第4讲 不等式的解法
线性规划、不等式

3.简单分式不等式的解法 (1)gfxx>0(<0)⇔f(x)g(x)>0(<0); (2)gfxx≥0(≤0)⇔fgxxg≠x0≥. 0≤0,
【题型分析】
1.若 a<b<0,则下列不等式不能成立的是( )
A.a-1 b>1a C.|a|>b
B.1a>1b D.a2>b2
解析 解法一:∵a<b<0,-b>0,∴a<a-b<0, ∴a-1 b<1a,故 A 错误. 解法二:(特殊值法)令 a=-3,b=-2,则 a-b=-1, a-1 b=-1,1a=-13,∴a-1 b<1a,A 错误;1a=-13>1b=-12, B 正确;|a|=3>b=-2,C 正确;a2=9>b2=4,D 正确.故 选 A.
3.设 x>-1,则函数 y=x+x5+x1+2的最小值为 ____9____.
解析 ∵x>-1,∴x+1>0,∴y=x+x5+x1+2
=
x2+7x+10 x+1
=
x+12+5x+1+4 x+1
=
x
+
1
+
4 x+1
+
5≥2 x+1·x+4 1+5=9,当且仅当 x+1=x+4 1,即 x=1
时取“=”(由于 x>-1,故 x=-3 舍去),∴y=x+x5+x1+2
2.利用基本不等式解决条件最值问题的关键是构造和 为定值或乘积为定值,主要有两种思路:
(1)通过变形直接利用基本不等式解决. (2)对条件变形,根据已知条件和基本不等式的“需求” 寻找“结合点”,通过“1”的代换、添项、分离常数等手段使 之能运用基本不等式.常见的转化方法有:
高考数学一轮复习统考 第7章 不等式 第4讲 基本不等式学案(含解析)北师大版-北师大版高三全册数学

第4讲 基本不等式基础知识整合1.重要不等式a 2+b 2≥012ab (a ,b ∈R )(当且仅当02a =b 时等号成立).2.基本不等式ab ≤a +b2(1)基本不等式成立的条件:03a >0,b >0;(2)等号成立的条件:当且仅当04a =b 时等号成立; (3)其中a +b2叫做正数a ,b 的05算术平均数,ab 叫做正数a ,b 的06几何平均数.3.利用基本不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值),那么当07x =y 时,x +y 有08最小值2P .(简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值),那么当09x =y 时,xy 有10最大值S 24.(简记:“和定积最大”)1.常用的几个重要不等式 (1)a +b ≥2ab (a >0,b >0); (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R );(3)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ); (4)b a +a b≥2(a ,b 同号).以上不等式等号成立的条件均为a =b . 2.利用基本不等式求最值的两个常用结论(1)已知a ,b ,x ,y ∈R +,若ax +by =1,则有1x +1y=(ax +by )·⎝ ⎛⎭⎪⎫1x +1y =a +b +by x +ax y≥a +b +2ab =(a +b )2.(2)已知a ,b ,x ,y ∈R +,若a x +b y=1,则有x +y =(x +y )·⎝ ⎛⎭⎪⎫a x +b y =a +b +ay x +bx y≥a+b +2ab =(a +b )2.1.已知a ,b ∈R +,且a +b =1,则ab 的最大值为( ) A .1 B.14 C.12 D.22答案 B解析 ∵a ,b ∈R +,∴1=a +b ≥2ab ,∴ab ≤14,当且仅当a =b =12时等号成立,即ab的最大值为14.故选B.2.已知a ,b ∈(0,1)且a ≠b ,下列各式中最大的是( ) A .a 2+b 2B .2abC .2abD .a +b答案 D解析 ∵a ,b ∈(0,1)且a ≠b ,则显然有a +b >2ab ,a 2+b 2>2ab .下面比较a 2+b 2与a +b 的大小.由于a ,b ∈(0,1),∴a 2<a ,b 2<b ,∴a 2+b 2<a +b .故各式中最大的是a +b .3.下列函数中,最小值为4的是( ) A .y =x +4xB .y =sin x +4sin x(0<x <π)C .y =4e x+e -xD .y =log 3x +log x 3(0<x <1)答案 C解析 A 中x 的定义域为{x |x ∈R ,且x ≠0},函数没有最小值;B 中若y =sin x +4sin x(0<x <π)取得最小值4,则sin 2x =4,显然不成立;D 中由0<x <1,则log 3x ∈(-∞,0),y =log 3x +log x 3=log 3x +1log 3x 没有最小值;C 中y =4e x +e -x =4e x +1e x ≥4,当且仅当4e x =e -x,即x =-ln 2时,函数的最小值为4.故选C.4.(2019·山西晋城模拟)已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72 B .4C.92 D .5答案 C解析 y =12(a +b )⎝ ⎛⎭⎪⎫1a +4b =12⎝ ⎛⎭⎪⎫5+4a b +b a ≥92⎝ ⎛⎭⎪⎫当且仅当a =23,b =43时等号成立,即1a +4b 的最小值是92.故选C.5.若x ,y 是正数,则⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是( ) A .3B.72 C .4 D.92答案 C解析 原式=x 2+x y +14y 2+y 2+y x +14x 2≥4.当且仅当x =y =22时取“=”号,即⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是4. 6.3-aa +6(-6≤a ≤3)的最大值为________.答案 92解析 当a =-6或a =3时,3-aa +6=0;当-6<a <3时,3-a a +6≤3-a +a +62=92, 当且仅当3-a =a +6,即a =-32时取等号.故3-aa +b (-6≤a ≤3)的最大值为92.核心考向突破精准设计考向,多角度探究突破考向一 利用基本不等式求最值 角度1 利用配凑法求最值例1 (1)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13 B.12 C.34 D.23答案 B解析 ∵0<x <1,∴x ·(3-3x )=13·3x ·(3-3x )≤13⎝ ⎛⎭⎪⎫3x +3-3x 22=34,当且仅当3x =3-3x ,即x =12时,x (3-3x )取得最大值.故选B.(2)设x >0,则函数y =x +22x +1-32的最小值为________.答案 0解析 y =x +22x +1-32=⎝ ⎛⎭⎪⎫x +12+1x +12-2≥2⎝ ⎛⎭⎪⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形.(2)代数式的变形以拼凑出和或积的定值为目标. (3)拆项、添项应注意检验利用基本不等式的前提.[即时训练] 1.设a ,b 均大于0,a +b =5,则a +1+b +3的最大值为________. 答案 3 2解析 ∵(a +1+b +3)2=a +1+b +3+ 2a +1b +3=9+2a +1b +3,又2a +1b +3≤a +1+b +3=9⎝ ⎛⎭⎪⎫当且仅当a +1=b +3,即a =72,b =32时取“=”, ∴(a +1+b +3)2≤18, ∴a +1+b +3的最大值为3 2.角度2 利用常数代换法求最值 例2 (1)(2019·绵阳诊断)若θ∈⎝ ⎛⎭⎪⎫0,π2,则y =1sin 2θ+9cos 2θ的取值范围为( )A .[6,+∞)B .[10,+∞)C .[12,+∞)D .[16,+∞)答案 D解析 ∵θ∈⎝⎛⎭⎪⎫0,π2,∴sin 2θ,cos 2θ∈(0,1),∴y =1sin 2θ+9cos 2θ=⎝ ⎛⎭⎪⎫1sin 2θ+9cos 2θ(sin 2θ+cos 2θ)=10+cos 2θsin 2θ+9sin 2θcos 2θ≥10+2cos 2θsin 2θ·9sin 2θcos 2θ=16,当且仅当cos 2θsin 2θ=9sin 2θcos 2θ,即θ=π6时等号成立.故选D. (2)已知a +2b =2,且a >1,b >0,则2a -1+1b的最小值为( ) A .4 B .5 C .6 D .8答案 D解析 因为a >1,b >0,且a +2b =2,所以a -1>0,(a -1)+2b =1,所以2a -1+1b=⎝ ⎛⎭⎪⎫2a -1+1b ·[(a -1)+2b ]=4+4b a -1+a -1b ≥4+24b a -1·a -1b =8,当且仅当4b a -1=a -1b,即a =32,b =14时取等号,所以2a -1+1b的最小值是8,故选D.常数代换法求最值的步骤常数代换法适用于求解条件最值问题.运用此种方法求解最值的基本步骤为: (1)根据已知条件或其变形确定定值(常数). (2)把确定的定值(常数)变形为1.(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式. (4)利用基本不等式求解最值.[即时训练] 2.(2020·正定模拟)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________.答案 5解析 由x +3y =5xy ,可得15y +35x=1, 所以3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+2 3x 5y ·12y 5x =135+125=5,当且仅当x =1,y =12时取等号,故3x +4y 的最小值是5.角度3 利用消元法求最值例3 (1)(2019·江西上饶联考)已知正数a ,b ,c 满足2a -b +c =0,则acb2的最大值为( )A .8B .2 C.18 D.16答案 C解析 因为a ,b ,c 都是正数,且满足2a -b +c =0,所以b =2a +c ,所以ac b 2=ac 2a +c2=ac 4a 2+4ac +c 2=14a c +ca+4≤124a c ·ca+4=18,当且仅当c =2a >0时等号成立,即acb 2的最大值为18.故选C.(2)已知x >54,则函数y =16x 2-28x +114x -5的最小值为________.答案 5解析 令4x -5=t ,则x =t +54(t >0),∴y =t 2+3t +1t =t +1t +3(t >0),又t +1t≥2(当且仅当t =1时,取“=”),∴y 的最小值为5.通过消元法利用基本不等式求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.[即时训练] 3.(2019·安徽阜阳模拟)若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b +3ba的最小值为________. 答案 6解析 因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以b =aa -1>0,所以a >1,所以a +b +3b a =(a -1)+4a -1+2≥4+2=6,当且仅当a =3时等号成立,所以a +b +3ba 的最小值是6.考向二 求参数值或取值范围例4 (1)(2019·山西长治模拟)已知不等式(x +y )·⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8答案 B解析 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a ·x y +y x +a ≥1+a +2a =(a +1)2,当且仅当a ·x y =y x,即ax 2=y 2时“=”成立.∵(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,∴(a +1)2≥9.∴a ≥4,即正实数a 的最小值为4.故选B.(2)当0<m <12时,若1m +21-2m ≥k 2-2k 恒成立,则实数k 的取值范围是( )A .[-2,0)∪(0,4]B .[-4,0)∪(0,2]C .[-4,2]D .[-2,4]答案 D解析 因为0<m <12,所以m (1-2m )=12×2m ×(1-2m )≤12×⎣⎢⎡⎦⎥⎤2m +1-2m 22=18⎝ ⎛⎭⎪⎫当且仅当2m =1-2m ,即m =14时取等号,所以1m +21-2m =1m 1-2m ≥8.又1m +21-2m ≥k 2-2k 恒成立,所以k 2-2k -8≤0,所以-2≤k ≤4.所以实数k 的取值范围是[-2,4].故选D.(1)要敏锐地洞察到已知条件与所求式子的联系,并能灵活地进行转化. (2)利用基本不等式确立相关成立条件,从而得到参数的值或取值范围.[即时训练] 4.设a >0,b >0且不等式1a +1b +ka +b ≥0恒成立,则实数k 的最小值等于( )A .0B .4C .-4D .-2答案 C解析 由1a +1b +ka +b≥0得k ≥-a +b 2ab,又a +b 2ab=a b +b a+2≥4(当且仅当a =b 时取等号),所以-a +b2ab≤-4,因此要使k ≥-a +b2ab恒成立,应有k ≥-4,即实数k 的最小值等于-4.故选C.5.(2019·珠海模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为( ) A .2 B .4 C .6 D .8答案 C解析 解法一:由已知得xy =9-(x +3y ),即3xy =27-3(x +3y )≤⎝⎛⎭⎪⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,令x +3y =t ,则t >0,且t 2+12t -108≥0,解得t ≥6,即x +3y ≥6.故x +3y 的最小值为6.解法二:∵x +3y =9-xy ≥23xy ,∴(xy )2+23·xy -9≤0,∴(xy +33)(xy -3)≤0,∴0<xy ≤3,∴x +3y =9-xy ≥6,即x +3y 的最小值为6.故选C. 考向三 基本不等式的实际应用例5 (2019·辽宁沈阳质检)某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x )(万元),当年产量不足80千件时,C (x )=13x 2+10x ;当年产量不小于80千件时,C (x )=51x +10000x-1450.