最新汽轮机找中心要点资料

最新汽轮机找中心要点资料
最新汽轮机找中心要点资料

浅谈联轴器找正之我见

摘要:旋转设备在安装或维修后始终存在轴对中的问题,是机组安装检修过程中一个极其重要的环节,对中精度的高低对设备运行周期及运行效率有着直接的影响,找正的目的是保证旋转设备各转子的中心线连成一条连续光滑的曲线,各轴承负荷分配符合设计要求,使旋转设备的静止部件与转子部件基本保持同心,将轴系的扬度调整到设计要求,找正的精度关系到设备是否能正常运转,对高速运转的设备尤其重要。因此在每次检修中必须进行转动机械设备轴中心找正工作,使两轴的中心偏差不超过规定数值。在我厂化工设备(不包括厂家给出冷态与热态的中心数据),其中心标准基本上都在0.05mm(即5丝)以内。现就对联轴器找中心的原理、步骤并对联轴器找中心在实际工作作中常见的一些方法、注意事项以及找正在实践中的应用作简单的介绍。

一、找中心的原理:测量时在一个转子对轮上装上磁性表座,另一个对轮上装上百分表,径向、轴向各一付,(为防止转子窜轴,轴向则需装二个表,相差180度)。连接对轮(一般一到二枚螺丝,拧紧即可),然后一起慢慢地转动转子,每隔90度停下来测量一组数据记下,测出上、下、左、右四处的径向a、轴向s四组数据,将数据记录在下图所示的方格内。

a1

a4

s1

s4 s2

s3

a2

a3

一般圆里面的为轴向数据s,外面的为径向数据a,在测得的数值中,若a1=a2=a3=a4,则表明两对轮同心;若s1=s2=s3=s4,表明两对轮的端面平行。若同时满足上述两个条件,则说明两轴的中心线重合;若所测数据不等,根据计算结果是否在标准范围内,超出标准则需对两轴进行找中心。

二、找中心步骤

1、检查并消除可能影响对轮找中心的各种因素。如清理对轮上油污、锈斑及电机底脚、基础。

2、连接对轮,保证两对轮距离在标准范围内。

3、用塞尺检查电机的底脚是否平整,有无虚脚,如果有用塞尺测出数值,用铜皮垫实。

4、先用直尺初步找正。主要是左右径向,相差太大用百分表测量误差太大,并容易读错数据。

5、安装磁性表座及百分表。装百分表时要固定牢,但要保证测量杆活动自如。测量径向的百分表测量杆要尽量垂直轴线,其中心要通过轴心;

6、测量轴向的二个百分表应在同一直径上,并离中心距离相等。装好后试转一周。并回到原来位置,此时测量径向的百分表应复原。为测记方便,将百分表的小表指针调到量程的中间位置,并最好调到整位数。大针对零。

7、把径向表盘到最上面,百分表对零,慢慢地转动转子,每隔90度测量一组数据记下,测出上、下、左、右四处的径向a、轴向s 四组数据,将数据记录在右图内。径向的记在圆外面,轴向数据记录在圆里面。注意:拿到一组数据你要会判断它的正确性,你从那里开始对零的,盘一周后到原来位置径向表应该为0,径向表读数上下之和与左右之和应相差不多,两只轴向表数据相同。否则的话要检查磁性表座和百分表装得是否牢固。

8、间隙测量,记录及计算:(百分表安装在电机侧)

端面不平行值(张口)的计算,(不考虑轴向窜轴),轴向装一只百分表,计算公式为s*= s1- s3,正的为上张口,负的为下张口。左右张口为s*=s2-s4,正的为s2那边张口,负的为s4那边张口。

上下径向偏差的计算公式为a*= (a1- a3)/2,正的为电机偏高,负的为电机偏低。左右径向偏差的计算公式为a*= (a2- a4)/2正,的为电机偏右,负的为电机偏左。

中心调整计算公式:

前支撑:s*L1/D - a*/2 (1)

后支撑:s*(L1+L2)/D - a*/2 (2)

(2)-(1)可得:s*L2/D ,由此可得出轴向偏差的调整只与前后支撑之间距离有关。

安装表时只需在每个对轮上装轴向二只表,电机与风机的径向偏差会直接反映在轴向表上,并经计算可得。

轴向安装二只表为了消除轴向窜动对轴向偏差测量结果的影响

三、找中心的方法:

(一)基准部位的选择

轴不对中联轴器轴线位置偏差找正确定基准部位是非常重要的,比如离心卧式水泵机组、不带增速的风机等设备,基准部位就应该选择非电机端;带增速、带耦合器的大型鼓风机、透平机、汽轮机,基准部位就应该考虑电机端在最后调整过程中所形成的累积误差值,同时还需要考虑热膨胀对轴中心的影响,所选择的基准部位就应该尽量满足运转周期长、标准件、热膨胀中心线偏移小的部位作为基准部位。

(二)测量方法的选择

百分表测量法把专用的夹具(平台)或磁力表座装在作基准的半联轴器上,用百分表测量联轴器的径向间隙和轴向间隙的偏差值。此方法使联轴器找正的测量精度大大提高,运用百分表对水泵、风机等

旋转设备找正相当普遍,通过查找数据表可以快速计算出原动机侧地脚螺栓调整数值。

(1)双表测量法(一点测量法)

用两块百分表分别测量联轴器外圆和端面同一方位上的偏差值,故又称一点测量法,即在测量某个方位上的径向读数的同时,测量出同一方位上的轴向读数。具体操作步骤如下:

①初步调整:设备吊装到位后,先用角尺、钢板尺等对吊装就位准备调整的设备上的联轴器做初步测量与调整;

注:

地脚螺栓支承面必须满足设备安装相关要求,需保证基准端略高于原动机端,否则,设备找正无意义。

②等分线划分:将静态下的两半联轴器

在0°~360°之间平分四等分,并在等分点

做好画线标记,如图2所示。 ③百分表架设:在作基准的主机侧半联轴器上装上专用夹具及百分表,使百分表的触头指向原动机侧半联轴器的外圆及端面,架设方法如图3所示。

④百分表校正:保证架设的测量杆有一定的初始测力,即在测量头与零部件表面接触时,一般为总量程的1/2左右的压缩量,然后调整表圈,使表盘的零度刻线对准指针。轻轻拉动测量杆的圆头几次,检查百分表的指针所指的零位有无变化。如果是旋转设备偏移值测量,选择两半联轴器其中一端,根据图2联轴器等分点划分方法从点1旋转360°回到点1的位置,检查百分表的指针所指的零位有无变化如无变化即可开始测量或零件校核。

⑤测量与记录:测量时,先测0°方位的径向读数a1 及轴向读数s1。为了分析计算方便,常把a1 和s1 调整为零,然后两半联轴器同时转动,每转90°读一次表中数值,并把读数值填到记录图中。圆外记录径向读数a1,a2,a3,a4,圆内记录轴向读数s1,s2,s3,s4,当百分表转回到零位时,必须与原零位读数一致,否则需找出原因并排除之。常见的原因是轴窜动或地脚螺栓

松动,测量的读数必须符合下列条件才属

正确,即a1+a3=a2+a4;s1+s3=s2+s4。测

量记录图如图4所示。如果表2测量点为联

轴器内侧时,则s1、s3的读数在后续判断

调整支点计算中应为此数的相反数。

通过对测量数值的分析计算,确定两轴在空间的相对位置,然后按计算结果进行调整。这种方法应用比较广泛,可满足一般旋转设备的安装精度要求。主要缺点是对有轴向窜动的联轴器,在转子盘车时其端面的轴向度数会产生误差。因此,这种测量方法适用于由滚动轴承支撑的转轴,轴向窜动比较小的中,小型设备,如SH型水泵联轴器找正等。

