五年级奥数容斥问题讲座及练习答案
小学奥数教程:容斥原理之数论问题_全国通用(含答案)

1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.7-7-4 容斥原理之数论问题在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个? A B【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图,用长方形表示1~100的全部自然数,A 圆表示1~100中3的倍数,B 圆表示1~100中5的倍数,长方形内两圆外的部分表示既不是3的倍数也不是5的倍数的数.由1003331÷=可知,1~100中3的倍数有33个;由100520÷=可知,1~100中5的倍数有20个;由10035610÷⨯=()可知,1~100既是3的倍数又是5的倍数的数有6个.由包含排除法,3或5的倍数有:3320647+-=(个).从而不是3的倍数也不是5的倍数的数有1004753-=(个).【答案】53【巩固】 在自然数1100~中,能被3或5中任一个整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1003331÷=,100520÷=,10035610÷⨯=().根据包含排除法,能被3或5中任一个整除的数有3320647+-=(个).【答案】47【巩固】 在前100个自然数中,能被2或3整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图所示,A 圆内是前100个自然数中所有能被2整除的数,B 圆内是前100个自然数中所有能被3整除的数,C 为前100个自然数中既能被2整除也能被3整除的数.前100个自然数中能被2整除的数有:100250÷=(个).由1003331÷=知,前100个自然数中能被3整除的数有:33个.由10023164÷⨯=()知,前100个自然数中既能被2整除也能被3整除的数有16个.所以A 中有50个数,B 中有33个数,C 中有16个数.因为A ,B 都包含C ,根据包含排除法得到,能被2或3整除的数有:50331667+-=(个).【答案】67【例 2】 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1~1000之间,5的倍数有10005⎡⎤⎢⎥⎣⎦=200个,7的倍数有10007⎡⎤⎢⎥⎣⎦=142个,因为既是5的倍数,又是7的倍数的数一定是35的倍数,所以这样的数有100035⎡⎤⎢⎥⎣⎦=28个. 所以既不能被5除尽,又不能被7除尽的数有1000-200-142+-28=686个.【答案】686【巩固】 求在1至100的自然数中能被3或7整除的数的个数.【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 记 A :1~100中3的倍数,1003331÷=,有33个;B :1~100中7的倍数,1007142÷=,有14个;A B :1~100中3和7的公倍数,即21的倍数,10021416÷=,有4个.依据公式,1~100中3的倍数或7的倍数共有3314443+-=个,则能被3或7整除的数的个数为43个.【答案】43例题精讲【例 3】 以105为分母的最简真分数共有多少个?它们的和为多少?【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 以105为分母的最简真分数的分子与105互质,105=3×5×7,所以也是求1到105不是3、5、7倍数的数有多少个,3的倍数有35个,5的倍数有21个,7的倍数有15个,15的倍数有7个,21的倍数有5个,35的倍数有3个,105的倍数有1个,所以105以内与105互质的数有105-35-21-15+7+5+3-1=48个,显然如果n 与105互质,那么(105-n )与n 互质,所以以105为分母的48个最简真分数可两个两个凑成1,所以它们的和为24.【答案】48个,和24【巩固】 分母是385的最简真分数有多少个?并求这些真分数的和.【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 385=5×7×11,不超过385的正整数中被5整除的数有77个;被7整除的数有55个;被11整除的数有35个;被77整除的数有5个;被35整除的数有11个;被55整除的数有7个;被385整除的数有1个;最简真分数的分子可以有385-77-55-35+5+11+7-1=240.对于某个分数a/385如果是最简真分数的话,那么(385-a )/385也是最简真分数,所以最简真分数可以每两个凑成整数1,所以这些真分数的和为120.【答案】240个,120个【例 4】 在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有 个.【考点】容斥原理之数论问题 【难度】3星 【题型】填空【关键词】西城实验【解析】 1到2008这2008个自然数中,3和5的倍数有200813315⎡⎤=⎢⎥⎣⎦个,3和7的倍数有20089521⎡⎤=⎢⎥⎣⎦个,5和7的倍数有20085735⎡⎤=⎢⎥⎣⎦个,3、5和7的倍数有200819105⎡⎤=⎢⎥⎣⎦个.所以,恰好是3、5、7中两个数的倍数的共有1331995195719228-+-+-=个.【答案】228个【例 5】 求1到100内有____个数不能被2、3、7中的任何一个整除。
小学奥数:容斥原理之数论问题.专项练习及答案解析