每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解 (1)因为每件商品售价为0.05万元,则x 千件商品的销售额为0.05×1000x 万元,依题意得,当0<x <80时,L (x )=(0.05×1000x )-⎝ ⎛⎭⎪⎫13x 2+10x -250=-13x 2+40x -250;当x ≥80时,L (x )=(0.05×1000x )-⎝⎛⎭⎪⎫51x +10000x-1450-250=1200-⎝ ⎛⎭⎪⎫x +10000x . 所以L (x )=⎩⎪⎨⎪⎧-13x 2+40x -250,0<x <80,1200-⎝ ⎛⎭⎪⎫x +10000x ,x ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950.则当x =60时,L (x )取得最大值L (60)=950万元;当x ≥80时,L (x )=1200-⎝⎛⎭⎪⎫x +10000x ≤1200-2x ·10000x=1200-200=1000⎝⎛⎭⎪⎫当且仅当x =10000x,即x =100时取等号,则当x =100时,L (x )取得最大值1000万元.由于950<1000,所以,当年产量为100千件时,该厂在这一商品的生产中所获利润最大,最大利润为1000万元.有关函数最值的实际问题的解题技巧(1)根据实际问题建立函数的解析式,再利用基本不等式求得函数的最值. (2)设变量时一般要把求最大值或最小值的变量定义为函数. (3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.[即时训练] 6.某厂家拟在2020年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2020年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大? 解 (1)由题意知,当m =0时,x =1, ∴1=3-k ⇒k =2,∴x =3-2m +1, 每件产品的销售价格为1.5×8+16xx(元),∴2020年的利润y =1.5x ×8+16xx-8-16x -m=4+8x -m =4+8⎝ ⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+m +1+29(m ≥0). (2)∵当m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元). 故该厂家2020年的促销费用投入3万元时,厂家的利润最大为21万元.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________. 答案 4解析 ∵a 4+4b 4≥2a 2·2b 2=4a 2b 2(当且仅当a 2=2b 2时“=”成立), ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab, 由于ab >0,∴4ab +1ab ≥24ab ·1ab=4 ⎝ ⎛⎭⎪⎫当且仅当4ab =1ab 时“=”成立, 故当且仅当⎩⎪⎨⎪⎧ a 2=2b 2,4ab =1ab 时,a 4+4b 4+1ab的最小值为4. 答题启示利用基本不等式求函数或代数式的最值时一定要注意验证等号是否成立,特别是当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.对点训练已知a >b >0,求a 2+16b a -b的最小值. 解 ∵a >b >0,∴a -b >0.∴b (a -b )≤⎣⎢⎡⎦⎥⎤b +a -b 22=a 24. ∴a 2+16ba -b ≥a 2+64a 2≥2a 2·64a 2=16. 当a 2=64a 2且b =a -b ,即a =22,b =2时等号成立. ∴a 2+16b a -b 的最小值为16.。
第4讲 第2课时 利用导数解决不等式恒(能)成立问题

求解不等式恒成立问题的方法 (1)构造函数分类讨论:遇到 f(x)≥g(x)型的不等式恒成立问题时,一般 采用作差法,构造“左减右”的函数 h(x)=f(x)-g(x)或“右减左”的函数 u(x)=g(x)-f(x),进而只需满足 h(x)min≥0 或 u(x)max≤0,将比较法的思想融 入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对 参数进行分类讨论. (2)分离函数法:分离函数法的主要思想是将不等式变形成一个一端是 参数 a,另一端是变量表达式 v(x)的不等式后,若 a≥v(x)在 x∈D 上恒成立, 则 a≥v(x)max;若 a≤v(x)在 x∈D 上恒成立,则 a≤v(x)min.
第四章 导数及其应用
第4讲 导数与函数的综合应用 第2课时 利用导数解决不等式恒(能)
成立问题
1
PART ONE
核心考向突破
考向一 恒成立问题
例 1 (2020·新高考卷Ⅰ节选)已知函数 f(x)=aex-1-ln x+ln a.若 f(x)≥1,求 a 的取值范围.
解 解法一:∵f(x)=aex-1-ln x+ln a, ∴f′(x)=aex-1-1x,且 a>0. 设 g(x)=f′(x),则 g′(x)=aex-1+x12>0, ∴g(x)在(0,+∞)上单调递增,即 f′(x)在(0,+∞)上单调递增,
解
(2)对于任意的 s,t∈[12,2],都有 f(s)≥g(t)成立,等价于在[12,2]上, 函数 f(x)min≥g(x)max.
由(1)可知在[12,2]上,g(x)的最大值为 g(2)=1. 在12,2 上,f(x)=ax+xln x≥1 恒成立等价于 a≥x-x2ln x 恒成立. 设 h(x)=x-x2ln x,则 h′(x)=1-2xln x-x, 令 φ(x)=1-2xln x-x,φ′(x)=-(2ln x+3),当 x∈[12,2]时,φ′(x)<0,
第四讲 常见不等式的解法(精练)(解析版)

2023年初高中衔接素养提升专题课时检测第五讲常见不等式的解法(精练)(解析版)(测试时间60分钟)一、单选题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2022·四川巴中高一专题检测)不等式2320x x -+-≥的解集是()A .2x >或1x <B .2x ≥或1x ≤C .12x ≤≤D .12x <<【解析】由2320x x -+-≥,可得;2320(1)(2)0x x x x -+≤⇒--≤,所以原不等式的解集为12x ≤≤。
【答案】C2.(2023·江西萍乡高一专题检测)关于x 的不等式ax 2+bx +2>0的解集为-1<x <2,则关于x 的不等式bx 2-ax -2>0的解集为()A .-2<x <1B .x >2或x <-1C .x >1或x <-2D .x <-1或x >1【答案】C【解析】∵ax 2+bx +2>0的解集为-1<x <2,-b a=1,=-1,=1,∴bx 2-ax -2>0,即x 2+x -2>0,解得x >1或x <-2.3.t(x)|1t <x <t|x >1t 或x <t |x <1t 或x >t |t <x <1t 【答案】D【解析】[t ∈(0,1)时,t <1t,∴解集为|t <x <1t 4.(2022·河北保定高一专题检测)一元二次不等式kx2+2(2k +1)x+9>0对一切实数x 恒成立,则k 的取值范围是()A .(0,1)BC .D .(0,+∞)【解答】解:设f (x )=kx 2+2(2k +1)x +9,当k =0时,f (x )=2x +9>0,解得,不合题意;当k ≠0时,则,解得;综上,实数k .故选:B.5.(2019·大纲全国卷)不等式|x 2-2|<2的解集是()A .(-1,1)B .(-2,2)C .(-1,0)∪(0,1)D .(-2,0)∪(0,2)【解析】由|x 2-2|<2,得-2<x 2-2<2,即0<x 2<4,所以-2<x <0或0<x <2,故解集为(-2,0)∪(0,2).【答案】D6.(2022·江苏无锡高一专题检测)不等式的解集是()A.{}1|<x x B.{}1|-<x x C.{}12|<<-x x D.{}21|-<>x x x 或【解答】C【解析】先将原不等式化为,即,化简得,即,解得,故选C.7.(2022·四川巴中高一专题检测)不等式2601x x x ---的解集为()A. B.C. D.【解答】C【解析】原不等式可化为,即,解得或,故选C.二、填空题8.(2021·江苏·淮阴中学新城校区一模)抛物线2y ax bx c =++的部分图像如图所示,则不等式20ax bx c ++>的解集为______.【答案】x <-3或x >1解:∵二次函数y =ax 2+bx +c 的对称轴为直线x =-1,该抛物线与x 轴的一个交点为(1,0),∴该抛物线与x 轴的另一个交点为(-3,0)又∵抛物线开口向上∴不等式ax 2+bx +c >0的解集是x <-3或x >1.故答案为:x <-3或x >1.9.(2022·银川二中高一专题检测)关于x 的不等式20x ax b -+<的解集为{}|12x x <<,则不等式5bx a +>的解集为__________.【答案】()(),41,-∞-⋃+∞【解析】∵不等式20x ax b -+<的解集为{}|12x x <<∴1x =或2是方程20x ax b -+=的解,即3a =,2b =,∴23bx a x +=+∵5bx a +>∴235x +<-或235x +>∴4x <-或1x >∴不等式5bx a +>的解集为()(),41,-∞-⋃+∞,故答案为()(),41,-∞-⋃+∞三、解答题(解答时应写出文字说明、证明过程或演算步骤)11.(2022·银川二中高一专题检测)求下列不等式的解集.(1)23520x x +-≤;(2)28141804x x -+-≥;(3)22320x x -+-<;(4)213502x x -+->.【解析】(1)因为()()2352231x x x x +-=+-,所以原不等式等价于()()2310x x +-≤,解得123x -≤≤,所以原不等式的解集为123x x ⎧⎫-≤≤⎨⎬⎩⎭.(2)原不等式可化为28141804x x -+≤,配方得29202x ⎛⎫-≤ ⎪⎝⎭,又29(202x -≥,所以29(2)02x -=,解得94x =,所以原不等式的解集为94x x ⎧⎫=⎨⎬⎩⎭.(3)原不等式可化为22320x x -+>,因为22372322048x x x ⎛⎫-+=-+> ⎪⎝⎭恒成立,所以原不等式的解集为R .(4)原不等式可化为26100x x -+<,因为()22610310x x x -+=-+>恒成立,所以原不等式无解,即原不等式的解集为∅.12.(2022·甘肃天水高一专题检测).解下列不等式(1)32x x -<(2)22(712)(6)0x x x x -+--<(3)310(2)(3)x x x -≥+-【解析】::(1)2230x x x--<(1)(3)0x x x ⇒+-<103x x ⇒<-<<或,所以原不等式的解集为{|103}x x x <-<<或.(2)(3)(2)(3)(4)0x x x x +--->,所以原不等式的解集为{|3234}x x x x <-<<>或或.(3)2(1)(1)0(2)(3)x x x x x -++≥+-(2)(1)(3)023x x x x x +--≥⎧⇒⎨≠-≠⎩且所以原不等式的解集为{|213}x x x -<≤>或.。
高三复习第四讲基本不等式

第六章 不等式、推理与证明第四讲 基本不等式【考纲速读吧】1.了解基本不等式的证明过程.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,在证明或求最值时,要个必会变形1. 公式的逆用:a 2+b 2≥2ab 的逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)的逆用就是ab ≤(a +b 2)2.2. ab ≤(a +b 2)2≤a 2+b 22(当且仅当a =b 时取等号),这个不等式链用处很大.项必须注意1.使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.2.在运用重要不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足重要不等式中“正”“定”“等”的条件.3.在同一个问题中连续多次使用均值不等式,要注意判断等号是否能同时成立.【课前自主导学】011. 基本不等式ab ≤a +b2(1)基本不等式成立的条件:________.(2)等号成立的条件:当且仅当________时取等号.(3)两个平均数:a +b2称为正数a ,b 的________,ab 称为正数a ,b 的________.归纳拓展:常用的几个重要不等式:(1)a 2+b 2≥2ab (a ,b ∈R ). (2)ab ≤(a +b 2)2(a ,b ∈R ).(3)(a +b 2)2≤a 2+b 22(a ,b ∈R ). (4)b a +ab≥2(a ·b >0).(5)21a +1b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0).(1)若a ,b ∈R ,且ab >0,下列不等式①a 2+b 2>2ab ②a +b ≥2ab ③1a +1b >2ab ④b a +a b ≥2 ⑤ab ≤(a +b 2)2,其中恒成立的是________.(2)设0<a <b ,则a ,b ,ab ,a +b2的大小关系为________.2.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:“积定和最小”).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s24(简记:“和定积最大”).(1)当x >1时,则x +4x -1的最小值________.(2)当x <0时,则x +2x的最大值________.(3)已知x ,y >0,且x +4y =1,则xy 的最大值________,1x +1y________.【自我校对】1. a >0,b >0 a =b 算术平均数 几何平均数填一填:(1)④⑤ (2)a <ab <a +b2<b2.