(2)三表测量法(两点测量法)

三表测量法与两表测量法不同之出在于百分表接触联轴器与轴

中心等距离处对称布置两块百分表,在测量一个方位上径向读数和轴向读数的同时,在相对的一个方位上测其轴向读数,即同时测量相对两方位上的轴向读数,可以消除轴在盘车时窜动对轴向读数的影响。

①百分表的架设

在作基准的主机侧半联轴器上装上专用夹具及百分表,使百分表的触头指向原动机侧半联轴器的外圆及端面,其中在联轴器端面等距离对角处架设两块百分表。0°方位上的表称为主表,180°方位上的表称为副表。百分表架设方法如图5所示。

②测量与记录

在测量0°~360°之间平分四等分点时,按照图2所示的划分方法将表1、主表、副表的零刻度线分别回零,记录下点1位置表1、主表、副表在零位的量值a1=0、s1′=0、s1″=0。旋转两半联轴器至点2位置,记录下a2、s2′、s2″的数值;旋转两半联轴器至点3位置,记录下a3、s3′、s3″的数值;旋转两半联轴器至点4位置,记录下a4、s4′、s4″的数值;旋转两半联轴器至点1位置,表1、主表、副表在零位的量值a1=0、s1′=0、s1″=0,确定此组测量数值的正确性。圆外记录径向读数a1,a2,a3,a4,圆内记录轴向读数s1=0,s2= (s2′+ s2″)/2,

s3= (s3′+ s3″)/2,s4= (s4′+ s4″)/2。如果主表、副表测量点为联轴器内侧时,则s1、s3的读数在后续判断调整支点计算中应为此数的相反数。

③三表测量法与两表测量法的差别

三表测量法测量较两表法测量最大的区别在于测量更加精确。现场测量过程中,如果传动轴在旋转的过程中轴线方向上发生了位移,两表法测量数值较真实值就会产生误差值,使用三表法就能够消除轴向窜动带来的误差值。通过对三表法在1800方向上的两个数值做镜像分析,就可以得出轴向位移的偏差值。即:a3=(a1+a2)/2 分析原理图如图6所示

这种测量方法精度很高,适用于两半联轴器直接靠螺栓无中间连接部件需要精确对中的精密或高速运转的联轴器设备,如汽轮机、鼓风机、加压机组、离心式空压机组等。

四、偏差示意图

旋转设备联轴器偏差情况分析示意图如图8所示。

五、联轴器偏差调整与计算结论表

六、机泵(风机等)联轴器找中心的注意事项:1、找中心专用工具应牢固,以免因松弛而影响测量准确度;2、找中心专用工具固定在联轴器上应不影响盘车测量;3、用百分表测量时,百分表应留有足够的余量,以免因标杆顶死而出现错误数据;4、用塞尺测量时,塞尺片不多于三片,表面平滑无皱纹,插进松紧均匀,以免出现过多的误差;5、测量的位置在盘车后应一致,避免出现误差。盘车时,注意不要盘过头或没有盘够,以免影响测量准确度;6、用百分表或

汽轮机说明书

中国长江动力公司(集团) 文件代号Q3053C-SM 2011年3 月日

产品型号及名称C7.5-3.8/1.0抽汽凝汽式汽轮机文件代号Q3053C-SM 文件名称使用说明书 编制单位汽轮机研究所 编制 校对 审核 会签 标准化审查 批准

目录 1前言--------------------------------- 2 2主要技术数据------------------------- 2 3产品技术性能说明和主要技术条件------- 3 4产品主要结构------------------------- 3 5安装说明----------------------------- 5 6运行和维护--------------------------- 17 7附录:汽轮机用油规范----------------- 25

1前言 C7.5-3.8/1.0型汽轮机系中温中压、单缸、冲动、抽汽凝汽式汽轮机,具有一级工业调整抽汽。额定功率为7500kW,工业抽汽额定压力为 1.0MPa,额定抽汽量为9.5t/h。本汽轮机与发电机、锅炉及其他附属设备成套,安装于企业自备电站或热电厂,同时供热和供电。机组的电负荷和热负荷,可按用户需要分别进行调节。同时,亦允许在纯凝汽工况下,带负荷7500kW长期运行。本机系热电联供机组,具有较高的热效率和经济性。机组结构简单紧凑,布置合理,操作简便,运行安全可靠。 2主要技术数据 2.1 汽轮机型式中温中压、单缸、冲动、抽汽凝汽式 2.2 汽轮机型号C7.5- 3.8/1.0 型 2.3 新蒸汽压力 3.8(2.03.0+-)MPa 2.4 新蒸汽温度390(1020+-)℃ 2.5 额定功率7500kW 最大功率9000kW 2.6 额定转速3000r/min 2.7 额定进汽量46t/h 2.8 最大进汽量50t/h 2.9 额定抽汽参数压力 1.0 MPa 温度272.3℃ 流量9.5 t/h 2.10 最大抽汽量15t/h

汽轮机找正网友经验

找中心我的见解 我认为联轴器找中心与每台机组的实际情况差别非常大,我简单讲述几点。 1、与联轴器的型式有关,若为半挠性或挠性联轴器,中心无须太过讲究。不过对于汽轮机而言一般没有采用挠性联轴器,而采用半挠性联轴器的都只限于与发电机的联结上。 2、上面有些同志所说的凝汽器的变化之类,也要看凝汽器的支承型式、与后汽缸的联接型式、后汽缸的刚度、后座架的结构型式等。比如有同志说凝汽器灌水后下降之类的,真空之后又如何,这种说法是靠不住脚的。我简单谈一下自己的看法:1)现在的凝汽器多为弹簧支承,凝汽器与后汽缸为刚性联接。这种型式中需要考虑的是当凝汽器进水后,弹簧支承力变大,从而下沉,但当机组带负荷后凝汽器膨胀,从而基本消除其变形。再加上进水的重量与凝汽器本身的重量轻得不少,而弹簧的刚度很大,所以不至于影响联轴器中心。所以上汽的机组基本上不需要灌水找中心线。 2)真空如何去影响凝汽器的受力呢?当然除了与后汽缸联接采用挠性波纹管联接的结构外,是不会有太大影响的。在这里唯一的影响点就是后汽缸靠台板座落在后座架上的,而汽缸与台板之间要求是接触良好,也就是说之间没有空气存在。而后座架是通过灌浆的方式浇铸在混凝土内的,所以当凝汽器抽真空时,因为这部分面积的影响从而造成了大气自上往下的压力,这种结果当然是产生轴承座可能的向下变形会大点,但此面积很小,不至于影响很大。 3)轴承座受热变形。这样可能会造成轴承位置有所抬高。 4)以上三小点相互作用的结果是相互抵消其对中心线的变化的。也这是设计时认真考虑的。特别对于美国西屋公司的机组及ABB机组这

