧x +2y =900,2x +y =600,解得,点M 的坐标为(100,400).所以当x=100,y=400时,z max=80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。

非线性规划的解法

非线性规划的解法

非线性规划的解法非线性规划是一类重要的数学规划问题,它包含了很多实际应用场景,如金融市场中的资产配置问题,工程界中的最优设计问题等等。

由于非线性目标函数及约束条件的存在,非线性规划问题难以找到全局最优解,面对这样的问题,研究人员提出了众多的解法。

本文将从梯度法、牛顿法、共轭梯度法、拟牛顿法等方法进行介绍,着重讨论它们的优劣性和适用范围。

一、梯度法首先介绍的是梯度法,在非线性规划中,它是最简单的方法之一。

梯度法的核心思想是通过寻找函数的下降方向来不断地优化目标函数。

特别是在解决单峰函数或弱凸函数方面优势明显。

然而,梯度算法也存在一些不足之处,例如:当函数的梯度下降速度过慢时,算法可能会陷入局部最小值中无法跳出,还需要关注梯度方向更新的频率。

当目标函数的梯度非常大,梯度法在求解时可能会遇到局部性和发散性问题。

因此,它并不适合解决多峰、强凸函数。

二、牛顿法在牛顿法中,通过多项式函数的二阶导数信息对目标函数进行近似,寻找下降方向,以求取第一个局部极小值,有时还可以找到全局最小值。

牛顿法在计算方向时充分利用二阶导数的信息,使梯度下降速度更快,收敛更快。

因此,牛顿法适用于单峰性函数问题,同时由于牛顿法已经充分利用二阶信息,因此在解决问题时更加精确,准确性更高。

但牛顿法的计算量比梯度法大,所以不适合大规模的非线性规划问题。

此外,当一些细节信息不准确时,牛顿法可能会导致计算数值不稳定和影响收敛性。

三、共轭梯度法共轭梯度法是非线性规划的另一种解法方法。

共轭梯度法沿预定义的方向向梯度下降,使梯度下降的方向具有共轭性,从而避免了梯度下降法中的副作用。

基于共轭梯度的方法需要存储早期的梯度,随着迭代的进行,每个轴线性搜索方向的计算都会存储预定的轴单位向量。

共轭梯度方法的收敛速度比梯度方法快,是求解非线性规划的有效方法。

四、拟牛顿法拟牛顿法与牛顿法的思路不同,它在目标函数中利用Broyden、Fletcher、Goldfarb、Shanno(BFGS)算法或拟牛顿法更新的方法来寻找下降方向。

非线性规划

非线性规划

非线性规划(nonlinear programming)1.非线性规划概念非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。

目标函数和约束条件都是线性函数的情形则属于线性规划。

2.非线性规划发展史公元前500年古希腊在讨论建筑美学中就已发现了长方形长与宽的最佳比例为0.618,称为黄金分割比。

其倒数至今在优选法中仍得到广泛应用。

在微积分出现以前,已有许多学者开始研究用数学方法解决最优化问题。

例如阿基米德证明:给定周长,圆所包围的面积为最大。

这就是欧洲古代城堡几乎都建成圆形的原因。

但是最优化方法真正形成为科学方法则在17世纪以后。

17世纪,I.牛顿和G.W.莱布尼茨在他们所创建的微积分中,提出求解具有多个自变量的实值函数的最大值和最小值的方法。

以后又进一步讨论具有未知函数的函数极值,从而形成变分法。

这一时期的最优化方法可以称为古典最优化方法。

最优化方法不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。

反之,某些最优化方法可适用于不同类型的模型。

最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。

(1)解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。

求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接法。

(2)直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。

此时可采用直接搜索的方法经过若干次迭代搜索到最优点。

这种方法常常根据经验或通过试验得到所需结果。

对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。

非线性规划求极值题目:非线性规划求极值目标函数MINF(X)或MAX

非线性规划求极值题目:非线性规划求极值目标函数MINF(X)或MAX

非线性规划求极值题目:非线性规划求极值目标函数min F(X) 或max F(X)X 自变量向量{x1,x2,…xn}约束条件c i<=gi(X) <= d i i=1,2,…ma j<=x j<=b j j=1,2,…n技术要求:使用VB6、VC6或Fortran任何一种语言编写算法,实现求解。