填一填:(1)5 (2)-22 (3)1169【核心要点研究】02【考点一】利用基本不等式求最值例1 (1)[2011·重庆高考]已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A .72B .4C .92 D .5(2)[2011·浙江高考]若实数x 、y 满足x 2+y 2+xy =1,则x +y 的最大值是________.【审题视点】通过拆、拼、凑创造条件,利用基本不等式求最值,但要注意等号成立的条件.[解析] (1)2y =2(1a +4b )=(a +b )(1a +4b )=5+b a +4a b ≥5+2b a ·4a b=9(当且仅当b a =4a b ,a +b =2即a =23,b =43时等号成立),所以y 的最小值为92.(2)∵x 2+y 2+xy =1,∴(x +y )2=xy +1.又∵xy ≤(x +y 2)2,∴(x +y )2≤(x +y 2)2+1,即34(x +y )2≤1. ∴(x +y )2≤43.∴-233≤x +y ≤233.∴x +y 的最大值为233.[答案] (1)C (2)233奇思妙想:本例(1)改为“若a >0,b >0,且a +b =2ab ,求y =4a +b 的最小值”,则结果如何?解:由a +b =2ab 得1a +1b=2,∴4a +b =12(1a +1b )(4a +b )=12(5+4a b +b a )≥924a +b 的最小值为92.【师说点拨】利用基本不等式求最值时,必须注意三点:“一正,二定,三相等”,缺一不可.如果项是负数,可转化为正数后解决,当和(或积)不是定值时,需要对项进行添加、分拆或变系数,将和(或积)化为定值.【变式探究】已知x >0,y >0,且2x +8y -xy =0,求(1)xy 的最小值;(2)x +y 的最小值.解:(1)∵2x +8y =xy ≥216xy , ∴xy -8xy ≥0,∴解得xy ≥64. 当x =16,y =4时,xy 最小值为64.(2)∵2x +8y =xy ,∴8x +2y =1, 则x +y =(x +y )(8x +2y )=10+8y x +2xy≥18,当x =12,y =6时,x +y 的最小值为18.【考点二】利用基本不等式证明不等式例2 [2012·湖北高考]设a ,b ,c ∈R +,则“abc =1”是“1a +1b +1c≤a +b +c ”的( ) A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充分必要条件 D .既不充分也不必要条件 【审题视点】按照化繁为简的原则,先对不等式的左侧进行变形化简,关键是题设条件“abc =1”的灵活应用. [解析] 先考查充分性:当abc =1时,1a +1b +1c =abc a +abc b +abcc=ab +bc +ca ,又因为2(a +b +c )=(a +b )+(b +c )+(c +a )≥2ab +2bc +2ca(当且仅当a =b =c =1时取等号),即1a +1b +1c =ab +bc +ca ≤a +b +c ,故充分性成立;再考查必要性:取a =b =c =3,显然有1a +1b +1c≤a +b +c ,但abc ≠1,故必要性不成立.应选A .[答案] A【师说点拨】利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、并项,也可乘上一个数或加上一个数,“1”的代换法等.【变式探究】[2012·福建高考]下列不等式一定成立的是( )A .lg (x 2+14)>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R )D .1x 2+1>1(x ∈R )答案:C解析:本题考查不等式的性质以及基本不等式的应用,解题时注意使用不等式的性质以及基本不等式成立的条件.对于A 选项,当x =12时,lg (x 2+14)=lg x ;所以A 不一定正确;B 命题,需要满足当sin x >0时,不等式成立,所以B 也不正确;C 命题显然正确;D 命题不正确,∵x 2+1≥1,∴0<1x 2+11,所以正确的是C .【考点三】利用基本不等式解决实际问题例3 [2012·江苏高考]如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km ,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.[解] (1)令y =0,得kx -1201+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号.所以炮的最大射程为10 km .(2)因为a >0,所以炮弹可以击中目标等价于存在k >0,使ka -120(1+k 2)a 2=3.2成立,即关于k 的方程a 2k 2-20ak +a 2+64=0有正根.由Δ=(-20a )2-4a 2(a 2+64)≥0得a ≤6,此时,k =20a+(-20a )2-4a 2(a 2+64)2a2>0(不考虑另一根).当a 不超过6千米时,炮弹可以击中目标【师说点拨】解实际应用题要注意以下几点:(1)设变量时一般要把求最大值或最小值的变量定义为函数;(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值;(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【变式探究】[2013·郑州模拟]把一段长16米的铁丝截成两段,分别围成正方形,则两个正方形面积之和的最小值为( )A .4B .8C .16D .32 答案:B解析:设截成的两段铁丝长分别为x,16-x,16>x >0,则围成的两个正方形面积之和为S =(x 4)2+(16-x 4)2≥(x 4+16-x 4)22=8,当且仅当x 4=16-x4,即x =8时,等号成立.故两个正方形面积之和的最小值为8,故选B .【课课精彩无限】03忽视不等式中等号成立的条件而致误【选题·热考秀】 [2012·浙江高考]若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A .245B .285C .5D .6[规范解答] ∵x +3y =5xy ,∴1y +3x =5,∵x >0,y >0,∴(3x +4y )(1y +3x )=3x y +12y x +9+4≥23x y ·12yx+13=25,∴5(3x +4y )≥25,∴3x +4y ≥5,当且仅当x =2y 时取等号,∴3x +4y 的最小值是5,选C . 答案:C 【备考·角度说】No .1 角度关键词:易错分析(1)不能根据函数解析式的特征适当变形,化为两式之和为定值,使题目无法进行. (2)两次使用基本不等式时,忽视等号的一致性出错.如本题易出现:x +3y =5xy ≥23xy ,∴xy ≥1225,又3x +4y ≥212xy ≥2 12·1225=245,误选A 项,第一个等号成立条件“x =3y ”,而第二个等号成立条件为“3x =4y ”,显然等号不能同时成立,故不正确. No .2 角度关键词:备考建议(1)重视基本不等式的形式及其条件,在解题中要根据不同的情况进行适当地变形,为使用基本不等式提供前提;(2)对于在同一问题中连续使用基本不等式的情况,要注意及时判断等号能否同时取得,以防止出错; (3)要注意利用常数代换法对代数式进行转化的技巧.【经典演练提能】041.[2012·陕西高考]小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =abC .ab <v <a +b2D .v答案:A解析:由小王从甲地往返到乙地的时速为a 和b ,则全程的平均时速为v =2s (s a +s b)=2aba +b ,又∵a <b ,∴2a 22a <2ab a +b <2ab 2ab=ab ,∴a <v <ab ,A 成立. 2.[2013·青岛质检]已知a >0,b >0,且2a +b =4,则1ab的最小值为( )A .14B .4C .12D .2答案:C解析:由4=2a +b ≥22ab ,得ab ≤2,又a >0,b >0,所以1ab ≥12,当且仅当a =1,b =2时等号成立.3.[2013·福建质检]设a >0,若关于x 的不等式x +ax -1≥5在(1,+∞)上恒成立,则a 的最小值为( )A .16B .9C .4D .2 答案:C解析:∵关于x 的不等式x +ax -1≥5在(1,+∞)上恒成立,∴a ≥(5-x )(x -1)在(1,+∞)上恒成立.∵(5-x )(x -1)=-(x -3)2+4≤4,∴a ≥4,即a 的最小值为4.4.[2013·金版原创]已知x >0,y >0,且2x +1y=1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是( )A .m ≥4或m ≤-2B .m ≥2或m ≤-4C .-2<m <4D .-4<m <2 答案:D解析:∵x >0,y >0,且2x +1y =1,∴x +2y =(x +2y )(2x +1y )=4+4y x +x y ≥4+24y x ·xy=8,当且仅当4y x =x y ,即4y 2=x 2,x =2y 时取等号,又2x +1y=1,此时x =4,y =2,∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立,只需(x +2y )min >m 2+2m 恒成立,即8>m 2+2m ,解得-4<m <2. 5.[2013·提升题]已知a >0,b >0,给出下列四个不等式:①a +b +1ab ≥22;②(a +b )(1a +1b )≥4;③a 2+b 2ab ≥a +b ;④a +1a +4≥-2.其中正确的不等式有________(只填序号).答案:①②③解析:∵a >0,b >0,∴①a +b +1ab ≥2ab +1ab ≥22ab ·1ab =22.②(a +b )(1a +1b )≥4ab ·1ab =4.③∵a 2+b 22≥a +b 2,∴a 2+b 2≥(a +b )22=(a +b )·a +b 2≥(a +b )ab ,∴a 2+b 2ab≥a +b .④a +1a +4a +4)+1a +4-4≥2 (a +4)·1a +4-4=-2,当且仅当a +4=1a +4,即(a +4)2=1时等号成立,而a >0,∴(a +4)2≠1.∴等号不能取得.综上①②③正确. 【限时规范特训】05(时间:45分钟 分值:100分)一、选择题1.[2013·常州质检]已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4 答案:C解析:∵x <0,∴-x >0,∴x +1x -2=-(-x +1-x )-2≤-2-x 1-x2=-4,当且仅当-x =1-xx =-1时,等号成立.2.[2013·长沙质检]若0<x <1,则当f (x )=x (4-3x )取得最大值时,x 的值为( )A .13B .12C .34D .23答案:D解析:∵0<x <1, ∴f (x )=x (4-3x )=13·3x (4-3x )≤13×(3x +4-3x 2)2=43,当且仅当3x =4-3x ,即x =23时,取得“=”,故选D .3.函数y =x 2+2x +2x +1(x >-1)的图象最低点的坐标为( )A .(1,2)B .(1,-2)C .(1,1)D .(0,2) 答案:D解析:y =x +2+1x +1=x +1+1x +1,当x +1=1x +1,即x =0时,y 最小值为2,故选D 项.4.已知m =a +1a -2a >2),n =(12)x 2-2(x <0),则m ,n 之间的大小关系是( )A .m >nB .m <nC .m =nD .m ≤n 答案:A解析:∵a >2,x <0,∴m =(a -2)+1a -2+2≥2a -2·1a -22=4,n =22-x 2<22=4,∴m >n ,故选A . 5.[2013·商丘模拟]若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为( ) A .12 B .23 C .32 D .6 答案:D解析:依题意得4(x -1)+2y =0,即2x +y =2,9x +3y =32x +3y ≥232x ×3y =232x +y =232=6, 当且仅当2x =y =1时取等号,因此9x +3y 的最小值是6,选D .6.已知a ,b 为正实数且ab =1,若不等式(x +y )(a x +by)>m 对任意正实数x ,y 恒成立,则实数m 的取值范围是( )A .[4,+∞)B .(-∞,1]C .(-∞,4]D .(-∞,4) 答案:D解析:因为(x +y )(a x +b y )=a +b +ay x +bx y ≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bxy时等号成立,即a =b ,x =y 时等号成立,故只要m <4即可,正确选项为D . 二、填空题 7.[2013·金版原创]规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗xx的最小值为________.答案:1 3解析:1⊗k =k +1+k =3,即k +k -2=0,∴k =1或k =-2(舍),∴k =1.f (x )=1⊗x x =x +x +1x =1+x +1x ≥1+2=3,当且仅当x =1x即x =1时等号成立.8.[2013·西安质检]函数f (x )=1+log a x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.答案:2解析:由题知,函数图象恒过点A (1,1),且点A 在直线mx +ny -2=0上,所以m +n =2,其中mn >0,所以1m +1n =12(1m +1n )(m +n )=12(2+n m +m n )≥12×(2+2)=2,当且仅当m =n =1时取得最小值,故所求的最小值为2. 9.[2013·鹤岗模拟]若a ,b ,c >0,且a 2+ab +ac +bc =4,则2a +b +c 的最小值为________. 答案:4解析:由已知得a 2+ab +ac +bc =(a +b )(a +c )=4, 则2a +b +c =(a +b )+(a +c )≥2(a +b )(a +c )=4,∴2a +b +c 的最小值为4. 三、解答题 10.[2013·梅州质检]已知lg (3x )+lg y =lg (x +y +1). (1)求xy 的最小值; (2)求x +y 的最小值.