方面的考虑很详细。 3、关于前轴承箱的问题,大家其实知道,现在的支承方式均为中分面支承,比如上汽采用的下猫爪支承是将下猫爪作成下弯至支承位置处于中分面位置,这样的支承情况,对运行中汽轮机联轴器的张口影响基本是不存在的了。而至于轴承箱的温度,一般也就是50度左右,而轴承中分面离地面很很小,而且其它的轴承座也是一样的离地这样高,所以其受热膨胀对中心线的影响不用考虑。 4、轴承的负荷分配。这对于刚性联轴器是非常严肃的话题!这也是采用张口来进行调整的。大家知道三轴承的联轴器都采用下张口的型式,下张口的数值由厂家提供或经由现场负荷抬轴试验以确定。而大家都知道,汽轮机轴承属于轻型转子,轴承负荷轻。所以这种情况要特别注意。比如说吧,单缸机组而言,联轴器采用刚性联接。调速汽门假设是4个,下面的为1、2#,上面的为#3、4,进汽方式是1、2、3调门全开为满负荷。这时调速级为下部先进汽,必然会使蒸汽对转轴产生一个向上的压力差从而抬高转子,结果是减轻了前轴承的负荷分配量,从而很容易产生轴承的油膜振荡。所以为了轴承的稳定性,在这里的联轴器采用一定的下张口,从而可以更好地稳定轴承的工作状况。 5、至于谈到扬度的影响,我感觉不到。因为,汽缸、转子均按同样的扬度进行安装的,为了使转子形成一条光滑顺畅曲线,一般前轴承上扬,其上扬的结果是以后轴承处为零或稍负一点。但无论如何,均需将联轴器中心线找正。 6、以上所说,我当然没有必要再谈论中心线的具体数值了。因为各种机组不同,且厂均有标准。只是取标准的方向如何而已。

汽轮机安装全套表格资料

Xxxx机组改造安装记录 Xxxx有限公司Xxx年xx月xx日

目录 1#、2#轴径椭圆度与不柱度测量记录 (2) 1#轴承前轴承检查记录 (3) 前轴承紧力检查记录 (4) 前轴承油档间隙测量记录 (5) 后轴承油档间隙测量记录 (6) 3#轴承油档间隙测量记录 (7) 4#轴承油档间隙测量记录 (8) 2#轴瓦检查安装记录 (9) 3#轴瓦检查安装记录 (10) 2#轴瓦紧力检查安装记录 (11) 4#轴瓦检查安装记录 (12) 通流部分间隙安装记录 (13) 单速级通流部分间隙安装记录 (14) 调整风扇风挡间隙安装记录 (15) 发电机气隙及磁力中心记录 (16) 隔板搭子间隙检查记录 (17) 隔板底键与隔板套底键间隙检查记录 (18) 隔板汽封间隙安装记录 (19) 隔板洼窝找中心安装记录 (20) 后汽缸与导板间纵向键安装记录 (21) 后轴承座连接螺母安装记录 (22) 扣空缸测量记录 (23) 汽—发联轴器找中心记录 (24) 汽缸水平测量记录 (25) 汽机转子弯曲度测量安装记录 (26) 汽机转子轴颈扬度安装记录 (27) 前后汽封间隙安装记录 (28) 前后汽封洼窝找中心安装记录 (29) 前后油挡洼窝找中心安装记录 (30) 前汽缸猫爪安装记录 (31) 前轴承座垂直键安装记录 (32) 前座架上的纵向键安装记录 (33) 前座架压板安装记录 (34) 联轴器推力盘端面瓢偏安装记录 (35) 推力轴承检查记录 (36) 危急遮断器飞环检查记录 (37) 叶轮叶片端面瓢偏安装记录 (38) 主油泵联轴器找中心记录 (39) 转子轴向定位检查记录 (40)

汽轮机使用说明书

N30-3.43/435型汽轮机使用说明书 1、用途及应用范围 N30-3.43/435型汽轮机系单缸、中温中压、冲动、凝汽式汽轮机。额定功率30MW,与汽轮发电机配套,装于热电站中,可作为电网频率为50HZ地区城市照明和工业动力用电。 其特点是结构简单紧凑、操作方便、安全可靠。汽轮机不能用以拖动变速旋转机械。 2、主要技术数据 2.1 额定功率:30MW 2.1 最大功率:33MW 2.3 转速:3000r/min 2.4 转向:从机头看为顺时针方向 2.5 转子临界转速:1622.97r/min 2.6 蒸汽参数: 压力: 3.43MPa 温度:435℃ 冷却水温:27℃(最高33℃) 排汽压力(额定工况):0.0086MPa 2.7 回热抽汽:4级(分别在3、6、8、11级后) 2.8给水加热:2GJ+1CY+1DJ 2.9 工况: 工 况 项 目进汽量抽汽量排汽量冷却水温电功率汽耗Go Gc Ge Ne t/h t/h t/h ℃kW Kg/kw·h 额定工况131.0 0.0 102.77 27 30007.1 4.366 夏季凝汽工况135.5 0.0 107.98 33 30029.4 4.512 最大凝汽工况145.0 0.0 114.14 27 33055.7 4.387 最大供热工况143.5 20.0 93.51 27 30049.2 4.776 70%额定负荷工况93.0 0.0 73.93 27 21013.9 4.426 50%额定负荷工况69.5 0.0 56.47 27 15009.0 4.631 高加切除工况122.0 0.0 107.8 27 30032.7 4.062 2.10 各段汽封漏汽流量 前汽封后汽封

汽轮机设备及系统安全运行常识参考文本

汽轮机设备及系统安全运行常识参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

汽轮机设备及系统安全运行常识参考文 本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 对于汽轮机组除机组本身外,大部分转动机械是离心 式水泵,如锅炉给水泵、凝结水泵、循环水泵、工业水 泵、热网泵、疏水泵和油泵等。离心式水泵是电厂不可缺 少的重要辅助设备,它的安全经济运行将直接影响发电供 热的安全和经济效益。转动机械运行中应注意以下几点事 项: (I)泵体、电机及周围地面清洁,电机出入口风道无杂 物。 (2)轴承内润滑油合格,油温、油压、油位在规定值范 围内。 (3)搬动对轮轻快,对轮罩完好,牢固无刮碰。水泵盘

根压盖不斜,冷却水畅通,水量合适。 (4)转动机械运行值班人员上岗前,必须经过专业培训,并经上岗考试合格后方可上岗。 (5)转动机械的运行值班人员必须熟悉所管辖的设备的工作原理、设备结构、性能和各种运行参数指标。 (6)值班时工作服要符合要求,不应当有可能被转动机器绞住的部分,穿好绝缘鞋,戴好安全帽。 (7)检查或擦拭设备时,手脚或身体任何部位不能接触设备的转动部分,防止发生机械伤害事件。不允许运行中清扫转动部位的脏物和污垢。 (8)检查水泵盘根时,要侧对着盘根压盖部位,防止介质喷出造成人员伤害。监督无关人员禁止靠近转动的机械。 (9)运行中要把各冷却水管接头进行重点检查,防止松动冷却水喷出进入电动机内,造成电动机短路烧损。

小汽轮机说明书

TGQ06/7-1型锅炉给水泵汽轮机使用说明书 8QG22·SM·01-2003 北京电力设备总厂 2003.12

目录 一汽轮机概述4二汽轮机技术规范5三汽轮机本体结构7四汽轮机系统14第一节汽水系统14 第二节油系统16第三节调速控制系统19第四节保护装置21五汽轮机安装26六汽轮机运行及维护43第一节调速系统的静态试验43第二节汽轮机超速试验44第三节汽动泵组启动与停机45第四节汽轮机运行中的维护47