优化方法要求采用“牛顿法”、“共轭法”和“复合形法”。

在指定的计算精度,1000次以内必须完成迭代算法,计算耗时<100ms。

提供详细设计说明书,程序中应有相应注释。

费用:每一种算法费用1500元,三种算法费用共4500元项目内容描述:模块定义如下:(以VB6函数为例)Public Function OptimizeMethod(lngMode As Long, lngItMax As Long, _lngN As Long, sngG() As Single, sngH() As Single, _lngM As Long, strExpImplicit() As String, _strExpObject As String, _sngXX() As Single) As Long'函数返回值'*************************************************************'OptimizeMethod=0 计算完成,有解'OptimizeMethod=-1001 约束表达式有误'OptimizeMethod=-1002 目标函数表达式有误'OptimizeMethod=-1003 超过规定的迭代次数任不能求解'输入参数'*************************************************************'lngMode-------------极值模式lngMode = -1 求极小值;lngMode = 1 求极大值'lngItMax------------最大允许迭代次数'lngN----------------自变量个数'sngG()--------------显示约束最小值数组'sngH()--------------显示约束最大值数组'lngM----------------隐式约束条件个数'strExpImplicit()----隐式约束条件表达式数组,例如2*x1+3*x2^2-5*x4^3'strExpObject--------目标函数表达式,例如(x1+4*x2^2+x3+100*x4)/(x1^2+5*x3^3)'输出参数'*************************************************************'sngXX()--------------计算结果数组End Function注意:其它常数,例如反射因子、收敛参数在程序初始化时给定。