1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-U I (其中符号“U ”读作“并”,相当于中文“和”或者“或”的意思;符号“I ”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B U 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =I (意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素教学目标知识要点1.先包含——A B +重叠部分A B I 计算了2次,多加了1次;2.再排除——A B A B +-I把多加了1次的重叠部分A B I 减去.7-7-4 容斥原理之数论问题个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+U U I I I I I .图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个?A B【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图,用长方形表示1~100的全部自然数,A 圆表示1~100中3的倍数,B 圆表示1~100中5的倍数,长方形内两圆外的部分表示既不是3的倍数也不是5的倍数的数.由1003331÷=L 可知,1~100中3的倍数有33个;由100520÷=可知,1~100中5的倍数有20个;由10035610÷⨯=L ()可知,1~100既是3的倍数又是5的倍数的数有6个.由包含排除法,3或5的倍数有:3320647+-=(个).从而不是3的倍数也不是5的倍数的数有1004753-=(个).【答案】53【巩固】 在自然数1100~中,能被3或5中任一个整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1003331÷=L ,100520÷=,10035610÷⨯=L ().根据包含排除法,能被3或5中任一个整除的数有3320647+-=(个).【答案】47【巩固】 在前100个自然数中,能被2或3整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图所示,A 圆内是前100个自然数中所有能被2整除的数,B 圆内是前100个自然数中所有能被3整除的数,C 为前100个自然数中既能被2整除也能被3整除的数.例题精讲 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B I 、B C I 、C A I 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---I I I 重叠部分A B C I I 重叠了3次,但是在进行A B C ++- A B B C A C --I I I 计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+I I I I I .前100个自然数中能被2整除的数有:100250÷=(个).由1003331÷=L 知,前100个自然数中能被3整除的数有:33个.由10023164÷⨯=L ()知,前100个自然数中既能被2整除也能被3整除的数有16个.所以A 中有50个数,B 中有33个数,C 中有16个数.因为A ,B 都包含C ,根据包含排除法得到,能被2或3整除的数有:50331667+-=(个).【答案】67【例 2】 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1~1000之间,5的倍数有10005⎡⎤⎢⎥⎣⎦=200个,7的倍数有10007⎡⎤⎢⎥⎣⎦=142个,因为既是5的倍数,又是7的倍数的数一定是35的倍数,所以这样的数有100035⎡⎤⎢⎥⎣⎦=28个.所以既不能被5除尽,又不能被7除尽的数有1000-200-142+-28=686个.【答案】686【巩固】 求在1至100的自然数中能被3或7整除的数的个数.【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 记 A :1~100中3的倍数,1003331÷=L L ,有33个;B :1~100中7的倍数,1007142÷=L L ,有14个;A B I :1~100中3和7的公倍数,即21的倍数,10021416÷=L L ,有4个.依据公式,1~100中3的倍数或7的倍数共有3314443+-=个,则能被3或7整除的数的个数为43个.【答案】43【例 3】 以105为分母的最简真分数共有多少个?它们的和为多少?【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 以105为分母的最简真分数的分子与105互质,105=3×5×7,所以也是求1到105不是3、5、7倍数的数有多少个,3的倍数有35个,5的倍数有21个,7的倍数有15个,15的倍数有7个,21的倍数有5个,35的倍数有3个,105的倍数有1个,所以105以内与105互质的数有105-35-21-15+7+5+3-1=48个,显然如果n与105互质,那么(105-n )与n 互质,所以以105为分母的48个最简真分数可两个两个凑成1,所以它们的和为24.【答案】48个,和24【巩固】 分母是385的最简真分数有多少个?并求这些真分数的和.【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 385=5×7×11,不超过385的正整数中被5整除的数有77个;被7整除的数有55个;被11整除的数有35个;被77整除的数有5个;被35整除的数有11个;被55整除的数有7个;被385整除的数有1个;最简真分数的分子可以有385-77-55-35+5+11+7-1=240.对于某个分数a/385如果是最简真分数的话,那么(385-a )/385也是最简真分数,所以最简真分数可以每两个凑成整数1,所以这些真分数的和为120.【答案】240个,120个【例 4】 在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有个.【考点】容斥原理之数论问题 【难度】3星 【题型】填空【关键词】西城实验 【解析】 1到2008这2008个自然数中,3和5的倍数有200813315⎡⎤=⎢⎥⎣⎦个,3和7的倍数有20089521⎡⎤=⎢⎥⎣⎦个,5和7的倍数有20085735⎡⎤=⎢⎥⎣⎦个,3、5和7的倍数有200819105⎡⎤=⎢⎥⎣⎦个.所以,恰好是3、5、7中两个数的倍数的共有1331995195719228-+-+-=个.【答案】228个【例 5】 求1到100内有____个数不能被2、3、7中的任何一个整除。
