求非线性目标函数最值问题

合集下载

非线性规划

非线性规划

非线性规划非线性规划是一种涉及非线性目标函数和/或非线性约束条件的优化问题。

与线性规划不同,非线性规划可能存在多个局部最优解,而不是全局最优解。

非线性规划在许多领域都有广泛的应用,如经济学、工程学和管理学等。

非线性规划的一般形式可以表示为:最小化或最大化 f(x),其中 f(x) 是一个非线性函数,x 是决策变量向量。

满足一组约束条件g(x) ≤ 0 和 h(x) = 0,其中 g(x) 和 h(x) 是非线性函数。

为了求解非线性规划问题,可以使用不同的优化算法,如梯度下降法、牛顿法和拟牛顿法等。

这些算法的目标是找到目标函数的最小值或最大值,并满足约束条件。

非线性规划的难点在于寻找全局最优解。

由于非线性函数的复杂性,这些问题通常很难解析地求解。

因此,常常使用迭代算法来逼近最优解。

非线性规划的一个重要应用是在经济学中的生产计划问题。

生产活动通常受到多个因素的限制,如生产能力、原材料和劳动力等。

非线性规划可以帮助确定最佳的生产数量,以最大化利润或最小化成本。

另一个应用是在工程学中的优化设计问题。

例如,优化某个结构的形状、尺寸和材料以满足一组要求。

非线性规划可以帮助找到最佳设计方案,以最大程度地提高性能。

在管理学中,非线性规划可以用于资源分配和风险管理问题。

例如,优化一个公司的广告预算,以最大程度地提高销售额。

非线性规划可以考虑多种因素,如广告投入和市场需求,以找到最佳的广告投放策略。

总之,非线性规划是一种重要的优化方法,用于解决涉及非线性目标函数和约束条件的问题。

它在经济学、工程学和管理学等领域有广泛的应用。

尽管非线性规划的求解难度较大,但通过合适的优化算法,可以找到最佳的解决方案。

Matlab中的非线性优化和非线性方程求解技巧

Matlab中的非线性优化和非线性方程求解技巧

Matlab中的非线性优化和非线性方程求解技巧在科学和工程领域中,我们经常会遇到一些复杂的非线性问题,例如最优化问题和方程求解问题。

解决这些问题的方法主要分为线性和非线性等,其中非线性问题是相对复杂的。

作为一种强大的数值计算工具,Matlab提供了许多专门用于解决非线性优化和非线性方程求解的函数和方法。

本文将介绍一些常用的Matlab中的非线性优化和非线性方程求解技巧。

非线性优化是指在给定一些约束条件下,寻找目标函数的最优解的问题。

在实际应用中,往往需要根据实际情况给出一些约束条件,如等式约束和不等式约束。

Matlab中的fmincon函数可以用于求解具有约束条件的非线性优化问题。

其基本语法如下:[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)其中,fun是目标函数,x0是初始值,A、b是不等式约束矩阵和向量,Aeq、beq是等式约束矩阵和向量,lb、ub是变量的上下边界。

x表示最优解,而fval表示最优解对应的目标函数值。

另外,非线性方程求解是指寻找使得方程等式成立的变量值的问题。

Matlab中提供的fsolve函数可以用于求解非线性方程。

其基本语法如下:x = fsolve(fun,x0)其中,fun是方程函数,x0是初始值,x表示方程的解。

除了fmincon和fsolve函数之外,Matlab还提供了一些其他的非线性优化和非线性方程求解函数,例如lsqnonlin、fminunc等,这些函数分别适用于无约束非线性优化问题和带约束非线性方程求解问题。