运筹学 问题分类

运筹学 问题分类

运筹学问题分类运筹学问题分类是依据问题的性质和特点进行的分类。

通过对运筹学问题的分类,可以更好地理解和掌握各种问题的特点和解决方法,提高解决问题的效率。

1. 线性规划问题:线性规划问题是最经典的运筹学问题之一,主要解决如何优化有限的资源以实现最大或最小的目标。

例如,在生产计划、物流配送和财务投资等领域中,常常需要解决线性规划问题。

2. 非线性规划问题:非线性规划问题是相对于线性规划问题而言的,主要解决如何优化非线性目标函数,同时满足一系列约束条件的问题。

例如,在航空航天、机械制造和金融领域中,常常需要解决非线性规划问题。

3. 整数规划问题:整数规划问题是特殊的运筹学问题,要求决策变量取整数值或只取零或一两个值。

整数规划问题在组合优化、生产调度、计划安排等领域中应用广泛。

4. 动态规划问题:动态规划问题是解决具有重叠子问题和最优子结构性质的问题。

例如,在生产调度、库存管理和财务优化等领域中,常常需要解决动态规划问题。

5. 图论问题:图论问题是基于图形理论进行优化的问题。

例如,在计算机科学、交通运输和通信网络等领域中,常常需要解决图论问题。

6. 排队论问题:排队论问题是研究排队系统最优化的运筹学问题。

例如,在计算机系统、通信网络和医疗服务等领域中,常常需要解决排队论问题。

7. 决策分析问题:决策分析问题是基于概率和效用理论进行决策的问题。

例如,在风险评估、投资决策和市场营销等领域中,常常需要解决决策分析问题。

8. 组合优化问题:组合优化问题是解决离散最优化的运筹学问题。

例如,在计算机科学、交通运输和金融领域中,常常需要解决组合优化问题。

如何应用数学建模优化问题

如何应用数学建模优化问题

如何应用数学建模优化问题数学建模是一种将实际问题转化为数学模型,并通过数学方法来解决问题的过程。

在许多领域中,数学建模都被广泛应用于优化问题的求解。

本文将探讨如何应用数学建模来优化问题,并介绍一些常见的数学优化方法。

一、问题建模在进行数学优化之前,我们首先需要将实际问题转化为数学模型。

这个过程包括以下几个步骤:1. 确定优化目标:明确你想要优化的目标是什么。

比如,你可能要最小化成本、最大化利润,或者使某个指标达到最佳状态等。

2. 确定决策变量:决策变量是影响优化结果的变量。

根据实际问题,选择适当的决策变量。

例如,如果你想要优化某个产品的生产计划,决策变量可以是生产数量、生产时间等。

3. 建立约束条件:约束条件是限制决策变量取值的条件。

根据实际问题,确定约束条件并将其转化为数学形式。

例如,如果你想要优化配送路线,可能会有时间限制、容量限制等。

二、数学优化方法在问题建模完成后,我们可以使用不同的数学优化方法来求解优化问题。

下面介绍几种常见的优化方法:1. 线性规划:线性规划是在给定线性约束条件下求解线性目标函数的优化问题。

使用线性规划可以解决许多实际问题,例如资源分配、生产计划等。

2. 整数规划:整数规划是线性规划的一种扩展形式,其决策变量需要取整数值。

整数规划适用于那些要求决策变量为整数的问题,如生产装配线优化、旅行商问题等。

3. 非线性规划:非线性规划是在给定非线性约束条件下求解非线性目标函数的优化问题。

非线性规划广泛应用于诸如工程优化、金融投资等领域。

4. 动态规划:动态规划是解决具有重叠子问题特性的优化问题的一种方法。

通过将问题划分为一系列子问题,并将子问题的解缓存起来,可以有效地解决很多动态规划问题。

5. 遗传算法:遗传算法是一种模拟自然选择和遗传机制的优化算法。

通过不断地进化和选择,遗传算法可以搜索到优化问题的全局最优解。

三、应用案例下面通过一个应用案例来说明如何应用数学建模优化问题。

假设你是一家互联网电商平台的运营经理,你想要优化产品的价格策略以最大化销售额。

目标函数的几种类型

目标函数的几种类型

目标函数的几种类型目标函数是数学优化问题中的一个重要概念,目的是通过数学表达式来描述优化问题的目标。

目标函数主要分为以下几种类型:1. 线性目标函数线性目标函数是最简单也是最常见的一种目标函数形式,其数学表达式为:f(x) = c1x1 + c2x2 + ... + cnxn其中,x1, x2, ..., xn为决策变量,c1, c2, ..., cn为常数系数。

线性目标函数的优化问题称为线性规划问题,其特点是目标函数和约束条件均为线性。

线性规划问题在供应链管理、运输调度等领域有广泛的应用。

2. 非线性目标函数非线性目标函数是目标函数中存在非线性项的情况,其数学表达式为:f(x) = h(x) + Σ g(x)其中,h(x)为非线性项,g(x)为线性或非线性项。

非线性目标函数的优化问题被称为非线性规划问题。

非线性规划问题在经济学、管理学等领域中常用于描述复杂的现实问题。

3. 凸函数目标函数凸函数目标函数是指目标函数满足凸性质的函数形式。

凸性质是指函数的图像位于函数的上方,即图像上任意两点之间的连线均位于函数图像的上方。

凸函数在优化问题中具有较好的性质,可以保证全局最优解的存在和唯一性,是一类重要的目标函数类型。

4. 二次型目标函数二次型目标函数是一种特殊的非线性目标函数形式,其数学表达式为:f(x) = x^T Ax + b^T x + c其中,x是n维向量,A为一个n×n的矩阵,b和c为常向量。

二次型目标函数在数学建模和最优化问题中应用广泛,例如,在物流领域中可以用于描述最小化运输成本的问题。

5. 目标函数约束目标函数约束是指在目标函数中添加一些约束条件来限制决策变量的取值范围,使其满足一定的约束条件。

例如,可以在目标函数中添加等式约束、不等式约束、非线性约束等。

目标函数约束广泛应用于各个领域的最优化问题中,可以用于调整优化问题的解空间。

综上所述,目标函数具有不同的类型,包括线性目标函数、非线性目标函数、凸函数目标函数、二次型目标函数以及目标函数约束等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A(1, 22 ) 5
任一点与原点O连线的斜率 由图观察可知: 2 zmin kOB 5 22 zmax kOA 5 2 22 z 5 5
x 4y 3 0
B(5, 2)
C (1,1)
x -3 -2 -1 0 1 2 3 4 5 6 7 8 9 -1 3x 5 y 25 0 x 1
3 (2) z [ ,3] 25
6 5 4 3 2 1
A(1,
22 ) 5
● M
B(5, 2)
x 4y 3 0
● 3 4 5 6 7 8 9 x -3 -2 -1 0 1 2 Q -1 3x 5 y 25 0 x 1
C (1,1)
三、课堂小结
本节课你收获了什么?