五年级数学拔高之包含与排除(容斥原理)含答案

第33周包含与排除(容斥原理)专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。
如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。
组成集合的每个事物称为这个集合的元素。
如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。
两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。
计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。
在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。
有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。
例1 五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。
两种报纸都订的有多少人?分析用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。
显然,两种报刊都订的人数被统计了两次:64+48=112人,比总人数多112-96=16人,这16人就是两种报刊都订的人数。
练习一1,一个班的52人都在做语文和数学作业。
有32人做完了语文作业,有35人做完了数学作业。
语文、数学作业都做完的有多少人?答案解:(人)答:语文、数学作业都做完的有15人.解析因为每人至少做完一种作业,所以实际52人都参与了写作业,做完数学和语文作业的总人数为:(人),(人),超出了全班人数,超出的部分是两种作业都完成的人数.2,五年级有122人参加语文、数学考试,每人至少有一门功课得优。
其中语文得优的有65人,数学得优的有87人。
语文、数学都得优的有多少人?答案解:(人)答:两门功课都得优的有40人.解析根据“语文得优的有65人,数学得优的有87人”可得两者的总人数:人,这其中把两门功课都得优的人数多计算了一次,所以根据容斥原理可得两门功课都得优的人数是:(人),据3,某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。
2021-2022学年五年级上册奥数培训专题——容斥原理(附答案)

2021-2022学年五年级上册奥数培训专题——容斥原理姓名:___________班级:___________考号:___________一、解答题1.一个班有小学生55人,订阅小学生数学报的有12人,订阅少年报的有9人,两种报纸都订的有5人,(1)订阅报纸的总人数是多少?(2)两种报纸都不订的有多少人?2.一个旅行社有36人,其中会英语的有24人,会法语的有18人,这两种语言都不会的有4人,这两种语言都会的有多少人?3.求在1~100的自然数中不是5的倍数也不是6的倍数的数有多少个?4.艺术节那天,学校画廊里展出了每个年级学生的图画作品,其中有23幅不是五年级的,有21幅不是六年级的,五六年级参展的共有8幅,其他年级参展的有多少幅?5.将边长为4厘米和5厘米的正方形纸片部分重叠,盖在桌面上,已知重叠的部分为9平方厘米,两块正方形纸片盖住桌面的总面积是多少?6.二(2)班有50人,下课后每人都至少做完了一门作业,其中做完语文作业的有35人,做完数学作业的有40人,两种作业都做完的有多少人?7.某艺术中心有62名学生,其中会弹钢琴的有11名,会吹长笛的有56名,两样都不会的有4名。
两样都会的有多少名?8.某校选出50名学生参加作文比赛和数学比赛,作文比赛获奖的有14人,数学比赛获奖的有12人,有3人两项比赛都获奖,两项比赛都没获奖的有多少人?9.四(1)班有40个学生,其中25人参加数学小组,23人参加航模小组,有19个人两个小组都参加了,那么有多少人两个小组都没参加?10.在一次数学测验中,所有同学都答了第1、2题,其中答对第一题的有35人,答对第2题的有28人,这两题都答对的有20人,没有人两题都打错。
问参加这次测验的有多少人?11.一个俱乐部里,会下中国象棋的有69人,会下国际象棋的有52人,两种都不会下的有12人,都会下的有30人这个俱乐部里有多少人?12.某班上体育课,全班排成4列(每列人数相等),从前往后数小芳第6个,从后往前数在第7个,这个班共有多少人?13.在1到200之间的全部自然数中,既不是8的倍数也不是5的倍数的数有几个?14.科技节那天,学校的科技室例展出了每个年级学生的作品,其中有114件不是一年级的,有96件不是二年级的,一二年级参展的作品共32件,其他年级参展的作品有多少件?试题答案1.16人;39人【分析】可将这55人分成4类,即只订阅小学生数学报,只订阅少年报,两种报纸都订阅,两种报纸都没有订阅,分别求出每一类的人数,再求出题目所求。
五年级奥数题及答案-容斥问题-卖水果

五年级奥数题及答案-容斥问题-卖水果
今天为同学们提供一道小学五年级数学题:关于容斥问题的数学题。
同学们,快来动手试一试哦!