除了直接调用这些函数外,Matlab还提供了一些可视化工具和辅助函数来帮助我们更好地理解和解决非线性问题。

例如,使用Matlab的优化工具箱可以实现对非线性优化问题的求解过程可视化,从而更直观地观察到优化算法的收敛过程。

此外,Matlab还提供了一些用于计算梯度、雅可比矩阵和海塞矩阵的函数,这些函数在求解非线性问题时非常有用。

求非线性目标函数的最值及逆向问题ppt正式完整版

求非线性目标函数的最值及逆向问题ppt正式完整版

z=2x+y ∴-a<kCD,即-a<-1.
非线性目标函数的最值问题
的最大值为
7,最小值为
1,求
b+c
的值. 即a的取值范围为(1,+∞).
[自主解答] 由约束条件画出可行域(如图所示)为矩形ABCD(包括边界).
第二步,设过整数最优解且平行于直线ax+by=0的直线方程为ax+by=m, 不妨设a,b是两个整数(否则, a,b是两个有理数, 可乘以适当的数
进行化归),则m必是整数, 根据具体问题限制m ≥ax0+by0或m ≤ax0+by0
x≥1 点C的坐标为(3,1),z最大即直线y=-ax+z在y轴上的截距最大, 解:如图,画出 求线性目标函数z = ax+by (a,b是不全为零的常数) ,在给定线性约束条件下的最优整数解,使用调整夹逼法探求的思路如下: x+y≤4 解:如例3中的图,若目标函数z=ax+y(a>0)取得最大值的点有无数个,则必有直线z=ax+y与直线x+y=4平行,此时a=1.
∴-a<kCD,即-a<-1. ∴a>1. 即a的取值范围为(1,+∞).
在例3的条件下,若目标函数z=ax+y(a>0)取得最大 值的点有无数个,求a的取值范围.
解:如例3中的图,若目标函数z=ax+y(a>0)取得最大值 的点有无数个,则必有直线z=ax+y与直线x+y=4平行, 此时a=1.
点C的坐标为(3,1),z最大即直线y=-ax+z在y轴上的截距最大, 求线性目标函数z = ax+by (a,b是不全为零的常数) ,在给定线性约束条件下的最优整数解,使用调整夹逼法探求的思路如下: 第二步,设过整数最优解且平行于直线ax+by=0的直线方程为ax+by=m, 不妨设a,b是两个整数(否则, a,b是两个有理数, 可乘以适当的数 进行化归),则m必是整数, 根据具体问题限制m ≥ax0+by0或m ≤ax0+by0 ∴-a<kCD,即-a<-1. 即a的取值范围为(1,+∞). [自主解答] 由约束条件画出可行域(如图所示)为矩形ABCD(包括边界). [自主解答] 由约束条件画出可行域(如图所示)为矩形ABCD(包括边界). 点C的坐标为(3,1),z最大即直线y=-ax+z在y轴上的截距最大, ∴a>1. 点C的坐标为(3,1),z最大即直线y=-ax+z在y轴上的截距最大, 求线性目标函数z = ax+by (a,b是不全为零的常数) ,在给定线性约束条件下的最优整数解,使用调整夹逼法探求的思路如下: 在例3的条件下,若目标函数z=ax+y(a>0)取得最大值的点有无数个,求a的取值范围. 在例3的条件下,若目标函数z=ax+y(a>0)取得最大值的点有无数个,求a的取值范围. ∴a>1. 求线性目标函数z = ax+by (a,b是不全为零的常数) ,在给定线性约束条件下的最优整数解,使用调整夹逼法探求的思路如下:

非线性条件下的最值问题求解策略浅析

非线性条件下的最值问题求解策略浅析

非线性条件下的最值问题求解策略浅析非线性条件下的最值问题是非常重要的数学研究课题,其中求解策略也是研究者们关注的一个重要分支。

非线性条件下的最值问题指的是在多变量函数f(x)或者f(x,y)的情况下,当给定多个约束条件,由此求得最小值或者最大值。

有关求解非线性条件最值问题的策略分为三类,分别是解析法、局部搜索法和全局搜索法。

首先,从解析法的角度对非线性条件下的最值问题进行求解。

解析法的优势在于只需要较少的计算量就能得到准确的解,但缺点是,由于本身的非线性特性,有许多情况下难以求出解析解。

尤其是出现了多个参数之间的复杂关系时,更加难以求出解析解,故解析法对非线性条件下的最值问题的求解效率也是较低的。

其次是通过局部搜索法来解决非线性条件下的最值问题。

局部搜索法的基本思想是,先选取一个初值,然后搜索“附近”的值,最终使得所搜索出来的值尽可能接近最值点。

其优势在于无需求解具体的极值公式,就可以对函数结构有一定的了解,但也存在一定的局限性,因为只能搜索附近的点,无法保证一定能够求出真正的最值点。

最后是全局搜索法,全局搜索法是局部搜索法和解析法的结合。

其求解方法主要是通过随机搜索、梯度下降法等方式,获得比较好的估计值,然后再对这个估计值进行优化,最终使得结果更加准确。

全局搜索法既可以保证准确性又可以节省计算时间,故这一求解方法被认为是非线性条件最值问题求解的一个有效方法。

综上所述,解析法是求解非线性条件下的最值问题的一种有效方法,但也存在一定的局限性;局部搜索法无需进行繁琐的求解步骤即可获得较好的解,但无法提供最优解;而全局搜索法不仅可以提供最优解,还可以缩短求解时间,并且求解结果更加准确。

因此,不断完善和发展各种求解策略是非线性条件下最值问题研究的一个重要分支,也是未来研究的方向之一。

2020高考文科数学(人教版)一轮复习讲义:第43讲简单的线性规划问题含答案 (2)

2020高考文科数学(人教版)一轮复习讲义:第43讲简单的线性规划问题含答案 (2)

第43讲简单的线性规划问题1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示平面区域(1)二元一次不等式Ax+By+C>0(或<0)表示直线Ax+By+C=0某一侧所有点组成的平面区域.(2)二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.(3)画或判断二元一次不等式表示的平面区域常采用直线定界,特殊点定“域”.2.线性规划的有关概念(1)线性约束条件——由条件列出的二元一次不等式组;(2)线性目标函数——由条件列出的一次函数表达式;(3)线性规划——求线性目标函数在线性约束条件下的最大值或最小值问题,称为线性规划问题.(4)可行解、可行域、最优解:满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.3.利用线性规划求最值的一般步骤:(1)根据线性约束条件画出可行域;(2)设z=0,画出直线l0;(3)观察、分析、平移直线l0,从而找到最优解;(4)求出目标函数的最大值或最小值.热身练习1.下列各点中,不在x+y-1≤0表示的平面区域内的点是(C)A.(0,0) B.(-1,1)C.(-1,3) D.(2,-1)将上述各点代入不等式检验,若满足不等式,则点在所表示的平面区域内,否则,不在.因为(0,0),(-1,1),(2,-1)都满足不等式,所以这些点都在所表示的平面区域内,而(-1,3)不满足不等式,故选 C.2.如图所示,不等式2x-y<0表示的平面区域是(B)直线定界,因为2x-y=0不经过(2,1)点排除D,2x-y<0不包括边界,排除A,再取特殊点(1,0)代入得2-0>0,故(1,0)不在2x-y<0表示的区域内,故排除C,选B.3.不等式组x≥0,x+3y≥4,3x+y≤4所表示的平面区域的面积等于(C)A.32B.23C.43D.34不等式组表示的平面区域是各个不等式表示的平面区域的交集,作出不等式组表示的平面区域如右图:所以S阴=12×4-43×1=43.4.目标函数z=x+2y,将其看成直线方程时,z的意义是(C) A.该直线的截距B.该直线的纵截距C.该直线纵截距的2倍D.该直线纵截距的1 2将z=x+2y化为y=-12x+z2,可知z=2b,表示该直线的纵截距的2倍.5.(2015·北京卷)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为7.把z=2x+3y变形为y=-23x+13z,通过平移直线y=-23x知,当过点A(2,1)时,z=2x+3y取得最大值且z max=2×2+3×1=7.。