解:由lg (3x )+lg y =lg (x +y +1)得⎩⎪⎨⎪⎧x >0y >03xy =x +y +1(1)∵x >0,y >0, ∴3xy =x +y +1≥2xy +1, ∴3xy -2xy -1≥0,即3(xy )2-2xy -1≥0,∴(3xy +1)(xy -1)≥0,∴xy ≥1,∴xy ≥1,当且仅当x =y =1时,等号成立.∴xy 的最小值为1.(2)∵x >0,y >0,∴x +y +1=3xy ≤3·(x +y 2)2,∴3(x +y )2-4(x +y )-4≥0,∴[3(x +y )+2][(x +y )-2]≥0,∴x +y ≥2,当且仅当x =y =1时取等号,∴x +y 的最小值为2. 11.[2013·房山区模拟]已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab ≥8;(2)(1+1a )(1+1b)≥9.证明:(1)1a +1b +1ab =1a +1b +a +b ab =2(1a +1b),∵a +b =1,a >0,b >0, ∴1a +1b =a +b a +a +b b =2+a b +ba≥2+2=4,∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立). (2)方法一 ∵a >0,b >0,a +b =1, ∴1+1a =1+a +b a =2+ba,同理,1+1b =2+a b ,∴(1+1a )(1+1b )=(2+b a )(2+a b )=5+2(b a +ab )≥5+4=9.∴(1+1a )(1+1b )≥9(当且仅当a =b =12时等号成立).方法二(1+1a )(1+1b )=1+1a +1b +1ab .由(1)知,1a +1b +1ab ≥8,故(1+1a )(1+1b )=1+1a +1b +1ab≥9.12.[2013·三明模拟]某住宅小区为了使居民有一个优雅、舒适的生活环境,计划建一个正八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200 m 2的十字型区域.现计划在正方形MNPQ 上建一花坛,造价为4200元/m 2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m 2,再在四个空角上铺草坪,造价为80元/m 2.(1)设总造价为S 元,AD 的长为x m ,试建立S 关于x 的函数关系式; (2)计划至少投入多少元,才能建造这个休闲小区.解:(1)设DQ =y ,则x 2+4xy =200,y =200-x 24x.S =4200x 2+210×4xy +80×4×12y 2=38000+4000x 2+400000x 2(0<x <102).(2)S =38000+4000x 2+400000x2≥38000+216×108=118000, 当且仅当4000x 2=400000x2,即x =10时,S min =118000(元),即计划至少要投入11.8万元才能建造这个休闲小区.。
2014届高考数学文二轮专题突破:专题一 第4讲不等式及线性规划

第4讲 不等式及线性规划【高考考情解读】 1.本讲在高考中主要考查两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题.1.四类不等式的解法(1)一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法①变形⇒f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0);②变形⇒f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0.(3)简单指数不等式的解法①当a >1时,a f (x )>a g (x )⇔f (x )>g (x ); ②当0<a <1时,a f (x )>a g (x )⇔f (x )<g (x ). (4)简单对数不等式的解法①当a >1时,log a f (x )>log a g (x )⇔f (x )>g (x )且f (x )>0,g (x )>0; ②当0<a <1时,log a f (x )>log a g (x )⇔f (x )<g (x )且f (x )>0,g (x )>0. 2.五个重要不等式(1)|a |≥0,a 2≥0(a ∈R ). (2)a 2+b 2≥2ab (a 、b ∈R ). (3)a +b 2≥ab (a >0,b >0).(4)ab ≤(a +b 2)2(a ,b ∈R ).(5)a 2+b 22≥a +b 2≥ab ≥2aba +b(a >0,b >0). 3.二元一次不等式(组)和简单的线性规划(1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.(2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定其取得最优解的点;③求出目标函数的最大值或者最小值. 4.两个常用结论(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.考点一 一元二次不等式的解法例1 (2012·江苏)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________. 答案 9解析 由题意知f (x )=x 2+ax +b =⎝⎛⎭⎫x +a 22+b -a24. ∵f (x )的值域为[0,+∞),∴b -a 24=0,即b =a 24.∴f (x )=⎝⎛⎭⎫x +a22. 又∵f (x )<c .∴⎝⎛⎭⎫x +a22<c , 即-a 2-c <x <-a2+c .∴⎩⎨⎧-a2-c =m , ①-a2+c =m +6. ②②-①,得2c =6,∴c =9.二次函数、二次不等式是高中数学的重要基础知识,也是高考的热点.本题考查了二次函数的值域及一元二次不等式的解法.突出考查将二次函数、二次方程、二次不等式三者进行相互转化的能力和转化与化归的数学思想方法.(1)已知p :∃x 0∈R ,mx 20+1≤0,q :∀x ∈R ,x 2+mx +1>0.若p ∧q 为真命题,则实数m 的取值范围是( )A .(-∞,-2)B .[-2,0)C .(-2,0)D .[0,2](2)设命题p :{x |0≤2x -1≤1},命题q :{x |x 2-(2k +1)x +k (k +1)≤0},若p 是q 的充分不必要条件,则实数k 的取值范围是__________. 答案 (1)C (2)⎣⎡⎦⎤0,12 解析 (1)p ∧q 为真命题,等价于p ,q 均为真命题.命题p 为真时,m <0;命题q 为真时,Δ=m 2-4<0,解得-2<m <2.故p ∧q 为真时,-2<m <0. (2)p :{x |12≤x ≤1},q :{x |k ≤x ≤k +1},由p ⇒q 且qD ⇒/p ,则⎩⎪⎨⎪⎧k ≤121≤k +1,∴0≤k ≤12,即k 的取值范围是⎣⎡⎦⎤0,12. 考点二 利用基本不等式求最值问题例2 (1)(2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285C .5D .6(2)设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 答案 (1)C (2)2105解析 (1)∵x >0,y >0,由x +3y =5xy 得15⎝⎛⎭⎫1y +3x =1. ∴3x +4y =15(3x +4y )⎝⎛⎭⎫1y +3x =15⎝⎛⎭⎫3xy +4+9+12y x =135+15⎝⎛⎭⎫3x y+12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号), ∴3x +4y 的最小值为5. (2)方法一 ∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1,即(2x +y )2-32·2xy =1,∴(2x +y )2-32·⎝⎛⎭⎫2x +y 22≤1,解之得(2x +y )2≤85,即2x +y ≤2105.等号当且仅当2x =y >0,即x =1010,y =105时成立. 方法二 令t =2x +y ,则y =t -2x ,代入4x 2+y 2+xy =1,得6x 2-3tx +t 2-1=0,由于x 是实数, 故Δ=9t 2-24(t 2-1)≥0,解得t 2≤85,即-2105≤t ≤2105,即t 的最大值也就是2x +y 的最大值为2105.方法三 化已知4x 2+y 2+xy =1为⎝⎛⎭⎫2x +14y 2+⎝⎛⎭⎫154y 2=1,令2x +14y =cos α,154y =sin α,则34y =155sin α,则2x +y =2x +14y +34y =cos α+155sin α=2105sin(α+φ)≤2105.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.解题时应根据已知条件适当进行添(拆)项,创造应用基本不等式的条件.(1)已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a的最小值为( )A .1 B.32C .2D.52答案 B 解析 2x +2x -a =2(x -a )+2x -a +2a ≥2·2(x -a )·2x -a+2a =4+2a , 由题意可知4+2a ≥7,得a ≥32,即实数a 的最小值为32,故选B.(2)(2013·山东)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当zxy 取得最小值时,x +2y-z 的最大值为 ( )A .0 B.98 C .2D.94答案 C解析 由题意知:z =x 2-3xy +4y 2,则z xy =x 2-3xy +4y 2xy =x y +4y x-3≥1,当且仅当x =2y 时取等号,此时z =xy =2y 2. 所以x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2≤2. 所以当y =1时,x +2y -z 取最大值2. 考点三 简单的线性规划问题例3 (2013·湖北)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为 ( )A .31 200元B .36 000元C .36 800元D .38 400元答案 C解析 设租A 型车x 辆,B 型车y 辆时租金为z 元 则z =1 600x +2 400y x 、y 满足⎩⎪⎨⎪⎧x +y ≤21y -x ≤736x +60y ≥900,x ,y ≥0,x 、y ∈N画出可行域如图直线y =-23x +z2 400过点A (5,12)时纵截距最小,∴z min =5×1 600+2 400×12=36 800, 故租金最少为36 800元.(1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)解决线性规划问题首先要找到可行域,再注意目标函数所表示的几何意义,利用数形结合找到目标函数的最优解.(3)对于应用问题,要准确地设出变量,确定可行域和目标函数.(1)(2013·山东)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12(2)(2013·北京)设关于x 、y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( )A.⎝⎛⎭⎫-∞,43B.⎝⎛⎭⎫-∞,13C.⎝⎛⎭⎫-∞,-23D.⎝⎛⎭⎫-∞,-53 答案 (1)C (2)C解析 (1)由⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0得A (3,-1).此时线OM 的斜率最小,且为-13.(2)当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23.1. 三个“二次”的关系一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x 轴交点的横坐标,即二次函数的零点. 2.基本不等式的作用二元基本不等式具有将“积式”转化为“和式”或将“和式”转化为“积式”的放缩功能,常常用于比较数(式)的大小或证明不等式或求函数的最值或解决不等式恒成立问题.解决问题的关键是弄清分式代数式、函数解析式、不等式的结构特点,选择好利用基本不等式的切入点,并创设基本不等式的应用背景,如通过“代换”、“拆项”、“凑项”等技巧,改变原式的结构使其具备基本不等式的应用条件.利用基本不等式求最值时要注意“一正、二定、三相等”的条件,三个条件缺一不可. 3.二元一次不等式表示平面区域的快速判断法:记为“同上异下”,这叫B 的值判断法.解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.1.若实数x 、y 满足4x +4y =2x +1+2y +1,则t =2x +2y 的取值范围是( )A .0<t ≤2B .0<t ≤4C .2<t ≤4D .t ≥4答案 C解析 依题意得,(2x +2y )2-2×2x ×2y =2(2x +2y ), 则t 2-2t =2×2x×2y≤2×(2x +2y 2)2=t 22;即t 22-2t ≤0,解得0≤t ≤4; 又t 2-2t =2×2x ×2y >0,且t >0, 因此有t >2,故2<t ≤4,故选C.2.已知点A (2,-2),点P (x ,y )在⎩⎪⎨⎪⎧x -y +1≥0,x +y +1≥0,2x -y -1≤0所表示的平面区域内,则OP →在OA →方向上投影的取值范围是( )A .[-22,22) B .(-22,22) C .(-22,22]D .[-22,22] 答案 D解析 不等式组表示的平面区域,如图所示:由向量投影的几 何意义知,当点P 与点D 重合时投影最大,当点P 与点B 或点 C 重合时投影最小. 又C (-1,0),D (0,-1), ∴OC →=(-1,0),OD →=(0,-1), ∴OD →在OA →方向上的投影为OD →·OA →|OA →|=22,OC →在OA →方向上的投影为OC →·OA →|OA →|=-22,故OP →在OA →方向上投影的取值范围是[-22,22].(推荐时间:60分钟)一、选择题1.(2012·福建)下列不等式一定成立的是( )A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0) B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 答案 C解析 应用基本不等式:x ,y ∈R +,x +y 2≥xy (当且仅当x =y 时取等号)逐个分析,注意基本不等式的应用条件及取等号的条件. 