李老板:卖出的商品有:糖果、香蕉、苹果、菠萝、萝卜、龙眼.
王老板:卖出的商品有:龙眼、梨、苹果、西瓜、香蕉、草莓、葡萄.
(1)请将他们卖出的商品填在如图的圆圈中.
(2)两人共卖出几种商品?
考点:物体的比较、排列和分类;容斥原理.
分析:(1)根据给出的商品填入表中,其中左边只有李老板卖的商品,右边只有王老板卖的商品,中间的是两人都卖的商品;
(2)他们卖的商品总数应是:李老板卖的商品数加王老板卖的商品数,然后减去共同卖的商品数.
解答:解:(1)填图如下:
(2)6+7-3=10(种);
答:两人共卖出10种商品.
点评:本题需要注意两人共卖出商品的商品数的计算方法,他们各卖的商品数的和,这样共同卖的商品数就算了2遍,再减去共同卖的商品数即可.。
五年级奥数容斥问题讲座及练习答案

五年级奥数集训专题讲座(七)——包含与排除包含与排除问题其实也叫容斥问题。
即当两个计数部分有重复包含时,为了不重复的计数,应从他们的和中排除重复部分。
如:集合A加集合B组成一个新的集合C,再计算C的元素时为:C=A+B-ABA AB B (韦恩图)例1:一个班有 48 人,班主任在班会上问:“谁做完语文作业?请举手!”有 37 人举手。
又问:‘谁做完数学作业?请举手!”有 42 人举手。
最后问:“谁语文、数学作业没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
【思路导航】如图所示,完成语文作业的有 37 人,完成数学作业的有 42 人,一共有 37 + 42 = 79 (人),多于全班人数,这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以,这个班语文、数学作业都完成的有: 79-48 = 31(人)37 + 42-48=31(人)答:语文、数学作业都完成的有 31 人。
想一想:下面算式有何道理?( l ) 37-(48 -42 ) = 31 (人)( 2 ) 42 -( 48 - 37 )= 31 (人)【疯狂操练】:(1)五年级有 122 名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有 65 人,数学优秀的有 87 人。
语文、数学都优秀的有多少人?解:语文成绩优秀的有 65 人,数学优秀的有 87 人,那么总人数是:65+87=152(人)其中有一部分是语文数都优秀的,所以语文数学都优秀的有:152-122=30(人)答:语文数学都优秀的有30人。
( 2)四年级一班有 54 人,订阅《小学生优秀作文》和《数学大世界》两种读物的有 13 人,订《小学生优秀作文》的有 45 人,每人至少订一种读物,订《数学大世界》的有多少人?解:根据两种读物的有 13 人,订《小学生优秀作文》的有 45 人,每人至少订一种读物,可知只订了《数学大世界》的有:54-45=9(人),而两种读物都订了的有13人,所以订了《数学大世界》的有:13+9=22(人)答:订《数学大世界》的有22人。
小五数学第7讲:容斥定理(含答案)全国通用

第七讲容斥定理1两集合容斥定理如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数。
(A∪B = A+B - A∩B) 2三集合容斥定理如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
三个集合的容斥关系公式:A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C教学重点:两集合容斥定理找对A BA∪B A∩B教学难点:三集合容斥定理例1.某区100个外语教师懂英语或俄语,其中懂英语的75人,既懂英语又懂俄语的20人,那么懂俄语的教师为人.答案45 解析:依题意,被计数的事物懂英语的教师和懂俄语的教师有两类,懂英语的教师称为“A 类元素”,懂俄语的教师称为“B 类元素”, 设懂俄语的教师为x 人A ∪B = A+B - A ∩B=75+x-20=100X=45例2.有长8厘米,宽6厘米的长方形与边长为5厘米的正方形,如图,放在桌面上(阴影是图形的重叠部分),那么这两个图形盖住桌面的面积是平方厘米.答案 67解析:依题意,被计数的事物长方形的面积与正方形的面积有两类,长方形的面积称为“A 类元素”,正方形的面积称为“B 类元素”,A ∪B = A+B - A ∩B=6×8+5×5-4×3×1/2=67例3. 求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。
