二阶行列式与逆矩阵
二阶行列式与逆矩阵优秀教学设计

二阶行列式与逆矩阵【教学目标】了解二阶行列式的定义,掌握二阶行列式的计算方法,运用行列式求逆矩阵【教学重难点】1.掌握二阶行列式的计算方法,运用行列式求逆矩阵2.运用行列式求逆矩阵【教学过程】一、行列式与矩阵行列式:我们把a b A c d ⎡⎤=⎢⎥⎣⎦两边的“⎡⎤⎢⎥⎣⎦”改为“”,于是,我们把a bc d 称为二阶行列式,并称它为矩阵a b A c d ⎡⎤=⎢⎥⎣⎦的行列式,它的结果是一个数值,记为||det()a b A A ad bc c d ===-。
计算方法:主对角线上两数之积减去副对角线上两数之积。
矩阵与行列式的区别:矩阵a b A c d ⎡⎤=⎢⎥⎣⎦表示一个数表,而行列式a b A c d =是一个数值。
二、利用行列式求逆矩阵设a b A c d ⎡⎤=⎢⎥⎣⎦,记||a b A ad bc c d ==-。
则 矩阵A 可逆的充要条件:||0a bA ad bc c d ==-≠。
当0A ≠时,1||||||||d b d b A A ad bc ad bc A c a c a A A ad bc ad bc --⎡⎤-⎡⎤⎢⎥⎢⎥--⎢⎥==⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦ 三、典例剖析设4112A -⎡⎤=⎢⎥⎣⎦,判断A 是否是可逆矩阵,若可逆,求出1A -。
判断下列矩阵是否可逆?若可逆,求出逆矩阵(1) 1111A -⎡⎤=⎢⎥⎣⎦ (2)101b B ⎡⎤=⎢⎥⎣⎦ (3)1111A ⎡⎤=⎢⎥⎣⎦已知矩阵234b A ⎡⎤=⎢⎥⎣⎦可逆,求实数b 的范围。
四、课堂练习展开下列行列式,并化简(1)10937-- (2)121m m m m +++ (3)5779矩阵00a d 可逆的条件为 。
行列式(,,,{1,1,2})a ba b c d c d ∈-的所有可能值中,最大的是 。
若点(2,2)A 在矩阵cos sin sin cos M αααα-⎡⎤=⎢⎥⎣⎦对应变换的作用下得到的点为(2,2)B -,求矩阵M 的逆矩阵。
《2.1.3 用二阶行列式求逆矩阵》教案新部编本2

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《2.1.3 用二阶行列式求逆矩阵》教案2教学目的熟练掌握逆矩阵存在的条件与矩阵求逆的方法重点与难点重点:矩阵的逆 难点:矩阵的逆的概念教学内容一、概念的引入逆矩阵: 设A 是数域上的一个n 阶方阵,若在相同数域上存在另一个n 阶矩阵B ,使得: AB=BA=E 。
则我们称B 是A 的逆矩阵,而A 则被称为可逆矩阵。
定义1 对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使E BA AB ==,则说矩阵A是可逆的,并把B 称为A 的逆矩阵。
A 的逆矩阵记为1-A.,, 的逆阵也一定是的逆阵时为当由定义知B A A B. ,, 212211B B I A B AB I A B AB =====∆则设唯一性 .. 111I A A AA A A ==---有的唯一的逆阵记为可逆阵定理1 若矩阵A 可逆,则0≠A证 A 可逆,即有1-A ,使E AA =-1,故11==-E A A所以0≠A定理2 若0≠A ,则矩阵A 可逆,且*11A AA =-其中*A 为矩阵A 的伴随矩阵证 由例1知:E A A A AA ==** 因0≠A ,故有E A A AA A A ==**11所以有逆矩阵的定义,既有*11A AA=-当A =0时,,A 称为奇异矩阵,否则称为非奇异矩阵,由上面两定理可知:A 是可逆矩阵的充分必要条件是0≠A ,即可逆矩阵就是非奇异矩阵。