当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝⎛⎭⎫x 2+14≥lg x (x >0),故选项A 不正确; 运用基本不等式时需保证一正二定三相等,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确; 由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.2.设a >b >1,c <0,给出下列三个结论:①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是( )A .①B .①②C .②③D .①②③答案 D解析 由不等式的基本性质可知①对;幂函数y =x c (c <0)在(0,+∞)上单调递减, 又a >b >1,所以②对;由对数函数的单调性可得log b (a -c )>log b (b -c ), 又由对数的换底公式可知log b (b -c )>log a (b -c ), 所以log b (a -c )>log a (b -c ),故选项D 正确.3.设A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B =(3,4],则a +b 等于( )A .7B .-1C .1D .-7答案 D解析 依题意,A =(-∞,-1)∪(3,+∞), 又因为A ∪B =R ,A ∩B =(3,4],则B =[-1,4]. 所以a =-(-1+4)=-3,b =-1×4=-4, 于是a +b =-7.故选D.4.(2012·陕西)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b 2 D .v =a +b2答案 A解析 由小王从甲地往返到乙地的时速分别为a 和b , 则全程的平均时速为v =2s(s a +s b )=2aba +b , 又∵a <b ,∴2a 22a <2ab a +b <2ab2ab =ab ,∴a <v <ab ,A 成立.5.(2013·课标全国Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( )A.14 B.12C .1D .2答案 B解析 作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1, 解得a =12,故选B.6.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y +3≥0,x -3y +3≤0,y -1≤0,若目标函数z =y -ax 仅在点(-3,0)处取到最大值,则实数a 的取值范围为( )A .(3,5)B.⎝⎛⎭⎫12,+∞ C .(-1,2)D.⎝⎛⎭⎫13,1答案 B解析 如图所示,在坐标平面内画出不等式组表示的平面区域 及直线y -ax =0,要使目标函数z =y -ax 仅在点(-3,0)处取到 最大值(即直线z =y -ax 仅当经过该平面区域内的点(-3,0)时, 在y 轴上的截距达到最大), 结合图形可知a >12.二、填空题7.已知p :x -1x≤0,q :4x +2x -m ≤0,若p 是q 的充分条件,则实数m 的取值范围是________.答案 [6,+∞)解析 由p 得:0<x ≤1,若p 是q 的充分条件, 则有对∀x ∈(0,1],4x +2x -m ≤0恒成立, 即m ≥4x +2x 恒成立,只需m ≥(4x +2x )max ,而(4x +2x )max =6,∴m ≥6.8.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0 (mn >0)上,则1m +1n 的最小值为________. 答案 4解析 定点A (1,1),又A 在mx +ny -1=0上, ∴m +n =1.∴1m +1n=(m +n )⎝⎛⎭⎫1m +1n=2+n m +m n≥4. 当且仅当m =n =12时取等号. 9.已知实数x ,y 满足⎩⎪⎨⎪⎧ y ≥0,y -x +1≤0,y -2x +4≥0,若z =y -ax 取得最大值时的最优解(x ,y )有无数个,则a 的值为________.答案 1解析 依题意,在坐标平面内画出题中的不等式组表示的平面区域,如图所示.要使z =y -ax 取得最大值时的最优解(x ,y )有无数个,则直线z =y -ax 必平行于直线y -x +1=0,于是有a =1.10.(2013·浙江)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________.答案 2解析 作出可行域如图阴影部分所示:由图可知当0≤-k <12时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k =2(舍去);当-k ≥12时,直线y =-kx +z 经过点(0,2)时z 最大,此时z 的最大值为2,不合题意;当-k <0时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k =2,符合题意.综上可知,k =2.三、解答题11.求解关于x 的不等式ax 2-(a +1)x +1<0.解 (1)当a =0时,原不等式变为-x +1<0,此时不等式的解集为{x |x >1}.(2)当a ≠0时,原不等式可化为a (x -1)⎝⎛⎭⎫x -1a <0. 若a <0,则上式即为(x -1)⎝⎛⎭⎫x -1a >0,又因为1a<1, 所以此时不等式的解集为{x |x >1或x <1a}. 若a >0,则上式即为(x -1)⎝⎛⎭⎫x -1a <0. ①当1a<1,即a >1时, 原不等式的解集为⎩⎨⎧⎭⎬⎫x |1a <x <1; ②当1a=1,即a =1时,原不等式的解集为∅; ③当1a>1,即0<a <1时, 原不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1a . 综上所述,当a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1a 或x >1; 当a =0时,原不等式的解集为{x |x >1};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1a ; 当a =1时,原不等式的解集为∅;当a >1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |1a <x <1. 12.某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离x (km)的关系式为p =k 3x +5(0≤x ≤8),若距离为1 km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元.设f (x )为建造宿舍与修路费用之和.(1)求f (x )的表达式;(2)宿舍应建在离工厂多远处,可使总费用f (x )最小,并求最小值.解 (1)根据题意得100=k 3×1+5,所以k =800, 故f (x )=8003x +5+5+6x,0≤x ≤8. (2)因为f (x )=8003x +5+2(3x +5)-5≥80-5, 当且仅当8003x +5=2(3x +5)即x =5时f (x )min =75.所以宿舍应建在离厂5 km 处,可使总费用f (x )最小,最小为75万元.13.已知函数f (x )=13ax 3-bx 2+(2-b )x +1在x =x 1处取得极大值,在x =x 2处取得极小值,且0<x 1<1<x 2<2.(1)证明:a >0;(2)若z =a +2b ,求z 的取值范围.(1)证明 求函数f (x )的导数f ′(x )=ax 2-2bx +2-b .由函数f (x )在x =x 1处取得极大值,在x =x 2处取得极小值,知x 1、x 2是f ′(x )=0的两个根,所以f ′(x )=a (x -x 1)(x -x 2).当x <x 1时,f (x )为增函数,f ′(x )>0,由x -x 1<0,x -x 2<0得a >0.(2)解 在题设下,0<x 1<1<x 2<2等价于⎩⎪⎨⎪⎧ f ′(0)>0,f ′(1)<0,f ′(2)>0,即⎩⎪⎨⎪⎧ 2-b >0,a -2b +2-b <0,4a -4b +2-b >0,化简得⎩⎪⎨⎪⎧ 2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上的三条直线:2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为:A ⎝⎛⎭⎫47,67,B (2,2),C (4,2).z 在这三点的值依次为167,6,8. 所以z 的取值范围为(167,8).。
第04讲 一元二次不等式及其解法(解析版)
第4讲 一元二次不等式及其解法【基础巩固】1.(2022·全国·高三专题练习)不等式2280x x --≤的解集为( ) A .2{|}4x x -≤≤ B .{|24}x x -≤≤ C .{|4x x ≥或}2x ≤- D .{|2x x ≤或}4x ≤-【答案】B【解析】由2280x x --,得(4)(2)0x x -+,所以24x -. 故选:B.2.(2021·河北邢台·高三阶段练习)已知不等式250x x a -+<的解集是{}2x x b <<,则实数=a ( ) A .14- B .3- C .3 D .6【答案】D【解析】250x x a -+<的解集是{}2x x b <<,2∴和b 是方程250x x a -+=的解.由根与系数的关系知25,2,b b a +=⎧⎨=⎩,解得3,6.b a =⎧⎨=⎩. 故选:D.3.(2022·浙江·高三专题练习)已知关于x 的一元二次不等式20ax bx c ++>的解集为{}13xx <<∣,则不等式0ax bcx a+>+的解集为( ) A .1,43⎛⎫- ⎪⎝⎭B .14,3⎛⎫-- ⎪⎝⎭C .()1,4,3⎛⎫-∞-+∞ ⋃⎪⎝⎭D .()1,4,3⎛⎫-∞-⋃-+∞ ⎪⎝⎭【答案】C【解析】一元二次不等式20ax bx c ++>的解集为{}13x x <<∣, 所以0a <,1,3是方程20ax bx c ++=的两个根, 所以13ba+=-,13c a⨯=, 即4b a =-,3c a =,则()()4403131a x axb x cx a a x x -+-==>+++, 可知其解集为1,(4,)3⎛⎫-∞-+∞ ⎪⎝⋃⎭,故选:C .4.(2021·山东省郓城第一中学高三阶段练习)若不等式ax 2+ax ﹣1≤0的解集为实数集R ,则实数a 的取值范围为( ) A .0≤a≤4 B .﹣4<a <0C .﹣4≤a <0D .﹣4≤a≤0【答案】D【解析】0a =时,不等式210ax ax +-化为10-,解集为实数集R ;0a ≠时,应满足00a <⎧⎨⎩,所以2040a a a <⎧⎨+⎩,解得40a -<;综上,实数a 的取值范围是40a -. 故选D .5.(2022·北京·高三专题练习)若不等式210x kx ++<的解集为空集,则k 的取值范围是( ) A .22k -≤≤ B .2k ≤-,或2k ≥ C .22k -<< D .2k <-,或2k >【答案】A【解析】∵不等式210x kx ++<的解集为空集, ∵240k ∆=-≤, ∵22k -≤≤. 故选:A.6.(2021·山东·新泰市第一中学高三阶段练习)若不等式20ax x c -->的解集为1{|1}2x x -<<,则函数2y cx x a =--的图象可以为( )A .B .C .D .【答案】C【解析】由题可得1-和12是方程20ax x c --=的两个根,且0a <, 1112112a c a ⎧-+=⎪⎪∴⎨⎪-⨯=-⎪⎩,解得2,1a c =-=-,则()()22221y cx x a x x x x =--=--+=-+-,则函数图象开口向下,与x 轴交于()()2,01,0,-. 故选:C.7.(2022·全国·高三专题练习)已知关于x 的一元二次不等式260x x a ++≤的解集中有且仅有5个整数,则a 的取值范围是( ) A .()0,5 B .[)0,5 C .[]0,5 D .(]0,5【答案】D【解析】原不等式变形为2(3)9x a +≤-,9a ≤时,原不等式才有解. 且解为3939a x a --≤--要使其中只有5个整数,则293a ≤-,解得05a <≤. 故选:D .8.(2021·山东·新泰市第一中学高三阶段练习)若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( )A .(,2)-∞B .(,2)-∞-C .(6,)-+∞D .(,6)-∞-【答案】B【解析】解:令2()42f x x x a =---,则函数的图象为开口朝上且以直线2x =为对称轴的抛物线, 故在区间(1,4)上,()f x f <(4)2a =--, 若不等式2420x x a --->在区间(1,4)内有解, 则20a -->, 解得2a <-,即实数a 的取值范围是(,2)-∞-. 故选:B .9.(多选)(2022·辽宁丹东·一模)如果关于x 的不等式2210x ax b -+->的解集为{}xx a ≠∣,那么下列数值中,b 可取到的数为( ) A .1- B .0C .1D .2【答案】CD【解析】由题设知,221y x ax b =-+-对应的0=,即()2410a b -+=,故211b a =+≥,所以数值1,012-,,中,b 可取到的数为1,2. 故选:CD .10.(多选)(2022·全国·高三专题练习)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( )A .0a >B .不等式0bx c +>的解集是{}|6x x <-C .0a b c ++>D .不等式20cx bx a -+<的解集为11(,)(,)32-∞-⋃+∞【答案】ABD【解析】关于x 的不等式20ax bx c ++>的解集为()(),23,,0,A a ∞∞--⋃+∴>选项正确; 且-2和3是关于x 的方程20ax bx c ++=的两根,由韦达定理得2323b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,则,6b a c a =-=-,则60a b c a ++=-<,C 选项错误; 不等式0bx c +>即为60ax a -->,解得6,B x <-选项正确;不等式20cx bx a -+<即为260ax ax a -++<,即2610x x -->,解得13x <-或1,D 2x >选项正确. 