一.汽轮机概述 本汽轮机为300MW汽轮发电机组锅炉给水泵驱动汽轮机。每台机组配备两台50%容量的汽轮机驱动给水泵和一台50%容量的电动机驱动给水泵。正常运行时,两台汽动泵投入,一台电动泵作为起动或备用给水泵。 本汽轮机目前可与SULZER的HPTmK200-320-5S型也可与WEIR或KSB相应型号的锅炉给水泵配套。用叠片式挠性联轴器联接,为了满足运行的需要,汽轮机配有两种进汽汽源。正常运行时采用主机中压缸排汽即主机四段抽汽,低负荷或高负荷时采用主蒸汽,低压调节汽门和高压调节汽门由同一个油动机通过提板式配汽机构控制。在给水泵透平的起动过程中,高压蒸汽一直打开到接近40%主机额定负荷。15%主机额定负荷时开始打开低压主汽门前逆止阀,使低压汽进入;在15%~40%主机额定负荷范围内,高压汽与低压汽同时进入;在40%主机额定负荷以上时,全部进入低压汽;在60%主机额定负荷以下时可为单泵运行;在60%主机额定负荷以上时为双泵运行。 在低压主汽门前必须装有一只逆止阀,当高压进汽时防止高压汽串入主汽轮机。当主机四段抽汽压力升高到能顶开逆止阀后,低压汽进入汽轮机,配汽机构自动地逐渐将高压汽切断。该逆止阀应与主机抽汽门联动。 本汽轮机轴封及疏水系统与主机轴封系统、汽水系统相连,汽轮机布置在12.6米运行层,排汽由后汽缸的下缸排汽口通过排汽管道引入主凝汽器,排汽管道上装有一真空碟阀,以便在汽动给水泵停运时,切断本汽轮机与主凝汽器之间的联系,而不影响主凝汽器的真空。 本汽轮机采用数字电液控制系统(MEH),MEH接受4~20mA锅炉给水信号和来自油动机LVDT的位移反馈信号,MEH产生的控制信号作用于电液伺服阀,使电液伺服阀开启或关闭,进而控制油动机的行程,最终实现低压调速汽门和高压调速汽门开度的调节,以控制进入汽轮机的蒸汽量。 本汽轮机的润滑油系统采用两台同容量的交流油泵,一台运行,一台备用,供给汽轮机和主给水泵的润滑用油,另外还有一台直流油泵,在事故情况下供给汽轮机和主给水泵的润滑用油。 为了便于电站系统设计和现场运行,两台50%容量的汽动给水泵组设计成镜面对称布置。高压主汽门,低压主汽门,本体汽水管路和本体油管路分别布置在两台汽轮机的同一侧。 本汽轮机有较宽的连续运行转速范围,除能满足主给水泵提供锅炉的额定给水量外,还留有充分的调节裕度,因而能广泛地为各种运行方式提供最大限度的可能性。 二.汽轮机技术规范 1.汽轮机型号,名称和型式 (1)型号:TGQ06/7-1 (2)名称:300MW汽轮发电机组锅炉给水泵驱动汽轮机 (3)型式:单缸,双汽源,新汽内切换,变转速,变功率,冲动,凝汽式,下排汽2.最大连续功率:6MW

汽轮机找中心经验

转子中心测量时已经是对汽轮机转子的扬度调整好后进行,通常以汽轮机转子为基准来找发电机转子的中心,这时主要考虑的是圆周值和端面值,圆周值当然是越小越好,我们做的时候一般控制在0.02mm以下,同时还要考虑汽轮机和发电机运行时各转子向上位移的膨胀量,来修正发电机转子是抬高还是要降低,端面值的要求也就可以决定是要求上开口还是要求下开口,我们做一般是保证左右开口为零,上下开口保证在2丝以内,这样在过临界时基本很少有振动增加。同时制造厂的相关资料也可以为我们的测量做出一些参考。 对轮中心做成上张口还是下张口要根据机组的具体形式而定。比如:三支点两转子找中心,一般都做成下张口,具体数值有厂家提供,这是从轴承负荷分配决定的。凝汽机组找中心一般做成上张口,是由于再找中心时凝汽器内有没有充水以及真空形成后后汽缸会下沉等因素决定的。总之,对轮找中心要根据具体情况具体分析,没有固定数值要求,要结合安装使用说明书和机组具体运行状态去做,才能打到满意效果。 在安装中找中心一般是在冷态下,与各机组的情况有关,不能一概而论,小机组转子是双支点轴承支撑,考虑运行中前轴承箱受热膨胀比后轴承箱多一般考虑上开口,此外,冷凝器的连接方式也有关系,有的是弹性连接没有太大的影响,有的是刚性连接,在找中时应灌水。而大机组采用双转子三轴承支撑,为了轴承负荷分配,一般制造厂家均有下开口的要求。关健在于热态运行中轴系要成为一条连续的光滑曲线,不能死搬教条,要根据不同情况进行调整。 我认为联轴器找中心与每台机组的实际情况差别非常大,我简单讲述几点。 1、与联轴器的型式有关,若为半挠性或挠性联轴器,中心无须太过讲究。不过对于汽轮机而言一般没有采用挠性联轴器,而采用半挠性联轴器的都只限于与发电机的联结上。 2、上面有些同志所说的凝汽器的变化之类,也要看凝汽器的支承型式、与后汽缸的联接型式、后汽缸的刚度、后座架的结构型式等。比如有同志说凝汽器灌水后下降之类的,真空之后又如何,这种说法是靠不住脚的。我简单谈一下自己的看法: 1)现在的凝汽器多为弹簧支承,凝汽器与后汽缸为刚性联接。这种型式中需要考虑的是当凝汽器进水后,弹簧支承力变大,从而下沉,但当机组带负荷后凝汽器膨胀,从而基本消除其变形。再加上进水的重量与凝汽器本身的重量轻得不少,而弹簧的刚度很大,所以不至于影响联轴器中心。所以上汽的机组基本上不需要灌水找中心线。 2)真空如何去影响凝汽器的受力呢?当然除了与后汽缸联接采用挠性波纹管联接的结构外,是不会有太大影响的。在这里唯一的影响点就是后汽缸靠台板座落在后座架上的,而汽缸与台板之间要求是接触良好,也就是说之间没有空气存在。而后座架是通过灌浆的方式浇铸在混凝土内的,所以当凝汽器抽真空时,因为这部分面积的影响从而造成了大气自上往下的压力,这种结果当然是产生轴承座可能的向下变形会大点,但此面积很小,不至于影响很大。 3)轴承座受热变形。这样可能会造成轴承位置有所抬高。 4)以上三小点相互作用的结果是相互抵消其对中心线的变化的。也这是设计时认真考虑的。特别对于美国西屋公司的机组及ABB机组这方面的考虑很详细。 3、关于前轴承箱的问题,大家其实知道,现在的支承方式均为中分面支承,比如上汽采用的下猫爪支承是将下猫爪作成下弯至支承位置处于中分面位置,这样的支承情况,对运行中汽轮机联轴器的张口影响基本是不存在的了。而至于轴承箱的温度,一般也就是50度左右,而轴承中分面离地面很很小,而且其它的轴承座也是一样的离地这样高,所以其受热膨胀对中心线的影响不用考虑。 4、轴承的负荷分配。这对于刚性联轴器是非常严肃的话题!这也是采用张口来进行调整的。大家知道三轴承的联轴器都采用下张口的型式,下张口的数值由厂家提供或经由现场负荷抬