非线性目标函数的最值问题

非线性目标函数的最值问题

非线性目标函数的最值问题一、单选题1.若实数满足不等式组,则的取值范围为A.B.C.D.【答案】D画出不等式组表示的平面区域如图2中阴影部分所示,的几何意义是阴影部分内的点到原点的距离的平方,显然,由可得,则,故的取值范围为.故选D.【点睛】2.已知变量满足,设,则的取值范围是()A.B.C.D.【答案】C作可行域,P(4,3),因为表示可行域内点到定点A(-1,-1)距离的平方,所以的取值范围为,选C.【点睛】3.若变量x,y满足,则的最大值为A.2B.3C.D.【答案】C不等式组表示的可行域是以,,为顶点的三角形区域,由表示点到原点的距离,最大值必在顶点处取到,因为,,,所以的最大值为,故选C.4.已知实数满足条件,则的最大值是( )A.1B.2C.3D.4【答案】C由约束条件作出可行域如图,联立,解得A(1,3),∵z=,如图所示,经过原点(0,0)与A的直线斜率最大为3,∴的最大值是3.5.已知实数,满足,则的取值范围为()A.B.C.D.【答案】C作出表示的可行域,如图,目标函数,可看作可行域内的点与的距离的平方,由图可知,点到直线距离的平方,就是作可行域内的点与的距离的平方的最小值,为,点到距离的平方,就是作可行域内的点与的距离的平方的最小值,为,所以的取值范围为,6.已知实数,满足不等式组则的取值范围是()A.B.C.D.【答案】D由约束条件作出可行域如图,表示原点(,)到阴影区域的距离的平方,∴是原点((,)到的距离的平方,则==,x是原点(,)到点(,)的距离的平方,则==,∴的取值范围是,故选:D.7.若实数满足不等式组,则目标函数的最大值是()A.B.C.D.【答案】B【、详解:画出约束条件表示的可行域,如图,由可得,即,将形为,表示可行域内的点与连线的斜率,由图知最小,最大最大值为,故答案为.故选B.8.已知实数,满足,则的取值范围为()A.B.C.D.【答案】C画出不等式组表示的可行域,如图阴影部分所示.由题意得,目标函数,可看作可行域内的点与的距离的平方.结合图形可得,点到直线的距离的平方,就是可行域内的点与的距离的平方的最小值,且为,点 到 距离的平方,就是可行域内的点与 的距离的平方的最大值,为 ,所以 的取值范围为.故选C .9.已知动点 满足:,则 的最小值为( ) A . B . C . -1 D . -2 【答案】D根据指数函数的性质,由 可得 ,即 , 动点 满足:, 该不等式组表示的平面区域如图:设 , , 表示以 为圆心的圆的半径,由图形可以看出,当圆与直线 相切时半径最小,则,,解得 , 即 的最小值为 . 故选:D.10.若x ,y 满足 ,, ,则的最大值为( )A .B .C .D.【答案】B画出目标函数可行域如上图所示,目标函数即为(x,y)点(0,-1)连线斜率的取值,所以在点B处取得最优解联立直线方程解得B(1,1)所以所以选B11.若变量,满足约束条件,则的取值范围是()A.B.C.D.【答案】B详解:,原式表示可行域内的点与连线的斜率加1。

非线性目标函数的最值问题

非线性目标函数的最值问题
击此处添加副标题
非线性目标函数 的最值问题
演讲人姓名
一.了解非线性目标 函数所表示的几 何意义
2. 能够通过对目 标函数进行变 形转化进而讨
论求得目标函数的 最值或范围
单击此处添加大标题内容
如何求线性目标函数z=ax+by最值(如最大值) 当b>0时,最大值是将直线ax+by=0在可行域内向上平移到端点(一般是两直线交
___________, 的最小值是__________-1
Y
解析: (1)由图可知,斜率k的取值范围

P(-1,1) O
(2)因为
x-y=0
A(2, 2)
B(1,0)
X
所以
的取值范围也为
2x-y-2=0
小结2
一. 的几何意义:
表示点(x,y)与点(a, b)连线的斜率.
一. 的几何意义:
表示(x,y)与原点(0,0) 连线的斜率;
OA=