推论:若E AB =(或E BA =),则1-=A B证1==E B A ,故0≠A ,因而1-A 存在,于是111*)()(---=====AE A AB A B A A EB B 方程的逆矩阵满足下述运算规律①若A 可逆,则1-A 也可逆,且A A =--11)( ②若A 可逆,数0≠λ,则A λ可逆,且111)(--=A A λλ③若B A .为同阶矩阵且均可逆,则B A .也可逆,且111)(---A B AB 证明 ()()()1111----=ABB A AB AB1-=AEA ,1E AA==-().111---=∴A B AB例2 求方程⎪⎪⎪⎭⎫ ⎝⎛=343122321.A 的逆矩阵解023********≠=⋅+⋅+⋅=A A A A ,知1-A 存在2.11=A6.21=A 4.31-=A3.12-=A 6.22-=A 532=A2.13=A 2.23=A 2.33-=A于是.A 的伴随矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=222563462.*A所以⎪⎪⎪⎪⎭⎫ ⎝⎛----==-111253232311.*1A A A注:利用伴随矩阵法求逆矩阵的主要步骤是1. 求矩阵.A 的行列式A ,判断.A 是否可逆;2. 若1.-A 存在,求.A 的伴随矩阵*.A ;3.利用公式*11A AA =-,求1.-A 三、逆矩阵的运算性质;1, 1. 1AA A -=则可逆若;)(, , 2.111A A A A -=--且也可逆则可逆若;)()(, 则 , 3.11T T T A A A A --=且也可逆可逆若证明:()()TTTA A AA 11--=ΘTE=,E =()().11TT A A--=∴().,,0,10kkAAE A A --==≠定义时当另外()为正整数k有为整数时当,,,0μλ≠A().λμμλA A =;1)( 0 4.11--=≠A kkA kA k A 也可逆,且,则可逆,数若 ;)( 5.111---=A B AB AB B A 且也可逆,为同阶可逆矩阵,则,若;)( ,,, 111211211----=A A A A A A A A s s s ΛΛΛ则为同阶可逆阵若Ⅴ.小结与提问小结:、逆矩阵及其求法、 提问:求逆矩阵应注意什么?。
《2.1.3 用二阶行列式求逆矩阵》教案新部编本3

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《2.1.3 用二阶行列式求逆矩阵》教案2教学目标1.了解行列式产生的背景;2.经历引入二阶行列式的过程;3.掌握二阶行列式展开法则及用二阶行列式解(系数行列式的值不为零的)二元一次方程组的方法,体验二阶行列式这一特定算式的特征.教学重难点二阶行列式的展开、用二阶行列式解二元一次方程组.教学过程典型例题例1 求矩阵3221A ⎡⎤=⎢⎥⎣⎦的逆矩阵.(2009江苏卷) 解:设矩阵A 的逆矩阵为,x y z w ⎡⎤⎢⎥⎣⎦则3210,2101x y z w ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 即323210,2201x z y w x z y w ++⎡⎤⎡⎤=⎢⎥⎢⎥++⎣⎦⎣⎦故321,320,20,21,x z y w x z y w +=+=⎧⎧⎨⎨+=+=⎩⎩ 解得:1,2,2,3x z y w =-===-, 从而A 的逆矩阵为11223A --⎡⎤=⎢⎥-⎣⎦. 