汽轮机设备及系统

汽机专业设备稳定运行安全技术措施 为了实现汽机设备长周期稳定运行,保证汽机专业各项工作有序进行,防止出现由于管理不到位和人员因素的责任造成事故,针对目前设备运行状况和迎峰度夏的,特制定如下安全技术措施。 一、具体目标 1.确保机组安全稳定运行,不发生人为责任的不安全事件。 2.设备巡检到位,缺陷处理及时,确保机组各控制系统安全稳定运行。 3.夜间值班人员工作到位,按照工作标准处理缺陷、及时消缺,不发生不安全现象。 4.加强节假日期间值班人员工作到位,按照公司规定值班期间的各项制度进行值班和交接班。 二、加强主机设备的巡检力度 1. 汽轮机瓦轴系异常 1.1 每日观察CRT各轴瓦油温数值和变化情况;每周一次测量润滑油回油温度。 1.2 关注CRT轴振显示值及曲线,根据峰值变化规律判定是否存在严重异常,必要时调整蒸汽参数或负荷。 1.3 观察CRT各轴瓦瓦振变化;每周不少于两次测量各轴系

瓦振; 1.4 监视观察主机润滑油排烟风机运行是否正常,如果负压变化大,需对风机入口管进行排污;检查各轴承座回油视窗法兰螺栓是否松动,避免引起负压变化。 2.及时观察调速系统是否异常 2.1 针对以往容易出现的渗漏点重点巡检,如:程序阀各油管连接口、冷油器各法兰、油动机各连接口等。 2.2 根据压差及使用情况及时更换油泵出口滤芯;根据在线装置各滤芯压差情况,及时更换在线滤芯,控制油质颗粒度合格。 2.3 每周一次检查液压系统管道各连接部位是否松动,支吊架是否完好。 2.4根据抗燃油酸值等主要指标情况,及时组织准备脱酸滤芯,连续进行再生脱酸处理;根据季节变化情况,加大对液压油水份的控制,及时投运真空滤油机。 3. 严密监视主机润滑油系统状态及油品的各项指标 3.1润滑油出口滤网压差大,及时更换出口滤芯,更换后试压确定是否回装完好。 3.2润滑油油质不合格,根据油质化验情况,可将在线净油机切换至主机润滑油过滤,降低水份等指标的升高。 3.3润滑油泄漏,每日巡检记录油位变化情况;冷油器定期查漏,避免冷油器泄漏;巡检中在油箱上部进行检查,避免

背压汽轮机说明书

前言 本说明书是为帮助操作者按正确的程序操作和维护本汽轮机,进而帮助操作者辩认各零部件,以利于该机达到最佳性能和最长的使用寿命。 注意 1.在装运前后和开车前,应确认所有的螺栓和接头已恰当拧紧。 2.汽轮机运转时,转动部件不得裸露在外,所有联轴节及其它转动部件必须设防护设置以防人员接触发生事故。 3.本机备有手动脱扣(停车)装置,以便在紧急状态下能迅速停车。这个装置必须定期检查和试验。检查和试验的时间由使用者根据情况自行确定。建议对试验结果作好记录。 4.安装电气设备时,一定要检查,并拧紧所有端子接头,线夹,螺母,螺钉等连接元件。这些连接元件在运输中可能会松动,因此,设备在已经运行时及元件有温升后,最好再紧固一次。 5.从事这类工作时,一定要先断开电源。 6.与汽轮机有关人员应完整地阅读本说明书,以利于安全运行。

索引 第一部分:汽轮机………………………………………… 第一章: 概述…………………………………………… 第二章: 结构…………………………………………… 第三章: 运行与操作…………………………………… 第四章: 汽轮机的检修………………………………… 第五章: 主要图纸……………………………………… 第二部分:辅助设备………………………………………

第一部份:汽轮机

第一章:概述 第 1 节: 概述 第 2 节: 汽轮机性能曲线

第1节:概述 业主:辽宁华锦通达化工股份有限公司 设备名称:驱动给水泵用背压汽轮机 汽轮机位号: 汽轮机型号: 5BL-3 卖方服务处:辽宁省锦州市锦州新锦化机械制造有限公司电话:(0416)3593027 传真:(0416)3593127 邮编: 121007 地址:辽宁省锦州经济开发区锦港大街二段18号

汽轮机找中心要点

浅谈联轴器找正之我见 摘要:旋转设备在安装或维修后始终存在轴对中的问题,是机组安装检修过程中一个极其重要的环节,对中精度的高低对设备运行周期及运行效率有着直接的影响,找正的目的是保证旋转设备各转子的中心线连成一条连续光滑的曲线,各轴承负荷分配符合设计要求,使旋转设备的静止部件与转子部件基本保持同心,将轴系的扬度调整到设计要求,找正的精度关系到设备是否能正常运转,对高速运转的设备尤其重要。因此在每次检修中必须进行转动机械设备轴中心找正工作,使两轴的中心偏差不超过规定数值。在我厂化工设备(不包括厂家给出冷态与热态的中心数据),其中心标准基本上都在0.05mm(即5丝)以内。现就对联轴器找中心的原理、步骤并对联轴器找中心在实际工作作中常见的一些方法、注意事项以及找正在实践中的应用作简单的介绍。 一、找中心的原理:测量时在一个转子对轮上装上磁性表座,另一个对轮上装上百分表,径向、轴向各一付,(为防止转子窜轴,轴向则需装二个表,相差180度)。连接对轮(一般一到二枚螺丝,拧紧即可),然后一起慢慢地转动转子,每隔90度停下来测量一组数据记下,测出上、下、左、右四处的径向a、轴向s四组数据,将数据记录在下图所示的方格内。 a1 a4 s1 s4 s2 s3 a2 a3

一般圆里面的为轴向数据s,外面的为径向数据a,在测得的数值中,若a1=a2=a3=a4,则表明两对轮同心;若s1=s2=s3=s4,表明两对轮的端面平行。若同时满足上述两个条件,则说明两轴的中心线重合;若所测数据不等,根据计算结果是否在标准范围内,超出标准则需对两轴进行找中心。 二、找中心步骤 1、检查并消除可能影响对轮找中心的各种因素。如清理对轮上油污、锈斑及电机底脚、基础。 2、连接对轮,保证两对轮距离在标准范围内。 3、用塞尺检查电机的底脚是否平整,有无虚脚,如果有用塞尺测出数值,用铜皮垫实。 4、先用直尺初步找正。主要是左右径向,相差太大用百分表测量误差太大,并容易读错数据。 5、安装磁性表座及百分表。装百分表时要固定牢,但要保证测量杆活动自如。测量径向的百分表测量杆要尽量垂直轴线,其中心要通过轴心; 6、测量轴向的二个百分表应在同一直径上,并离中心距离相等。装好后试转一周。并回到原来位置,此时测量径向的百分表应复原。为测记方便,将百分表的小表指针调到量程的中间位置,并最好调到整位数。大针对零。 7、把径向表盘到最上面,百分表对零,慢慢地转动转子,每隔90度测量一组数据记下,测出上、下、左、右四处的径向a、轴向s 四组数据,将数据记录在右图内。径向的记在圆外面,轴向数据记录在圆里面。注意:拿到一组数据你要会判断它的正确性,你从那里开始对零的,盘一周后到原来位置径向表应该为0,径向表读数上下之和与左右之和应相差不多,两只轴向表数据相同。否则的话要检查磁性表座和百分表装得是否牢固。