四、课后练习
● ● 3 4 5 6 7 8 9 x -3 -2 -1 0 1 2 Q M -1 3x 5 y 25 0 x 1
C (1,1)
y b 探究二:对形如 Z 目标函数的最值 xa
问题3:默写两点间的斜率公式:
k
y2 y1 x2 x1

问题4:说出上述目标函数的几何意义: 可行域内的任一点(x,y)与定点M(a,b)的连线的斜率。
x 4 y 3 0 3 x 5 y 25 0 变式:变量 x, y 满足 ; x 1 y z
(1)设 Z
y 5 (2)设 Z ,求 z 的取值范围。 x6
1 (1) z (, ] [1, ) 2
x 3ቤተ መጻሕፍቲ ባይዱ
,求 的取值范围;
y
高二理科数学组
2015年10月15日
非线性目标函数的最值问题
学习目标:
1. 通过实例,能用平面区域表示二元一次不等式组。
2. 借助斜率公式及距离公式,类比体会非线性目标
函数所表示的几何意义。
3. 通过启发、引导、小组讨论探究出目标函数的最
优解。
学习重点:借助斜率公式及距离公式,类比
体会非线性目标函数所表示的几何意义。探究
出利用图解法求非线性目标函数的最优解。
学习难点:通过启发、引导、小组讨论探
究出目标函数的最优解。
学习方法:探究法
学习过程:
一、复习回顾
求线性目标函数的最值的步骤: 画—作—移—求 。
二、新课探究
2 2 z ( x a ) ( y b ) 探究一:对形如 目标函数的最值
2 2 | AB | ( x x ) ( y y ) 1 2 1 2 。 问题1:默写两点间的距离公式:
默写点到直线间的距离公式:
d
| Ax0 By0 C | A2 B 2

问题2:说出上述目标函数的几何意义: 可行域内的任一点(x,y)到定点M(a,b)的距离的平方 。
x 4 y 3 0 例1:变量x, y 满足 3x 5 y 25 0 x 1 (1)求可行域内的点( x, y ) 到原点 y 的距离的平方Z的表达式; (2)求Z的取值范围。
y
6 5 4 3 2 1
Zx y
2
2
表示可行域内的点(x,y) 到 定点O(0,0)距离的平方
A(1,
22 ) 5
x 4y 3 0
B(5, 2)
所以,由图观察可知
C (1,1)
zmin | OC |2 12 12 2 zmax | OB |2 52 22 29
Z x2 y 2
6 5 4 3 2 1
A(1,
22 ) 5
x 4y 3 0
B(5, 2)
C (1,1)
x -3 -2 -1 0 1 2 3 4 5 6 7 8 9 -1 3x 5 y 25 0 x 1
解:画出可行域,如图所示
求出交点坐标 A(1,
22 ), B(5, 2), C (1,1) 5
x y 2 0 已知 x y 4 0 求: 2 x y 5 0
(1) Z x2 y 2 10 y 25的最小值
2 y 1 (2) Z 的范围。 x 1
五、课后作业
P 62 例2及活学活用
x 4 y 3 0 例2:变量 x, y , 满足 3 x 5 y 25 0 ; x 1
y x
表示可行域内
(1)求可行域内的点 ( x, y ) 与原点连线的斜率 z 的表达式; y (2)求 z 的取值范围。
(1) z y (2)因为 z x
6 5 4 3 2 1
(1) | PQ |min | 6 4 0 3| 12 42 9 17 17
22 2 1109 ) 5 5
y
(2) | PM |max (6 1) 2 (0
6 5 4 3 2 1
A(1,
22 ) 5
x 4y 3 0
B(5, 2)
| PM |min (6 5) 2 (0 2) 2 5
x -3 -2 -1 0 1 2 3 4 5 6 7 8 9 -1 3x 5 y 25 0 x 1
2 z 29
x 4 y 3 0 变式:设 P( x, y) 满足 3 x 5 y 25 0 ; x 1
(1) Q(3,0) ,求 PQ 的最小值; (2)M (6,0) ,求 PM 的最值。
相关文档
最新文档