或由逆矩阵知识a b A c d ⎡⎤=⎢⎥⎣⎦则1db ad bc ad bc A ca ad bc ad bc --⎡⎤⎢⎥--=⎢⎥-⎢⎥⎢⎥--⎣⎦直接可得答案.例2 已知曲线C :1=xy将曲线C 绕坐标原点逆时针旋转045后,求得到的曲线'C 的方程;解:由题设条件,0000cos 45sin 4522sin 45cos 45M ⎢⎡⎤-⎥==⎢⎥⎥⎣⎦⎥⎦,'2222:'Mx yx x xTy y yy⎤-⎢⎥⎡⎤⎡⎤⎡⎤⎥⎥→=⋅=⎢⎥⎢⎥⎢⎥⎥⎥⎣⎦⎣⎦⎣⎦⎥⎥⎦⎦,即有'22'x x yy y⎧=-⎪⎪⎨⎪=+⎪⎩,解得'')2'')2x x yy y x⎧=+⎪⎪⎨⎪=-⎪⎩,代入曲线C的方程为22''2y x-=。
二阶逆矩阵的求法

对于一个二阶矩阵A,如果存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵,则称B是A 的逆矩阵,记作A^-1。
对于一个二阶矩阵,其逆矩阵的求法如下:
对于一个二阶矩阵A = [a b; c d],首先计算A的行列式D,即D = ad - bc。
如果D≠0,则矩阵A可逆,逆矩阵A^-1 = 1/D ×[d -b; -c a]。
如果D=0,则矩阵A不可逆,称为奇异矩阵。
因此,对于一个二阶矩阵A,只有当其行列式D≠0时,才存在逆矩阵。
如果行列式D=0,则矩阵A不可逆。
需要注意的是,在计算逆矩阵时,需要保证矩阵A是一个可逆矩阵,即其行列式不为0。
此外,对于高阶矩阵,逆矩阵的求解方法比较复杂,通常需要使用高等数学中的行列式、伴随矩阵等概念和方法进行求解。
矩阵的逆矩阵与行列式计算

矩阵的逆矩阵与行列式计算矩阵是线性代数中的一项重要概念,它在各种领域中都有广泛的应用。
矩阵的逆矩阵和行列式是矩阵理论中的两个关键概念,本文将介绍逆矩阵和行列式的计算方法及其重要性。
一、逆矩阵逆矩阵是矩阵理论中非常重要的一个概念。
对于一个n阶方阵A,如果存在一个n阶方阵B,使得AB=BA=I(其中I表示单位阵),那么我们称B为A的逆矩阵,记作A的倒数。
对于可逆矩阵A,它的逆矩阵是唯一的。
逆矩阵的计算方法如下:设A为一个n阶方阵,如果存在n阶方阵B,使得AB=BA=I,则B为A的逆矩阵。
求矩阵A的逆矩阵的方法有多种,以下是其中两个常用的方法:1. 初等行变换法通过利用矩阵初等行变换,将矩阵A变换成一个特殊形式,然后通过初等行变换得到B,使得AB=I。
具体步骤如下:a) 取A和单位阵I并排组成一个增广矩阵[A|I];b) 对[A|I]做行变换,将矩阵A变换为n阶单位矩阵;c) 当[A|I]变为[I|B]时,B就是A的逆矩阵。
2. 伴随矩阵法通过伴随矩阵的概念,求解矩阵A的逆矩阵。
设A为n阶方阵,A 的伴随矩阵记作Adj(A),则A的逆矩阵B的表达式如下:B = (1/det(A)) * Adj(A)其中,det(A)表示矩阵A的行列式,Adj(A)表示A的伴随矩阵。
二、行列式行列式是矩阵理论中用于刻画矩阵性质的一种特殊函数。
对于一个n阶方阵A,它的行列式记作det(A),其计算方法如下:1. 二阶方阵的行列式计算:A = [[a, b], [c, d]]det(A) = ad - bc2. 三阶方阵的行列式计算:A = [[a, b, c], [d, e, f], [g, h, i]]det(A) = aei + bfg + cdh - ceg - bdi - afh对于高阶方阵,通常使用行列式的性质和展开定理来计算。