故选:ABD .11.(2022·山东·聊城二中高三开学考试)命题“[]1,2x ∀∈,20x a -≤”为真命题的充分不必要条件可以是( ) A .a >4 B .5a ≤ C .4a ≤ D .5a ≥【答案】AD【解析】由[]1,2x ∈,则[]21,4x ∈,要使20x a -≤在[]1,2x ∈上恒成立, 则2x a ≤,所以4a ≥,根据题意可得所求对应得集合是[)4,+∞的真子集, 根据选项AD 符合题意. 故选:AD .12.(2021·江苏·南京师大苏州实验学校高三期中)已知不等式2210x ax b ++->的解集是{}x x d ≠,则b 的值可能是( )A .1-B .3C .2D .0【答案】BC【解析】解:因为不等式2210x ax b ++->的解集是{}x x d ≠, 所以()()24210b a ∆=--=,解得2+11b a =≥, 故选:BC.13.(2022·全国·高三专题练习)已知不等式()22log 362ax x -+>的解集为()(),1,+b -∞∞,则=a ___,b =________.【答案】 1 2【解析】解:所解不等式即()22222360log 36log 4364ax x ax x ax x ⎧-+>⎪⎨-+>⇒-+>⎪⎩,即22360320ax x ax x ⎧-+>⎨-+>⎩,观察可得只要x 让第二个不等式成立,则第一个一定成立,所以只需解2320ax x -+>,由已知可得此不等式的解集为()(),1,+b -∞∞,则1,x x b ==为2320ax x -+=的两根,所以3121b a b a ⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得12a b =⎧⎨=⎩,故答案为:1;2;14.(2022·全国·高三专题练习)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式303x ax -<-的解集为___________. 【答案】{}23x x <<【解析】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,可知方程251=0ax x ++有两根121123x x =-=-,,故6a =,则不等式303x ax -<-即3603x x -<-等价于3(2)(3)0x x --<, 不等式3(2)(3)0x x --<的解集为{}23x x <<, 则不等式303x ax -<-的解集为{}23x x <<,故答案为:{}23x x <<.15.(2022·湖南省隆回县第二中学高三阶段练习)若命题p :x ∀∈R ,2240ax x -+为真命题,则实数a 的取值范围为___________. 【答案】1,)4∞⎡+⎢⎣【解析】当0a =时,240x -+≥不满足题意;∵x ∀∈R ,2240ax x -+,则0a >且4160a ∆=-≤,解得14a ≥. 故答案为:[14,+∞).16.(2022·全国·高三专题练习)若关于x 的不等式2(2)20x m x m -++<的解集中恰有3个正整数,则实数m 的取值范围为___________. 【答案】(5,]6【解析】2(2)20x m x m -++<可化为2(0)()x m x --<, 该不等式的解集中恰有3个正整数,∴不等式的解集为{|2}x x m <<,且56m <; 故答案为:(5,]6.17.(2021·广东·福田外国语高中高三阶段练习)若不等式20ax bx c ++≥的解集是{}123x x -≤≤,求不等式20cx bx a ++<的解集.【解】由20ax bx c ++≥的解集为{}123x x ≤≤,知0a <,且13-,2为方程20ax bx c ++=的两个根,∵53b a -=,23c a =-,∵53b a =-,23c a =-.∵不等式20cx bx a ++<变为225033a x a x a ⎛⎫⎛⎫-+-+< ⎪ ⎪⎝⎭⎝⎭,即22530ax ax a +->,又0a <,∵22530x x +-<,解得132x -<<, ∵所求不等式的解集为{132x x ⎫-<<⎬⎭.故答案为:{132x x ⎫-<<⎬⎭.18.(2022·浙江·高三专题练习)已知关于x 的不等式23208kx kx +-<,0k ≠(1)若18k =,求不等式的解集;(2)若不等式的解集为R ,求k 的取值范围.【解】(1)将18k =代入不等式,可得21130488x x +-<,即2230x x +-<所以32-和1是方程2230x x +-=的两个实数根,所以不等式的解集为312x x ⎧⎫-<<⎨⎬⎩⎭即不等式的解集为3,12⎛⎫- ⎪⎝⎭.(2)因为关于x 的不等式23208kx kx +-<的解集为R .因为0k ≠所以220,30k k k <⎧⎨∆=+<⎩,解得30k -<<, 故k 的取值范围为(3,0)-.19.(2021·天津·南开中学高三阶段练习)求下列关于x 的不等式的解集: (1)211x x ->+;(2)()22210ax a x -++≤.【解】(1)当12x ≥时,不等式为2112x x x ->+⇒>. 当12x <时,不等式为()211,300x x x x -->+<⇒<, 所以不等式的解集为()(),02,-∞+∞.(2)当0a =时,不等式为1210,2x x ⎡⎫-+≤⇒∈+∞⎪⎢⎣⎭.当0a ≠时,由()()()22212110ax a x x ax -++=--=解得1211,2x x a ==.当0a <时,不等式的解集为11,,2a ⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭,当02a <<时, 不等式的解集为11,2a ⎡⎤⎢⎥⎣⎦,当2a =时,不等式的解集为12⎧⎫⎨⎬⎩⎭.当2a >时,不等式的解集为11,2a ⎡⎤⎢⎥⎣⎦.【素养提升】1.(2021·全国·高三专题练习)已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的取值范围为( ) A .()()5,34,5-⋃ B .[)(]5,34,5-⋃ C .(][)5,34,5-⋃ D .[][]5,34,5-⋃【答案】B【解析】解不等式2280x x -->,得4x >或2x <- 解方程22(27)70x k x k +++=,得172x ,2x k =- (1)当72k >,即72k -<-时,不等式22(27)70x k x k +++<的解为:72k x -<<-此时不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集为7,2k ⎛⎫-- ⎪⎝⎭,若不等式组的解集中仅有一个整数,则54k -≤-<-,即45k <≤; (2)当72k <,即72k ->-时,不等式22(27)70x k x k +++<的解为:72x k -<<-此时不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集为7,2k ⎛⎫-- ⎪⎝⎭,若不等式组的解集中仅有一个整数,则35k -<-≤,即53k -≤<; 综上,可知k 的取值范围为[)(]5,34,5-⋃ 故选:B2.(2022·浙江·高三专题练习)已知[]x 表示不超过x 的最大整数,例如[]2.32=,[]1.82-=-,方程113x ⎡+-⎤=⎣⎦的解集为A ,集合{}22211150B x x kx k =-+-<,且A B R =,则实数k 的取值范围是( )A .6446,,5335⎡⎫⎛⎤--⎪ ⎢⎥⎣⎭⎝⎦B .6422,,5335⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭C .6422,,5335⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦D .6422,,5335⎡⎫⎛⎤--⎪ ⎢⎥⎣⎭⎝⎦【答案】D【解析】由题意可得213x ≤-<,解得213x ≤-<或 312x -<-≤-, 所以34x ≤<或21x -<≤-, 所以(][)2,13,4A =--⋃{}{}()(){}22222111502111502530B x x kx k x x kx k x x k x k =-+-<=-+>=-->, 当0k >时,()5,3,2k B k ⎛⎫=-∞⋃+∞ ⎪⎝⎭,由A B R =,则53342k k ≤<<,解得6453k ≤<; 当0k =时,{}0B x R x =∈≠,此时A B R =不成立,故0k =不取; 当0k <时,()5,3,2k B k ⎛⎫=-∞⋃+∞ ⎪⎝⎭,则52312k k -<<≤-,解得2235k -<≤-, 综上所述,实数k 的取值范围是6422,,5335⎡⎫⎛⎤--⎪ ⎢⎥⎣⎭⎝⎦.故选:D3.(2022·全国·高三专题练习)已知函数2()(1)1f x m x mx m =+-+-(R m ∈). (1)若不等式()0f x <的解集为∅,求m 的取值范围; (2)当2m >-时,解不等式()f x m ≥;(3)若不等式()0f x ≥的解集为D ,若[]1,1D -⊆,求m 的取值范围. 【解】(1)∵101m m +=⇒=-时,()2f x x =-,不合题意,舍去; ∵101m m +≠⇒≠-时,()()22101234110340m m m m m m m +>>-⎧⎧⇒⇒⎨⎨∆=-+-≤-≥⎩⎩. 综上:23m ≥. (2)()f x m ≥即2(1)10m x mx +--≥,所以[]()(1)110m x x ++-≥, ∵1m =-时,解集为:[1,)+∞; ∵1m >-时,()1()101x x m +-≥+,因为1011m -<<+,所以解集为:1(,1,)1][m -∞-⋃+∞+; ∵21m -<<-时,()1()101x x m +-≤+, 因为111m ->+,所以解集为:11,1m ⎡⎤-⎢⎥+⎣⎦.(3)因为不等式()0f x ≥的解集为D ,且[]1,1D -⊆, 即对任意的[]1,1x ∈-,不等式2(1)10m x mx m +-+-≥恒成立,即()2211m x x x -+≥-+恒成立,因为22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,所以22212111x xm x x x x -+-≥=-+-+-+,设[]21,3,2t x x t =-∈=-, 所以222123331333233323x t x x t t t t t t-+==≤=-+-+-+-⋅-, 当且仅当323t x ==时取“=”. 所以2211x x x --+-+的最大值为:233231+-=, 所以23m ≥.。
4 第4讲 基本不等式
第4讲 基本不等式1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是(简记:积定和最小) (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)ab ≤⎝⎛⎭⎫a +b 22成立的条件是ab >0.( )(3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( )(4)若a >0,则a 3+1a 2的最小值是2a .( )答案:(1)× (2)× (3)× (4)×(教材习题改编)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81D .82解析:选C.xy ≤⎝ ⎛⎭⎪⎫x +y 22=⎝⎛⎭⎫1822=81,当且仅当x =y =9时等号成立,故选C.若x <0,则x +1x ( )A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-2解析:选D.因为x <0,所以-x >0,-x +1-x ≥21=2,当且仅当x =-1时,等号成立,所以x +1x≤-2.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5(教材习题改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.解析:设矩形的长为x m ,宽为y m ,则x +y =10,所以S =xy ≤⎝ ⎛⎭⎪⎫x +y 22=25,当且仅当x =y =5时取等号.答案:25 m 2利用基本不等式求最值(高频考点)利用基本不等式求最值是高考的常考内容,题型主要为选择题、填空题.高考对利用基本不等式求最值的考查常有以下三个命题角度: (1)求不含等式条件的函数最值; (2)求含有等式条件的函数最值; (3)已知不等式恒成立求参数范围.[典例引领]角度一 求不含等式条件的函数最值(1)函数f (x )=xx 2+3x +1(x >0)的最大值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.【解析】 (1)因为x >0,则f (x )=x x 2+3x +1=1x +1x+3≤12x ·1x +3=15,当且仅当x =1x 时等号成立.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.【答案】 (1)15(2)1角度二 求含有等式条件的函数最值(1)(2017·高考山东卷)若直线x a +yb=1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.(2)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值为________. 【解析】 (1)由题设可得1a +2b =1,因为a >0,b >0,所以2a +b =(2a +b )⎝⎛⎭⎫1a +2b =2+b a +4a b+2≥4+2b a ·4ab=8⎝⎛⎭⎫当且仅当b a =4ab ,即b =2a 时,等号成立. 故2a +b 的最小值为8. (2)因为x >0,y >0,所以8=x +2y +x ·2y ≤(x +2y )+⎝ ⎛⎭⎪⎫x +2y 22,令x +2y =t ,则8≤t +t 24,即t 2+4t -32≥0,解得t ≥4或t ≤-8,即x +2y ≥4或x +2y ≤-8(舍去),当且仅当x =2y ,即x =2,y =1时等号成立. 【答案】 (1)8 (2)4角度三 已知不等式恒成立求参数范围已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.