答案 13解析:依题意,被计数的事物不超过20的正整数中是2的倍数与不超过20的正整数中是3的倍数有两类,不超过20的正整数中是2的倍数称为“A 类元素”,不超过20的正整数中是3的倍数称为“B 类元素”,A=20÷2=10 B=20÷3=6......2 A ∩B=20÷6=3 (2)A ∪B = A+B - A ∩B=10+6-3=13例4. 一个班有42人,参加合唱队的有30人,参加美术组的有25人,有5人什么都没有参加,求两种都参加的有多少人?8 6 5 4 3例7对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
五年级下册数学试题 - 奥数第04讲:容斥定理 人教版(含答案)

第4讲 容斥定理内容概念:有重叠部分的若干对象的计数问题,能利用文氏图进行辅助分析,弄清文氏图中每部分的含义;结合文氏图理解两个对象和三个对象的容斥原理;灵活处理具有一些不确定性的计数问题,以及其他形式的重复计数问题。
典型问题:兴趣篇:1. 暑假里,小悦和冬冬一起讨论“金陵十八景”。
他们发现十八景中的每一处都有人去过,而且有五处是两人都去过的。
如果小悦去过其中的十二景,那么冬冬去过其中的几景?【分析】“十八景”剩余了18126-=景,所以冬冬去过其中的6+5=11景。
2.在一群小朋友中,有12人看过动画片《黑猫警长》,有21人看过动画片《大闹天宫》,并且有8人两部动画片都看过。
请问:至少看过其中一部的小朋友有多少人?【分析】至少看过一部的小朋友有:1221825+-=(人)3、 五年级一班45个学生参加期末考试。
成绩公布后,数学得满分的有10人,数学及语文均得满分的有3人,这两科都没有得满分的有29人。
请问:语文成绩得满分的有多少人?【分析】两科至少有一科得满分的有:452916-=(人),只有数学得满分的有:1037-=人,语文得满分的有:1679-=(人)。
4.某餐馆有27道招牌菜。
小悦吃过其中的13道,冬冬吃过其中的7道,而且有2道菜是两人都吃过的。
请问:有多少道招牌菜是两人都没有吃过的?【分析】两人都吃过的菜有:137218+-=道理,两人都没有吃过的有:27189-=(道)。
5.如图4-1,已知甲、乙、丙三个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6、8、5,同时被这三个圆覆盖的部分的面积为2。
请问:(1)只被甲或乙覆盖,却不被丙覆盖的部分的面积是多少?(2)只被这3个圆中某一个圆覆盖的部分的面积是多少?【分析】(1)根据题意,有:6D G +=,则2G =,624D =-=;8F G +=,则有:826F =-=;5E G +=,则有:523E =-=;所以:()306321A =-+=;()308319B =-+=所以只被甲或者乙覆盖,却不被丙覆盖的是:2119343++=;(2)()306618C =-+=所以只被这3个圆中的某一个圆覆盖的部分的面积是:21191858++=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数集训专题讲座(七)——包含与排除包含与排除问题其实也叫容斥问题。
即当两个计数部分有重复包含时,为了不重复的计数,应从他们的和中排除重复部分。
如:集合A加集合B组成一个新的集合C,再计算C的元素时为:C=A+B-ABA AB B (韦恩图)例1:一个班有 48 人,班主任在班会上问:“谁做完语文作业?请举手!”有 37 人举手。
又问:‘谁做完数学作业?请举手!”有 42 人举手。
最后问:“谁语文、数学作业没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
【思路导航】如图所示,完成语文作业的有 37 人,完成数学作业的有 42 人,一共有 37 + 42 = 79 (人),多于全班人数,这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以,这个班语文、数学作业都完成的有: 79-48 = 31(人)37 + 42-48=31(人)答:语文、数学作业都完成的有 31 人。