行列式的计算过程相对繁琐,但是具有重要的应用价值。
行列式的性质有如下几个:a) 互换行列式的两行,行列式改变符号;b) 行列式某一行的公因子可以提到行列式的外面;c) 若行列式有两行(列)完全相同,则行列式的值为0;d) 行列式的某一行(列)可以表示成其他行(列)的线性组合。
二阶矩阵求逆矩阵口诀

二阶矩阵求逆矩阵口诀
二阶矩阵求逆矩阵是数学中常见的一种运算,可以用于解线性方程组等问题。
下面我将介绍二阶矩阵求逆矩阵的口诀。
首先,假设有一个二阶矩阵A,表示为:
A = | a b |
| c d |
求其逆矩阵A的口诀如下:
1. 计算矩阵A的行列式D,D = ad - bc。
2. 如果D等于零,则矩阵A没有逆矩阵。
3. 如果D不等于零,则矩阵A存在逆矩阵。
4. 计算矩阵A的伴随矩阵,AdjA,即将A的元素对应位置的代数余子式构成的矩阵。
AdjA = | d -b |
| -c a |
5. 计算矩阵A的逆矩阵A^-1,A^-1 = (1/D) * AdjA。
6. 将伴随矩阵AdjA中的元素除以行列式D,即可得到矩阵A的逆矩阵A^-1。
通过以上步骤,我们可以求得二阶矩阵A的逆矩阵A^-1。
这个口诀可以帮助我们更快地求解二阶矩阵的逆矩阵,提高数学运算的效率。
希望这篇文章能对你有所帮助。
第 1 页共 1 页。
二阶矩阵求逆规律

二阶矩阵求逆规律矩阵求逆是线性代数中的一个重要概念,具有广泛的应用。
求一个矩阵的逆,即找到与该矩阵相乘结果为单位矩阵的逆矩阵。
在二阶矩阵中,求逆的规律相对较简单,可以通过计算行列式和转置的方式来求解。
下面将介绍二阶矩阵求逆的规律及其相关参考内容。
假设我们有一个形如:A = [a b][c d]的二阶矩阵,我们要求它的逆矩阵。
首先,我们需要计算矩阵A的行列式:|A| = ad - bc根据矩阵的性质,如果行列式|A|不等于0,则矩阵A可逆。
这是因为如果|A|等于0,意味着矩阵A的行向量或列向量之间存在线性关系,无法找到一个与之相乘为单位矩阵的逆矩阵。
接下来,我们计算矩阵A的伴随矩阵(即将主对角线元素对调,非主对角线元素取负):adj(A) = [ d -b][-c a]然后,我们用伴随矩阵adj(A)除以行列式|A|,即可得到逆矩阵:A^-1 = adj(A)/|A|根据上述规律,我们可以很容易地写出一个计算二阶矩阵求逆的程序或函数。
以下是一个Python代码示例:```pythondef invert_2d_matrix(matrix):a = matrix[0][0]b = matrix[0][1]c = matrix[1][0]d = matrix[1][1]det = a * d - b * cif det == 0:return "Matrix is not invertible"inverted_matrix = [[d, -b], [-c, a]]for i in range(2):for j in range(2):inverted_matrix[i][j] /= detreturn inverted_matrix# 测试代码A = [[1, 2], [3, 4]]inverse_A = invert_2d_matrix(A)print(inverse_A)```以上代码会输出矩阵A的逆矩阵。
二阶求逆矩阵的方法

二阶求逆矩阵的方法求一个矩阵的逆矩阵,就是找到一个与之相乘后得到单位矩阵的矩阵。
在线性代数中,一个n阶矩阵A的逆矩阵通常用A的倒数符号A^(-1)表示。
首先,对于一个矩阵A,我们可以用以下的方式来求它的逆矩阵。
找到A的伴随矩阵Adj(A)。