【解析】 (x +y )⎝⎛⎭⎫1x +a y =1+a +y x +axy ≥1+a +2a =(a +1)2(x ,y ,a >0), 当且仅当y =ax 时取等号,所以(x +y )·⎝⎛⎭⎫1x +a y 的最小值为(a +1)2, 于是(a +1)2≥9恒成立. 所以a ≥4. 【答案】 4利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.[通关练习]1.(2018·石家庄市教学质量检测(一))已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________.解析:因为直线l 经过点(2,3),所以2a +3b -ab =0, 则3a +2b=1, 所以a +b =(a +b )⎝⎛⎭⎫3a +2b =5+3b a +2ab≥5+2 6.当且仅当3b a =2ab,即a =3+6,b =2+6时等号成立. 答案:5+2 62.(2017·高考天津卷)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4. 答案:43.当x ∈R 时,32x -(k +1)3x +2>0恒成立,则k 的取值范围是________. 解析:由32x -(k +1)·3x +2>0,解得k +1<3x +23x .因为3x +23x ≥22⎝⎛当且仅当3x =23x ,即x =log 32时,⎭⎪⎪⎫等号成立),所以3x +23x 的最小值为2 2.又当x ∈R 时,32x -(k +1)3x +2>0恒成立, 所以当x ∈R 时,k +1<⎝⎛⎭⎫3x +23x min, 即k +1<22,即k <22-1. 答案:(-∞,22-1)利用基本不等式解决实际问题[典例引领]某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解】 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x -200≥212x ·80 000x-200=200, 当且仅当12x =80 000x ,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝⎛⎭⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.(1)利用基本不等式求解实际问题的注意事项①根据实际问题抽象出目标函数的表达式,再利用基本不等式求得函数的最值. ②设变量时一般要把求最大值或最小值的变量定义为函数. ③解应用题时,一定要注意变量的实际意义及其取值范围.④在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.(2)此类问题还常与一元二次函数(如本例(2))、一元二次不等式结合命题,求解关键是构建函数与不等关系,在实际条件下解决.某公司生产的商品A ,当每件售价为5元时,年销售10万件.(1)据市场调查,若价格每提高1元,销量相应减少1万件,要使销售收入不低于原销售收入,该商品的销售价格最多可提高多少元?(2)为了扩大该商品的影响力,公司决定对该商品的生产进行技术革新,将技术革新后生产的商品售价提高到每件x 元,公司拟投入12(x 2+x )万元作为技改费用,投入x4万元作为宣传费用.试问:技术革新后生产的该商品销售量m 至少应达到多少万件时,才能使技术革新后的该商品销售收入等于原销售收入与总投入之和? 解:(1)设商品的销售价格提高a 元, 则(10-a )(5+a )≥50,解得0≤a ≤5.所以商品的价格最多可以提高5元.(2)由题意知,技术革新后的销售收入为mx 万元,若技术革新后的销售收入等于原销售收入与总投入之和,只需满足mx =12(x 2+x )+x4+50(x >5)即可,此时m =12x +34+50x≥2x 2·50x +34=434, 当且仅当12x =50x,即x =10时,取“=”.故销售量至少应达到434万件,才能使技术革新后的销售收入等于原销售收入与总投入之和.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤⎝⎛⎭⎫a +b 22≤a 2+b22,ab ≤a +b 2≤a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +mx (m >0)的单调性.易错防范(1)使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.(2)连续使用基本不等式求最值要求每次等号成立的条件一致.1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab D.b a +a b≥2 解析:选D.因为a 2+b 2-2ab =(a -b )2≥0,所以A 错误.对于B ,C ,当a <0,b <0时,明显错误.对于D ,因为ab >0, 所以b a +a b≥2b a ·ab=2. 2.(2018·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( ) A .1 B .2 C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1;又1xy≥M 恒成立, 所以M ≤1,即M 的最大值为1.3.一段长为L 的篱笆围成一个一边靠墙的矩形菜园,则菜园的最大面积为( ) A.L 28 B.L 24 C.L 22D .L 2 解析:选A.设菜园的长为x ,宽为y ,则x +2y =L ,面积S =xy , 因为x +2y ≥22xy . 所以xy ≤(x +2y )28=L 28.当且仅当x =2y =L2,即x =L 2,y =L4时,S max =L 28,故选A.4.(2018·广东广雅中学、江西南昌二中联考)已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( ) A .2 B .2 2 C .4D .2 3解析:选C.因为lg 2x +lg 8y =lg 2,所以lg(2x ·8y )=lg 2, 所以2x +3y =2,所以x +3y =1.因为x >0,y >0,所以1x +13y =(x +3y )⎝⎛⎭⎫1x +13y =2+3y x +x3y ≥2+23y x ·x3y=4,当且仅当x =3y =12时取等号.所以1x +13y的最小值为4.故选C.5.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)解析:选C.根据题意,由于不等式x 2+x <a b +ba对任意a ,b ∈(0,+∞)恒成立,则x 2+x <⎝⎛⎭⎫a b +b a min ,因为a b +b a ≥2 a b ·ba=2,当且仅当a =b 时等号成立,所以x 2+x <2,求解此一元二次不等式可知-2<x <1,所以x 的取值范围是(-2,1). 6.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2,x >-1,所以y ≥21-2=0,当且仅当x =0时,等号成立. 答案:07.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30. 答案:308.已知不等式2x +m +8x -1>0对一切x ∈(1,+∞)恒成立,则实数m 的取值范围是________.解析:不等式2x +m +8x -1>0可化为2(x -1)+8x -1>-m -2,因为x >1,所以2(x -1)+8x -1≥22(x -1)·8x -1=8,当且仅当x =3时取等号.因为不等式2x +m +8x -1>0对一切x ∈(1,+∞)恒成立,所以-m -2<8. 解得m >-10. 答案:(-10,+∞)9.(1)已知0<x <43,求x (4-3x )的最大值;(2)点(x ,y )在直线x +2y =3上移动,求2x +4y 的最小值. 解:(1)已知0<x <43,所以0<3x <4.所以x (4-3x )=13(3x )(4-3x )≤13⎝ ⎛⎭⎪⎫3x +4-3x 22=43, 当且仅当3x =4-3x ,即x =23时“=”成立.所以当x =23时,x (4-3x )取最大值为43.(2)已知点(x ,y )在直线x +2y =3上移动, 所以x +2y =3. 所以2x +4y ≥22x ·4y =22x +2y =223=4 2.当且仅当⎩⎪⎨⎪⎧2x =4y ,x +2y =3,即x =32,y =34时“=”成立.所以当x =32,y =34时,2x +4y 取最小值为4 2.10.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离s (m)与汽车的车速v (km/h)满足下列关系:s =n v 100+v 2400(n 为常数,且n ∈N ),做了两次刹车试验,有关试验数据如图所示,其中⎩⎪⎨⎪⎧6<s 1<8,14<s 2<17.(1)求n 的值;(2)要使刹车距离不超过12.6 m ,则行驶的最大速度是多少?解:(1)由试验数据知,s 1=25n +4,s 2=710n +494, 所以⎩⎨⎧6<25n +4<8,14<710n +494<17,解之得⎩⎪⎨⎪⎧5<n <10,52<n <9514. 又n ∈N ,所以n =6.(2)由(1)知,s =3v 50+v 2400,v ≥0. 依题意,s =3v 50+v 2400≤12.6, 即v 2+24v -5 040≤0,解得-84≤v ≤60.因为v ≥0,所以0≤v ≤60.故行驶的最大速度为60 km/h.1.(2018·湖南省湘中名校高三联考)若正数a ,b 满足:1a +2b =1,则2a -1+1b -2的最小值为( )A .2 B.322 C.52 D .1+324 解析:选A.由a ,b 为正数,且1a +2b =1,得b =2a a -1>0,所以a -1>0,所以2a -1+1b -2=2a -1+12a a -1-2=2a -1+a -12≥22a -1·a -12=2,当且仅当2a -1=a -12和1a +2b =1同时成立,即a =b =3时等号成立,所以2a -1+1b -2的最小值为2,故选A. 2.已知x >0,y >0,2x +y =1,若4x 2+y 2+xy -m <0恒成立,则m 的取值范围是( )A .(-1,0)∪⎣⎡⎭⎫1716,+∞ B.⎝⎛⎭⎫1716,+∞ C.⎝⎛⎭⎫1716,2D.⎝⎛⎭⎫1,1716解析:选B.4x 2+y 2+xy -m <0恒成立,即m >4x 2+y 2+xy 恒成立.因为x >0,y >0,2x +y =1,所以1=2x +y ≥22xy ,所以0<xy ≤24(当且仅当2x =y =12时,等号成立).因为4x 2+y 2+xy =(2x +y )2-4xy +xy =1-4xy +xy =-4⎝⎛⎭⎫xy -182+1716,所以4x 2+y 2+xy 的最大值为1716,故m >1716,选B. 3.若a 2-ab +b 2=1,a ,b 是实数,则a +b 的最大值是________.解析:由a 2-ab +b 2=1,可得(a +b )2=1+3ab ≤1+3×(a +b )24, 则14(a +b )2≤1,-2≤a +b ≤2,所以a +b 的最大值是2. 答案:24.若对x ,y ∈[1,2],xy =2,总有不等式2-x ≥a 4-y成立,则实数a 的取值范围是________. 解析:由题意知a ≤(2-x )(4-y )恒成立,则只需a ≤[(2-x )(4-y )]min ,(2-x )(4-y )=8-4x -2y +xy=8-(4x +2y )+2=10-(4x +2y )=10-⎝⎛⎭⎫4x +4x . 令f (x )=10-⎝⎛⎭⎫4x +4x ,x ∈[1,2], 则f ′(x )=-⎝⎛⎭⎫4-4x 2=4(1-x 2)x 2,f ′(x )≤0, 故f (x )在x ∈[1,2]是减函数,所以当x =2时f (x )取最小值0,即(2-x )(4-y )的最小值为0,所以a ≤0.答案:a ≤05.已知x >0,y >0,且2x +8y -xy =0,求(1)xy 的最小值;(2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y=1, 又x >0,y >0,则1=8x +2y≥2 8x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立.所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1, 则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8y x ≥10+2 2x y ·8y x =18. 当且仅当x =12且y =6时等号成立,所以x +y 的最小值为18.6.如图,某生态园将一三角形地块ABC 的一角APQ 开辟为水果园种植桃树,已知角A 为120°,AB ,AC 的长度均大于200米,现在边界AP ,AQ 处建围墙,在PQ 处围竹篱笆.(1)若围墙AP ,AQ 总长度为200米,如何围可使得三角形地块APQ 的面积最大?(2)已知AP 段围墙高1米,AQ 段围墙高1.5米,造价均为每平方米100元.若围围墙用了20 000元,问如何围可使竹篱笆用料最省?解:设AP =x 米,AQ =y 米.(1)则x +y =200,△APQ 的面积S =12xy ·sin 120°=34xy .所以S ≤34⎝ ⎛⎭⎪⎫x +y 22=2 500 3. 当且仅当⎩⎪⎨⎪⎧x =y ,x +y =200,即x =y =100时取“=”. 即AP 与AQ 的长度都为100米时,可使得三角形地块APQ 的面积最大.(2)由题意得100×(x +1.5y )=20 000,即x +1.5y =200.要使竹篱笆用料最省,只需其长度PQ 最短,所以PQ 2=x 2+y 2-2xy cos 120°=x 2+y 2+xy =(200-1.5y )2+y 2+(200-1.5y )y =1.75y 2-400y +40 000=1.75⎝⎛⎭⎫y -80072+120 0007⎝⎛⎭⎫0<y <4003,当y =8007时,PQ 有最小值200217,此时x =2007.即AP 长为2007米,AQ 长为8007米时,可使竹篱笆用料最省.。
【创新设计】(浙江专用)高考数学总复习 第七篇 不等式 第4讲 基本不等式课件 理
t+12
≤27.5-6=21.5.