华电汽轮机资料

●滞止参数:具有一定流速的蒸汽,如果假想蒸汽等熵地制止到速度为0时的状态,该状态为滞止状态,其参数叫滞止参数 ●气流在斜切部分方向偏转的根本原因:喉部截面之后继续膨胀的气流是超音速气流,它膨胀时,比容的增大比流速的增大要快,必须在渐扩通道内才能膨胀,在喷嘴高度变化不大而另一侧又有壁面阻挡情况下,气流只有偏向另一侧才能扩大通流面积●喷嘴的极限膨胀压力:随着背压降低,参加膨胀的斜切部分扩大,斜切部分达到极限膨胀时喷嘴出口所对应的压力 ●假想速比:圆周速度与假想全级滞止理想比焓降都在喷嘴中等比熵膨胀的假想出口速度的比值 ●余速利用对最佳速比与轮周关系的影响:增大了轮周效率;最佳速比附近轮周效率敏感度下降,提高了适应工况变化的能力;使速比向增大方向移动;使轮周效率失去了对应于最高的基本对称性 ●复速级效率低原因及优点:增加了导叶和第二列动叶中的能量损失,而且使第一列动叶中的损失增大。在圆周速度相同时,能承担比单列级大得多的理想比焓降,故采用复速级能使汽轮机的级数减少,结构紧凑;当它作为多级汽轮机的调节级时,蒸汽压力和温度在这一级下降较多,减少了汽轮机在高温高压蒸汽下工作的区域,不仅能减少高温材料,降低制造成本,而且有利于改善汽轮机的变工况性能 ●叶型损失:附面层中的摩擦损失;附面层脱离引起的涡流损失;尾迹损失;冲波损失。影响因素:进汽角、相对节距(节距增大时,腹面对汽流约束减弱,背面出口段扩压范围和扩压程度增加,是叶型损失增大;节距减小时,单位流量摩擦增厚,出口边相对厚度增加,尾迹损失增大)和汽流马赫数。 ●叶轮摩擦损失:叶轮两侧及围带表面的粗糙度引起的摩擦损失;子午面内的涡流运动引起的损失。 部分进汽损失:由鼓风损失(与部分进气度成反比)和斥汽损失(与喷嘴组数成正比)两部分组成。级的部分进气度:装有喷嘴的弧段长度与整个圆周长度的比值。 ●漏气损失:由隔板漏气损失和动叶顶部漏气损失组成。减小措施:尽量减小径向间隙,但汽轮机在启动等情况下,静止部分和转动部分受热不均,温差较大,为避免两者摩擦,径向间隙不能太小。因此采用径向和轴向气封结构。对于较长的扭叶片级,在无围带的情况下,往往将动叶顶部削薄,缩短动叶与气缸的间隙,从而达到气封的作用。此外还应减小叶顶反动度,使动叶顶部前后压差不至过大。叶轮上开设平衡孔。 ●湿气损失:饱和蒸汽汽轮机的各级和普通凝气式汽轮机的最后几级都工作在湿蒸汽区,从而对干蒸汽的工作造成能量损失。减少湿汽损失措施:1)去湿方法:由捕水口捕水室和输水通道组成的级内捕水装置;采用具有吸水缝的空心喷嘴;采用出汽边喷射蒸汽的空心喷嘴。2)提高动叶本身抗冲蚀能力:采用耐侵蚀性能强的叶片材料;在叶片进汽边背弧上镶焊硬质合金;对叶片表面镀铬、局部高频淬硬、电火花强化和氮化等。 ▲多级汽轮机的优点:1)循环热效率大大提高:蒸汽初参数大大提高,排气压力降得很低,还可采用回热循环和中间再热循环2)相对内效率明显提高:设计工况下每级均在最佳速比附近工作;余速动能可被下级利用;叶高损失减小,喷嘴流动效率高;上面级的损失可被下级部分利用(重热现象)3)单机功率大,故单位功率汽轮机组造价、材料消耗及占地面积减小,故投资小。缺点:1)增加了隔板漏气损失,由于焓降大,最后几级的湿汽损失大2)级数多,增加了机组的长度和质量3)初参数提高,使前几级对金属材料的要求提高了4)级数增加,零部件增多,使全机造价成本提高。 ▲低压段反动度增大原因:低压段叶片高度很大,为保证叶片根部不出现负反动度,平均直径处的反动度较大;级的比焓降大,为避免喷嘴出口流速超过临界速度过多而采用缩放喷嘴,只有增大级的反动度,才能增大动叶比焓降。 ▲进汽阻力损失:由于蒸汽在汽轮机进气机构中节流,造成蒸汽在汽轮机中的理想焓降减少,称为进气机构的阻力损失。措施:控制阀门与管道中蒸汽流速;采用带扩压管的单座阀。 ▲排汽阻力损失:汽轮机的乏汽从最后一级动叶排出后,由于排气要在引至凝汽器的过程中克服摩擦,涡流等阻力造成的压力降低,使其汽轮机的理想焓降减少。措施:通过扩压把排气动能转化为静压,以补偿排气管中的压力损失 汽轮机的极限功率:在一定的初中参数和转速下,单排气口凝气式汽轮机所能发出的最大功率 ▲轴封系统的原理、作用、组成、特点:1)原理:每一道汽封圈上有若干高低相间的汽封片(齿),这些汽封片是环形的。蒸汽从高压端泄入汽封,当经过第一个汽封片的狭缝时,由于汽封片的节流作用,蒸汽膨胀降压加速,进入汽封片后的腔室后形成涡流变成热量,使蒸汽的焓值上升,然后蒸汽又进入下一腔室,这样蒸汽压力便逐齿降低,因此在给定的压差下,如果汽封片片数越多,则每一个汽封片两侧压差就越小,漏汽量也就越小。2)作用:利用轴封漏气加热给水或到低压处作功;防止蒸汽自气封处漏气;冷却轴封,防止高压端轴封处过多传至主轴承而造成轴承温度过高,影响轴承安全;防止空气漏入汽轮机真空部分3)组成:轴封,供气母管急均压箱,轴封加热器和轴封抽气器4)特点:轴封分成多段多室,与大气环境接近的腔室的压力由抽气器或者风机维持低于大气压力,紧邻的腔室压力由压力调节器维持高与大气压力,从而保证蒸汽不外泄,空气不内漏。▲轴向推力组成和平衡:1)(冲动式)蒸汽作用在动叶上的轴向力;蒸汽作用在叶轮轮面上的轴向力;蒸汽作用在转子凸肩上的轴向力;蒸汽作用隔板汽封和轴封套筒上的轴向推力组成。(反动式)作用在叶片上的轴向推力;作用在轮股锥型面上的轴向推力;作用在转子阶梯上的轴向推力。2)平衡活塞法;相反流动布置法;叶轮上开平衡孔;采用推力轴承。 ▲抽气效应:喷嘴中流出的高速气流在叶根处对隔板与叶轮间腔室内的蒸汽产生抽吸作用,其效应相当于增大腔室中的压力。泵浦效应:高速旋转的叶轮带动周围蒸汽旋转运动,离心力使部分蒸汽产生指向叶根的径向运动,叶轮和叶根间隙两侧增加一压差,其效应相当于增大腔室中的压力 ▲提高单机最大功率的途径:提高新汽参数使全机理想比焓降增大,以及降低凝汽器真空使末级排气比容减小;使用高强度、低密度材料;增加汽轮机的排气口,即进行分流;采用低转速 ■弗留格尔公式使用条件:保持设计工况和变工况下通气面积不变,若由于其他原因,使通气面积发生改变时应进行修正,同一工况下,各级的流量相等或成相同的比例关系,流过各级的气流为一股均质流。 ■节流配气和特点:进入汽轮机的所有蒸汽都通过一个调节气门,然后进入汽轮机的配方式。负荷小于额定值时,所有蒸汽节流;同样复合下,背压越高,节流效率越低。优点:结构简单,启动或变负荷时第一级受热均匀,且温度变化小,热应力小。■喷嘴配气和特点:喷嘴配气是依靠几个调节控制相应的调节级喷嘴来调节汽轮机的进气量。部分进气,满负荷时仍存在部分进汽,所以效率比节流配汽低,部分负荷时,只有那个部分开启的调节气门中蒸汽节流较大,而其余全开气门中的蒸汽节流已减少到最小,故定压运行时,喷嘴配气与节流配汽相比,节流损失较少,效率较高。缺点:调节级存在部分进气损失且受热不均,调节级余速不能利用,负荷下降时高压缸各级温度变化大 ■凝汽式汽轮机和背压机的轴向推力随负荷的变化规律:对于凝汽式汽轮机,负荷即流量变化时,各中间级焓降基本不变,因而反动度不变,各级前后压差与流量程正比,即汽轮机轴向推力与流量成正比;同时,末级不遵循此规律,调节级的轴向推力也是随部分进汽度而改变的,且最大负荷时,轴向推力最大,但调节级和末级其轴向推力在总推力中所占比例较小,一般忽略,认为凝汽式汽轮机总轴向推力与流量成正比,且最大负荷时轴向推力最大。背压机非调节级的压力与流量不成正比,且流量减少时各级理想比焓降变小,反动度增大,故轴向推力与流量不成正比,其最大轴向推力在某一中间负荷处。 ■滑压运行:调节气门全开或开度不变,根据负荷大小调节进入锅炉的燃料量,给水量和空气量,使锅炉出口蒸汽压力和流量随负荷而变化,维持出口蒸汽温度不变的运行方式。 ■定滑定运行优点:汽轮机采用喷嘴配汽,高负荷区域内进行定压运行,用启闭调节汽门来调节负荷,汽轮机组初压较高,循环热效率较高,且负荷偏离设计值不远,相对内效率也较高。较低负荷区域内仅全关最后一个,两个或三个调节汽门,进行滑