计算矩阵A的行列式det(A)。
如果行列式det(A)不等于0,则A存在逆矩阵,即A是可逆的。
使用A^(-1) = Adj(A) / det(A)来得到A的逆矩阵。
接下来,我们将详细介绍两种常见的二阶矩阵求逆的方法:代数方法和几何方法。
代数方法:对于一个二阶矩阵A=[[a,b],[c,d]],我们可以通过以下的步骤来计算它的逆矩阵。
1. 计算矩阵的行列式det(A) = ad - bc。
如果det(A)不等于0,则A存在逆矩阵。
2. 交换a和d的位置,并将b和c变为负数得到矩阵A的伴随矩阵Adj(A) = [[d, -b], [-c, a]]。
3. 将Adj(A)中的每个元素除以det(A)得到A的逆矩阵A^(-1) = [[d/det(A), -b/det(A)], [-c/det(A), a/det(A)]]。
几何方法:对于一个二阶矩阵A=[[a,b],[c,d]],我们可以通过几何方法来计算它的逆矩阵。
1.将矩阵A表示为一个线性变换T,其中T的输入是二维平面中的向量,输出是经过线性变换后的向量。
2. 如果行列式det(A)不等于0,则线性变换T是一个保持面积的变换,即它不会改变平面上任何区域的面积。
3. 反之,如果行列式det(A)等于0,则线性变换T会将平面上的一些区域压缩到一个线性子空间中,失去了可逆性。
4. 当行列式det(A)不等于0时,矩阵A的逆矩阵A^(-1)对应于线性变换T的逆变换,可以将经过T变换后的向量还原到原来的位置。
总结:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二阶行列式与逆矩阵
教学目标
1. 了解行列式的概念;
2.会用二阶行列式求逆矩阵。
教学重点及难点 用行列式求逆矩阵。
教学过程 一、复习引入 (1)逆矩阵的概念。
(2)逆矩阵的性质。
二、新课讲解. 例1 设A= ⎢⎣⎡43
⎥⎦
⎤21,
问A 是否可逆?如果可逆,求其逆矩阵。
例2设A= ⎢⎣⎡43
⎥⎦
⎤21,问A 是否可逆?如果可逆,求其逆矩阵。
思考:对于一般的二阶矩阵A=⎢
⎣⎡b
a ⎥⎦
⎤d c ,是否有:当0≠-bc ad 时,A 可逆;当0=-bc ad 时,A 不可逆?
结论:如果矩阵A=⎢
⎣⎡
b
a ⎥⎦
⎤d c 是可逆的,则0≠-bc ad 。
表达式
bc
ad -称为二阶行列式,记作
c
a
d
b ,即
c
a
d
b =b
c a
d -。
ad bc -也称为行列式a b c d
的展开式。
符号记为:detA
或|A|
① 反之,当
≠-bc ad 时,有
⎢⎢⎢
⎢⎣
⎡-A c det det A d
⎥⎥
⎥⎥
⎦
⎤
det A a det A b -⎢⎣
⎡b a
⎥⎦
⎤d c =
⎢⎣
⎡b a
⎥⎦
⎤d c ⎢⎢
⎢
⎢⎣⎡-A c det det A d
⎥
⎥⎥⎥
⎦⎤det A a det A b -=1001⎡⎤
⎢
⎥⎣⎦。
【可逆矩阵的充要条件】
定理:二阶矩阵A=⎢
⎣⎡
b
a ⎥⎦
⎤d c 可逆,当且仅当0≠-bc ad 。
当矩阵A=⎢
⎣⎡
b
a ⎥⎦
⎤d c 可逆时,1-A =⎢⎢
⎢
⎢⎣⎡-A c det det A d
⎥
⎥⎥⎥
⎦⎤det A a det A b -。
1.计算二阶行列式: ①
31
42
②
2
2
1
3
λλ--
2.判断下列二阶矩阵是否可逆,若可逆,求出逆矩阵。
①A =0110⎛⎫
⎪-⎝⎭
②B =1100⎛⎫
⎪⎝⎭
三、课堂小结
1.矩阵是否可逆与其行列式的值的关系,
2.逆矩阵的又一种求法。