(3)由(2)知,
非线性规划最优解问题。求解
关键是在挖掘目标关系几何意义的前提下,
作出可行域,寻求最优解。
图1
小结1
的几何意义:
的几何意义
表示点(x,y)与(a,b)的距离
的几何意义:
表示点(x,y)与原点(0,0)的距离
所以,形如
的目标函数的几何意义:
表示平面区域内的点(x,y)与点(a,b)的距离的平方
点)的位置得到的; 当b<0时,则是向下方平移得到的.
○ 可知线性目标函数的最值是通过将目标函数直线上下平移得到.
探究1
对形如 目标函数的最值(距离型)
如图1,已知
,
解析:(1)
(1)求可行域内的点(x,y)到原点的距离z的表达式

非线性目标函数的最值问题

非线性目标函数的最值问题

非线性目标函数的最值问题非线性目标函数的最值问题是数学中的一个重要问题,在实际应用中有着广泛的应用。

所谓非线性目标函数,是指目标函数中含有非线性项的函数。

最值问题就是要求在给定条件下,求出目标函数取得最大值或最小值的变量取值。

非线性目标函数的最值问题可以通过一些方法来求解,其中较为常见的方法有数值方法和优化方法。

数值方法是通过对目标函数进行数值逼近来求解最值问题。

常用的数值方法包括黄金分割法、牛顿法、拟牛顿法等。

这些方法的基本思想都是通过不断逼近目标函数的最值点来求解问题,具体方法根据目标函数的性质和要求的精度而定。

优化方法是通过求解最优化问题来求解最值问题。

最优化问题是指寻找使得目标函数取得最大值或最小值的变量取值。

常用的优化方法包括线性规划、非线性规划、整数规划等。

这些方法的基本思想是将目标函数设定为一个优化问题,并利用一些数学技巧和算法来求解问题。

对于非线性目标函数的最值问题进行求解时,需要注意问题的复杂性和求解的难度。

在实际应用中,非线性目标函数的最值问题往往包含大量变量和约束条件,求解过程中需要考虑多种因素和限制条件,因此需要采用一些高效的算法和方法来求解问题。

此外,近年来还出现了一些新的方法和算法来求解非线性目标函数的最值问题,如遗传算法、粒子群优化算法等。

这些算法具有较好的收敛性和全局搜索能力,能够有效地解决非线性目标函数的最值问题。

综上所述,非线性目标函数的最值问题是一个具有重要意义和广泛应用的数学问题,求解问题时可以采用数值方法和优化方法。

在实际应用中,需要根据问题的特点和要求选择合适的方法和算法,并注意解的可行性和精度的要求。

通过合理的方法选择和算法设计,可以有效地解决非线性目标函数的最值问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7x 5y 23 0, 【自我矫正】不等式组 x 7y 11 0, 表示的平面区域为如图所示 4x y 10 0
△ABC的内部(包括边界),令z=x2+y2,则z即为点(x,y)到原点的距离的平方.

7x 5y 23 0,
x 7y 11 0,
为是求三点A,B,C到原点的距离的平方的最值.
【规避策略】
1.准确作图
在利用可行域求目标函数的最值时首先要利用约束条件作出可行域, 一定要准确,特别是边界一定要明确是否包含. 2.准确理解目标函数的几何意义 在求非线性目标函数的最值时,一定要准确理解目标函数的几何意义, 利用其几何意义结合可行域准确解题.
此时z=x2+y2=(-3)2+22=13, 而在原点处,
x 0, y 0,
此时z=x2+y2=02+02=0,
x 1, 所以当 时x2+y2取得最大值37, y 6 x 0, 当 时x2+y2取得最小值0. y 0
答案:37 0
得A点坐标(4,1),
此时z=x2+y2=42+12=17,
7x 5y 23 0, 由 4x y 10 0,
得B点坐标(-1,-6), 此时z=x2+y2=(-1)2+(-6)2=37,
x 7y 11 0, 由 得C点坐标(-3,2), 4x y 10 0,
求非线性目标函数最值问题
7x 5y 23 0, 2+y2的最大值为 【典例】(2015·保定模拟)已知 则 x x 7y 11 0, 4x y 10 0,
___,最小值为___.
【解题过程】
【错解分析】分析上面解题过程,你知道错在哪里吗?
提示:解题过程中误将求可行域内的点到原点的距离的平方的最值认
相关文档
最新文档