汽轮机设备及系统安全运行常识通用版

安全管理编号:YTO-FS-PD178 汽轮机设备及系统安全运行常识通用 版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

汽轮机设备及系统安全运行常识通 用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 对于汽轮机组除机组本身外,大部分转动机械是离心式水泵,如锅炉给水泵、凝结水泵、循环水泵、工业水泵、热网泵、疏水泵和油泵等。离心式水泵是电厂不可缺少的重要辅助设备,它的安全经济运行将直接影响发电供热的安全和经济效益。转动机械运行中应注意以下几点事项: (I)泵体、电机及周围地面清洁,电机出入口风道无杂物。 (2)轴承内润滑油合格,油温、油压、油位在规定值范围内。 (3)搬动对轮轻快,对轮罩完好,牢固无刮碰。水泵盘根压盖不斜,冷却水畅通,水量合适。 (4)转动机械运行值班人员上岗前,必须经过专业培训,并经上岗考试合格后方可上岗。 (5)转动机械的运行值班人员必须熟悉所管辖的设备的工作原理、设备结构、性能和各种运行参数指标。

B25汽轮机说明书

型 25MW背压式汽轮机产品说明书 南京汽轮电机(集团)有限责任公司

目录 1.汽轮机的应用范围及主要技术规范 2.汽轮机结构及系统的一般说明 3.汽轮机的安装说明 4.汽轮机的运行及维护

1、汽轮机的应用规范及主要技术规范 汽轮机的应用范围 本汽轮机为高压、单缸、背压式汽轮机,与锅炉、发电机及其附属设备组成一个成套供热发电设备,用于联片供热或炼油,化工、软纺、造纸等行业的大中开型企业中自备热电站,以提供电力和提高供热系统的经济性。 本汽轮机的设计转速为3000r/min,不能用于拖动不同转速或变速机械。 汽轮机的技术规范: 汽轮机技术规范的补充说明 汽轮机技术规范所列的汽耗是在新蒸汽参数为,535℃时的计算值,允许偏差3%。 绝对压力单位为Mpa(a),表压单位Mpa。 引用标准GB5578-1985“固定式发电机用汽轮机技术条件”。

汽轮机润滑油牌号 汽轮机润滑油推荐使用GBTSA汽轮机油,对本汽轮机一般使用L-TSA46汽轮机油,只有在冷却水温度经常低于15℃时,允许使用L-TSA32汽轮机油。 主要辅机的技术规范 冷油器 汽封加热器 2、汽轮机系统及结构的一般说明 热力系统 主热力系统 从锅炉来的高温新蒸汽,经由新蒸汽管道和电动隔离阀至主汽门,新蒸汽通过主汽门后,以车根导汽管流向四个调节汽阀。蒸汽在调节阀控制下流进汽轮机内各喷嘴膨胀作功。其中部分蒸汽中途被抽出机外作回热抽汽用,其余部分继续膨胀作功后排入背压排汽管。低压除氧给水经高压除氧器,然后经给水泵升压后送入二个高压加热器,最后进入锅炉。高压加热器具有旁路系统,必要时可以不通过任何一个加热器。 各回热抽汽的出口均有抽汽阀。抽汽阀控制水管路系统控制。正常运行时抽汽阀联动装置切断压力水,使操纵座活塞在弹簧作用下处于最高位置,这时抽汽阀全开。当主汽门关闭或甩负荷时,抽汽阀联动装置的电磁铁吸起活塞杆,压力水送入抽汽阀操纵座,使活塞上腔充满水迅速关闭抽汽阀。另外抽汽阀自身均有止回作用。 回热抽汽系统 机组有二道回热抽汽,第一道抽汽送入二号高压加热器。第二道抽汽送入一号高压加热器。汽封系统 机组的汽封系统分前汽封和后汽封。前汽封有五段汽封组成四档汽室;后汽封有四段汽封组成三档汽室。其中前汽封第一档送入抽汽管路,第二档会同后汽封第一档送入高压除氧器,第三档会同后汽封第二档送入低压除氧器,第四档会同后汽封第三档接入汽封加热器。汽封加热器借助抽风机在吸入室内形成一定的真空,使此几档的汽室压力保持在~的真空,造成空气向机内吸抽以防止蒸汽漏出机外漏入前后轴承座使油质破坏。此外并能合理利用汽封抽汽的余热加热补给水。主汽门、调节汽阀之阀杆漏汽和第一档均送往高压除氧器。疏水系统 汽轮机本体及各管道的疏水分别送入疏水膨胀箱。待压力平衡后送入补给水系统。

汽轮机找中心资料

关于对汽轮机检修工作中用表格计算模拟找中心的几个的问题 汽轮发电机组大修时,往往要对其轴系的各个对轮中心作检查和调整(俗称对轮找中心)。在此过程中,一般是先经过大量的手工计算,决定一个调整方案,然后一次次试调、测量,使调整结果逐渐达到对轮中心的偏差容许值,因而耗费大量的时间和人力。而且在找中心的时候需要考虑个个汽封洼窝中心和油封中心,但是在实际的工作,很少有人真正的去计算,只是看个大概的估算值.这样有的时候一次计算的失误可能导致大量工人的重复劳动,以至于延长工期.所以我有个设想就是用电子表格模拟整个找中心过程的数据计算,从而得出最终结果.可以提出几个方案,然后通过计算得出一个最合适和工作量最小的方案.在一般大修中主要用到计算的步骤有:汽轮机的对轮找中心、轴瓦的移动量、洼窝中心调整隔板. 一、表格模拟对轮找中心的表格 既然要用表格模拟计算找中心,那么应该首先把他的计算原理推导出来那么就 以我们厂200WM 的汽轮机轴系为例计算推导找中心的过程. 在对轴系找中心前要对轴系有个假设:轴系是一条直线,所有对轴系的移动都是线性 的.上张口为正,下张口为负.高于标准对轮(每对对轮左边对轮为标准对轮)为正,低于标准对轮为负.假如以高压转子为准依次向后找中心则: 1.首先要消除张口a 1: 若需要预留张口或圆周的那么使,张口的正负号不变,预留上张口为正,下张口为负 ,预留圆周也是高出标准对轮为正,低于标准对轮为负. 200MW轴系图 高压转子 中压转子 低压转子 发电机转子 1瓦假瓦 2瓦 3瓦 4瓦5瓦6瓦7瓦 D 1 D 2 D 3 张口 a 1圆周 b 1 张口 a 2 移动后a 2 '圆周 b 2 b 2' 张口 a 3 移动后a 3'圆周 b 3 b 3'