想一想:下面算式有何道理?( l ) 37-(48 -42 ) = 31 (人)( 2 ) 42 -( 48 - 37 )= 31 (人)【疯狂操练】:(1)五年级有 122 名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有 65 人,数学优秀的有 87 人。
语文、数学都优秀的有多少人?解:语文成绩优秀的有 65 人,数学优秀的有 87 人,那么总人数是:65+87=152(人)其中有一部分是语文数都优秀的,所以语文数学都优秀的有:152-122=30(人)答:语文数学都优秀的有30人。
( 2)四年级一班有 54 人,订阅《小学生优秀作文》和《数学大世界》两种读物的有 13 人,订《小学生优秀作文》的有 45 人,每人至少订一种读物,订《数学大世界》的有多少人?解:根据两种读物的有 13 人,订《小学生优秀作文》的有 45 人,每人至少订一种读物,可知只订了《数学大世界》的有:54-45=9(人),而两种读物都订了的有13人,所以订了《数学大世界》的有:13+9=22(人)答:订《数学大世界》的有22人。
( 3)学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有 24 人,会弹电子琴的有 17人,其中两种乐器都会演奏的有 8 人。
这个文艺组一共有多少人?解:24+17-8=33(人)答:这个文艺组一共有33人。
例2:某班有 36 个同学在一项测试中,答对第一题的有 25 人,答对第二题的人有 23 人,两题都答对的有 15 人。
问多少个同学两题都答得不对?【思路导航】如图所示,已知答对第一题的有 25 人,两题都答对的有 15 人,可以求出只答对第一题的有 25-15= 10 (人)。
又已知答对第二题的有 23 人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数10 + 23 = 33(人)。
所以,两题都答得不对的有 36-33 = 3 (人)。
36-[( 25 -15 ) + 23]=3(人)想一想:下面算式有何道理。
(l) 36-[( 23-15 ) + 25] = 3 (人)(2) 36 -[( 25- 15 ) + ( 23 - 15 ) + 15 ]= 3 (人)【疯狂操练】:( l)五( 1 )班有 40 个学生,其中有 25 人参加数学小组, 23 人参加科技小组,有 19 人两个小组都参加了。
那么,有多少人两个小组都没有参加?解:19人两个小组都参加则只参加数学小组为25-19=6人,只参加航模小组为23-19=4人所以参加小组活动的为4+6+19=29人,两个小组都没参加的为40-29=11人( 2)一个班有 55 名学生,订阅《小学生数学报》的有 32 人,订阅《中国少年报》的有 29 人,两种报纸都订阅的有 25 人。
两种报纸都没有订阅的有多少人?解:订《小学生数学报》的 32 人,订《中国少年报》的 29 人,两种报纸都订的有25人,实际上订阅的总人数是:29+32-25=36人,那么两种报纸都没订的有55-36=19人。
答:两种报纸都没订的有19人。
( 3 )某校选出 50 名学生参加区作文比赛和数学比赛,结果 3 人两项比赛都获奖了,有 27 人两项比赛都没有获奖,已知作文比赛获奖的有 14 人,问数学比赛获奖的有多少人?解:只获作文比赛奖的14-3=11人,只获数学比赛奖的12-3=9人。
获奖人数一共有11+9+3=23人,没获奖的就有50-23=27人。
例3:某班有 56 人,参加语文竞赛的有 28 人,参加数学竞赛的有27人,如果两科都没有参加的有 25 人,那么同时参加语文、数学两科竞赛的有多少人?【思路导航】:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数56-25 =31(人),再求两科竞赛同时参加的人数:28 + 27 -31 = 24 (人)。
28 + 27-( 56- 25 ) = 24 (人)答:同时参加语文、数学两科竞赛的有 24 人。