汽轮机各系统资料讲解

4.3 热力系统方案 4.3.1 主蒸汽系统 主蒸汽系统采用切换母管制,主蒸汽从锅炉过热器出口集箱接出,经电动闸阀一路接至主蒸汽母管,另一路接至汽轮机。为确保供热的可靠性,主蒸汽母管的一端接减温减压器,通过其向热网管道供汽。锅炉主蒸汽出口电动闸阀和进入汽轮机自动主汽门前的电动闸阀均设有小旁路,在暖管和暖机时使用。 4.3.2 主给水系统 主给水热母管采用切换制系统。设低压给水母管、高压给水热母管。给水经低压给水母管分别进入四台给水泵,一台定速泵和一台调速泵为一组,每组给水泵加压后,分别送至两台高加去加热,加热后热水采用切换母管制,一路直接送至锅炉,另一路与高压给水热母管相接。系统配置四台电动给水泵,二台运行,一台备用。为防止给水泵在低负荷时产生汽化,另设给水再循环管与再循环母管。高压加热器设有电动旁路,当高压加热器发生故障时,高加旁路自动开启,系统经由高加旁路直接向省煤器供水。为保证给减温减压器提供减温水,系统设置了一根减温水母管,分别接自每台电动给水泵出口管道。 4.3.3 回热抽汽系统 汽机回热系统,设有二级非调整抽汽及一级调整抽汽,非调整抽汽分别向一台高压加热器和一台除氧器供汽。在调整抽汽管道上接一路供低压加热器用汽,另一路接至热网母管送至换热站。

为了防止在机组甩负荷时蒸汽倒入汽缸,而使汽轮机超速,以及防止因加热器水位过高而使汽轮机进水,在各级抽汽管道上分别装有抽汽逆止阀和闸阀,并且在调整抽汽管道上加装了抽汽速关阀,以此保证运行安全。 4.3.4 除氧系统 为保证锅炉给水除氧可靠性,本工程设置二台150t/h的旋膜式热力除氧器,水箱容积40m3。可以保证本期工程锅炉给水的除氧。 进入除氧器的汽水管道均采用母管制,两台除氧器之间设置汽、水平衡母管。进入除氧器前的除盐水管道、加热蒸汽管道、热网疏水管道上均设置自动调节阀。 4.3.5 抽真空系统 为保证汽轮机凝汽器运行时的真空度,本工程设置二台射水抽气器(一运一备)一个射水箱和两台射水泵。射水泵将射水箱内的水加压后,送至射水抽气器形成真空,使得抽汽器抽出凝汽器里未凝结气体,此时各换热器里空气都被汇集到凝汽器,被水一起带至射水箱内,从而保证凝汽器的真空度。同时射水箱上设置溢放水和补充水管道。每台机组设置二台射水泵泵。机组启动时,二台射水泵全部投入运行;机组正常运行时,一台运行一台备用,系统运行可靠、经济实用。4.3.6 凝结水系统 汽轮机排汽经凝汽器冷却成凝结水后,自凝汽器热井排出,由两台凝结水泵升压后(一台运行,一台备用),经汽封加热器和低压加热器加热后进入除氧器。

上汽600MW超临界汽轮机DEH说明书概览

600MW超临界机组DEH系统说明书 1汽轮机概述 超临界600/660MW中间再热凝汽式汽轮机主要技术规范 注意: 上表中的数据为一般数据,仅供参考,具体以项目的热平衡图为准。 由于锅炉采用直流炉,再热器布置在炉膛较高温区,不允许干烧,必须保证最低冷却流量。这就要求在锅炉启动时,必须打开高低压旁路,蒸汽通过高旁进入再热器,再经过低旁进入凝汽器。而引进型汽轮机中压缸在冷态启动时不参与控制,仅全开全关,所以在汽轮机冷态启动时,要求高低旁路关闭,再热调节阀全开,主蒸汽进入汽轮机高压缸做功,经高排逆止门进入再热器,经再热后送入中低压缸,再进入凝汽器。由于汽轮机在启动阶段流量较小,在3000 r/min 时只有3-5%的流量,远远不能满足锅炉再热器最低的冷却流量。因此,在汽轮机启动时,再热调节阀必须参加控制,以便开启高低压旁路,以满足锅炉的要求。所以600MW 超临界汽轮机一般要求采用高中压联合启动(即bypass on)的启动方式。 2高中压联合启动 高中压缸联合启动,即由高压调节汽阀及再热调节阀分别控制高压缸及中

压缸的蒸汽流量,从而控制机组的转速。高中压联合启动的要点在于高压缸及中低压缸的流量分配。启动过程如下: 2.1 盘车(启动前的要求) 2.1.1主蒸汽和再热蒸汽要有56℃以上的过热度。 2.1.2 高压内缸下半第一级金属温度和中压缸第一级持环下半金属温度,大于204 ℃时,汽轮机采用热态启动模式,小于204℃时,汽轮机采用冷态启动模式,启动参数见图“主汽门前启动蒸汽参数”,及“热态起启动的建议”中规定。 冷再热蒸汽压力最高不得超过0.828MPa(a)。 高中压转子金属温度大于204℃,则汽机的启动采用热态启动方式,主蒸汽汽温和热再热汽温至少有56℃的过热度,并且分别比高压缸蒸汽室金属温度、中压缸进口持环金属温度高56℃以上,主蒸汽压力为对应主蒸汽进口温度下的压力。第一级蒸汽温度与高压转子金属温度之差应控制在 56℃之内,热再热汽温与中压缸第一级持环金属温差也应控制在这同样的水平范围。在从主汽阀控制切换到调节阀控制之前,主汽阀进汽温度应大于“TV/GV切换前最小主汽温”曲线的限值(参见“主汽门前启动蒸汽参数”曲线)。 2.1.3 汽轮机的凝汽器压力,应低于汽机制造厂推荐的与再热汽温有关的低压排汽压力限制值,在线运行的允许背压不高于0.0247MPa(a)。 2.1.4 DEH在自动方式。 2.2 启动冲转前(汽机已挂闸) 各汽阀状态: 主汽阀TV 关 高调阀GV 开 再热主汽阀RSV 开 再热调阀IV 关 进汽回路通风阀VVV开(600r/min至3050r/min关) 高排通风阀HEV 开(发电机并网,延迟一分钟关) 高排逆止阀NRV 关(OPC油压建立,靠高排汽流顶开) 高中压疏水阀开(分别在负荷大于10%、20%关高、中压疏水阀) 低排喷水阀关(2600r/min至15%负荷之间,开) 高旁HBP 控制主汽压力在设定值,并控制热再热温度在设定值

相关文档
最新文档