想一想:下面算式有何道理( l ) 28-(56 -25-27 )= 24(人) ( 2 ) 27 -(56-25-28 )= 24 (人)【疯狂操练】: ( 1)一个旅行社有 36 人,其中会英语的有 24 人,会法语的有 18 人,两样都不会的有 4 人,两样都会的有多少人?解:因为除了两样都不会的4人,有36-4=32人,这32人分为会英语的,会法语的,两样都会的,而会英语和会法语中包括两样都会的所以就是:24+18=42(人)比32人多的人数就是两样都会的人数,即42-32=10(人)。
综合列式:24+18-﹙36-4﹚=10(人)答:两样都会的有10人.( 2)一个俱乐部有 103 人,其中会下中国象棋的有 69 人,会下国际象棋的 52 人,这两种棋都不会下的有 12 人。
问这两种棋都会下的有多少人?解:解法同上题:即:69+52-﹙103-12﹚=30(人)答:这两种棋都会下的有30人.( 3)三年级一班参加合唱队的有 40 人,参加舞蹈队的有 20 人,既参加合唱队又参加舞蹈队的有 14 人。
这两队都没有参加的有 10 人。
请算一算,这个班共有多少人?解:参加合唱队的有 40 人,参加舞蹈队的有 20 人,那么共40+20=60人,其中14个两个队都参加了,所以只有:60-14=46人,再加上两个队都没参加的,一共有46+10=56人。
即:40+20-14+10=56(人)答:这个班共有56人例4:光明小学举办学生书法展览。
学校的橱窗里展出了每个年级学生的书法作品,其中有24 幅不是五年级的,有 22 幅不是六年级的,五、六年级参展的书法作品共有 10 幅,其他年级参展的书法共有多少幅?【思路导航】由题意知, 24 幅作品是一、二、三、四、五、六年级参展作品的总数; 22 幅作品是一、二、三、四、五年级参展作品的总数。
24 + 22 =46〔幅),这是一个五、六年级和两个一、二、三、四年级参展的作品数,从其中去掉五、六年级的共参展的 10 幅即得到两个一、二、三、四年级参展作品的总数.再除以2,即可求出其它年级参展的作品。
(24+22-10)÷2=18(幅)答:其他年级参展的作品共有 18 幅。
练一练( l )科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中有 110 件不是一年级的,有 100 件不是二年级的,一、二年级参展的作品共有32 件。
其他年级参展的作品共有多少件?解:由“有 110 件不是一年级的,有 100 件不是二年级的”可知二年级比一年级多10件,根据“一、二年级参展的作品共有32 件”可得一年级展出科技作品数是(32-10)÷2=11件,则二年级展出作品数是32-11=21件,全校展出作品总数为:11+110=121件或:21+100=121件。
那么除了一二年级的展出作品数外,其它年级展出作品数为:121-32=89件。
答:其他年级参展的作品共有89件.( 2 )六( 1 )儿童节那天,学校的画廊里展出了每个年级学生的图画作品,其中有 25 幅画不是三年级的,有19幅画不是四年级的,三、四年级参展的画共有 8 幅,其他年级参展的画共有多少幅?解:25 幅画不是三年级的,19幅画不是四年级的,那么四年级展出的图画作品比三年级多25-18=6幅.由于三四年级共有8幅,所以三年级的作品有(8-6)÷2=1幅。
那么四年级的有8-1=7幅。
则展出作品总数为:1+25=26,或7+19=26幅,那么其它年级展出作品数为26-8=18幅。
答:其他年级参展的画共有18幅。
( 3 )实验小学举办学生书法展。
学校的橱窗里展出每个年级学生的书法作品,其中有 28 幅不是五年级的,有 24幅不是六年级的,五、六年级参展的书法作品共有 20 幅。
一、二年级参展的作品总数比三、四年级参展作品的总数少4幅。
一、二年级参展的书法作品共有多少幅?解:28幅不是五年级的,也就是六年级+其他年级=28幅;24幅不是六年级的。
也就是五年级+其他年级=24幅;上述两个式子相加得:(五年级+六年级)+2×其他年级=28+24,因此其他年级的有:(28+24-20)÷2=16幅,又因为一、二年级参展的作品总数比三、四年级参展的作品总数少4幅,因此一、二年级参展的书法作品共有:(16-4)÷2=6幅。