当且仅当t+9 12
=t+
1 2
时,等号成立,即t=2.5时,y有最大值
21.5.所以2013年的年促销费用投入2.5万元时,该厂家利润
最大,最大利润为21.5万元.
热点突破13 高考中巧用基本不等式求最值问题 【命题研究】 通过近三年的高考试题分析,对利用基本不等
[审题视点] 先局部运用基本不等式,再利用不等式的性质相 加得到. 证明 ∵a>0,b>0,c>0, ∴bac+cba≥2 bac·cba=2c; bac+acb≥2 bac·acb=2b; cba+acb≥2 cba·acb=2a. 以上三式相加得:2bac+cba+acb≥2(a+b+c), 即bac+cba+acb≥a+b+c,当且仅当a=b=c时,取等号.
(2)1+1a1+1b=1+a+a b1+a+b b =2+ba2+ab=5+2ba+ab ≥5+4=9. 当且仅当a=b=12时,取等号. 答案 (1)C (2)9
考向二 利用基本不等式证明不等式 【例2】►(2012·温州测试)已知a>0,b>0,c>0,求证: bac +cba+acb≥a+b+c.
解
(1)令y=0,得kx-
1 20
(1+k2)x2=0,由实际意义和题设
条件知x>0,k>0,
故x=12+0kk2=k+201k≤220=10,当且仅当k=1时取等号.
所以炮的最大射程为10千米.
(2)因为a>0,所以炮弹可击中目标⇔存在k>0,使3.2=ka-
1 20
(1+k2)a2成立⇔关于k的方程a2k2-20ak+a2+64=0有正
3 2
,y=2时取等号,故xy的最
2019版高考数学一轮复习第6章不等式第4讲基本不等式课件【优质ppt版本】
触类旁通 利用基本不等式求最值问题的解题策略
(1)利用基本(均值)不等式解题一定要注意应用的前提: “一正”“二定”“三相等”.
(2)在利用基本(均值)不等式求最值时,要根据式子的特 征灵活变形,配凑出积、和为常数的形式,然后再利用基本 (均值)不等式.
【变式训练 1】 (1)已知 0<x<1,则 x(3-3x)取得最大
值时 x 的值为( )
1132 A.3 B.2 C.4 D.3
解析
∵
0<x<1
,
∴
x·(3
-
3x)
=
1 3
·3x·(3
-
3x)≤
1 3
3x+23-3x2=34,当 3x=3-3x,即 x=12时,x(3-3x)取得 最大值34.选 C.
3.其中a+2 b叫做正数 a,b 的 做正数 a,b 的 几何平均数 .
算术平均数
, ab叫
考点 3 利用基本不等式求最大、最小值问题 1.如果 x,y∈(0,+∞),且 xy=P(定值), 那么当 x=y 时,x+y 有最小值 2 P.(简记:“积定 和最小”) 2.如果 x,y∈(0,+∞),且 x+y=S(定值), 那么当 x=y 时,xy 有最大值S42.(简记:“和定积最大”)
触类旁通 求条件最值注意的问题
(1)要敏锐的洞察到已知条件与要求式子的联系,并能 灵活进行转化;
(2)常用的技巧有:“1”的代换,配凑法,放缩法,换元 法.
【变式训练 2】 (1)[2018·珠海模拟]已知 x>0,y>0,x +3y+xy=9,则 x+3y 的最小值为( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
课外练习:
一、选择题 1、若 0<a<1,则不等式(a-x)(x- )>0 的解集为 (
a 1 a 1 a 1 a 1
)
1 a
A 、{x∣a<x< };B、{x∣ <x<a};C、{x∣x> 或 x<a};D、{x∣x< 或 x>a}. 2、不等式∣x+1∣(2x-1)≥0 的解集为
1 2
(
1 2
第4讲
其步骤如下:
不等式的解法
一、简单一元高次不等式解法(解一元高次不等式,一般采取数轴标根法)
(1)将 f(x)的最高次项的系数化为正数; (2)将 f(x)分解为若干个一次因式的积; (3)将每一个根顺次表在数轴上,再从右到左依次标出区间; (4)f(x)>0 时取奇数区间;f(x)<0 时取偶数区间. 例 1、解不等式 (1)2x 3 − x 2 − 15x>0; (2) (x+4) x + 5
A、 (1,2)∪(3,+∞) ;B、 ( 10,+∞) ;C、 (1,2)∪( 10,+∞) ;D、 (1,2). 二、填空题 7、不等式x 2 -∣x∣<0 的解集是 8、不等式2x
2 +2x −4
. .
sgn x
≤ 的解集是
2
1
1 x>0 9、定义符号函数 sgn x= 0 x = 0 ,当 x∈R 时,则不等式 x+2> 2x − 1 −1 (x < 0) 解集为 三、解答题 10、解不等式(∣3x-1∣-1) (sin x − 2) > 0. .
≥2 的解集是 x −1 2 1 1 A、[-3, ]; B、[- ,3]; 2 2 5、已知∣a-c∣<∣b∣,则
1 C、[ ,1)∪(1,3]; 2
D、[-
1 2
,1)∪(1,3].
(
)
A、a<b+c; B、a>c-b; C、∣a∣>∣b∣-∣c∣; D、∣a∣<∣b∣+∣c∣. 6、设 f(x)= 2ex −1 ,x < 2 log 3 x 2 − 1 ,x ≥ 2 则不等式 f(x)>2 的解集为 ( )
2
<0.
f(x) ≥ 0 ; g(x) < 0
1
f x ≥0 (2) f(x) <g(x) ⇔ g x > 0 ; 2 f(x) < f(x) (3) f(x) > g(x)⇔f(x)>g(x)≥0.
������ ������
例 3、若不等式 x > ������������+ 的解集为(4,b) ,求 a、b 的值. 解析:设 x=u,则原不等式为 u>au2 + ,即 au2 -u+ <0,
1 2 2
x −2x < 2 + 1 ,无解. −2 < x < −1
x 2 +1 cos θ− cos θ−5 x+3 x 2 −x+1
3 4
>sin θ -1 对一切实数 x 恒成立的
+ >0,故
原不等式变为 (cos θ − sin θ + 1)x 2 − cos θ − sin θ − 4 x + cos θ − sin θ + 4>0, 令cos θ − sin θ=t,则 t∈[- 2, 2], 不等式变为(t+1)x 2 -(t-4)x+t+4>0 对 x∈R 恒成立, 由二次函数可知 t+1>0 ∆= t − 4
2
2 − x 3 <0.
解析: (1)原式=x(2x 2 -x-15)>0⟹x(x-3) (2x+5)>0,得
四
-5/2
三
0
二
3
一
不等式的解集为奇数区间,即{x∣- <x<0 或 x>3}.
2
5
(2)学gt;2}. 二、分式不等式的解法 例 2、解不等式: > . 3 x −1 2−3x
)
1 2 1 2
A、{x∣x=-1 或 x≥ };B、{x∣x≤-1 或 x≥ };C、{x∣x≥ };D、{x∣-1≤x≤ }. 3、若 a>1 且 0<b<1,则不等式alog b (x −3) > 1的解集为 ( A、x>3; 4、不等式 B、x<4;
x+5
)
C、3<x<4; ( )
D、x>4.
O 1 2 3 x y
(2) x 2 − 3x + 2>x+3, 解析:用①②③④种方法由学生完成.答案: (-∞,- 9).
2
7
四、指数、对数不等式的解法 例 4、解关于 x 的不等式 lg(2ax)-lg(a+x)<1. 解析: ax > 0 ⟹a>0,x>0⟹ lg(2ax)<lg(10a+10x) ⟹2ax<10a+10x, a+x>0
(2)mx>k-nx (m、n、k∈R) (2) (m+n)x>k m+n>0,x>m+n ; m+n<0,x<m+n ; m+n=0, k < 0,x ∈ R . k ≥ 0,x ∈ ∅
k k
时,x>
;
a=-
1 2
时,x∈∅.
a(x −1) 2、解不等式 >1. x −2 a x −1 −(x −2) 解析:原不等式变为 >0⟹[(a-1)x-(a-2)](x-2)>0, x −2 a −2 ⟹(a-1)[x](x-2)>0, a −1 a −2 a −2 当 a>1 时,[x](x-2)>0⟹(-∞, )∪(2,+∞) ; a −1 a −1 a −2 a −2 a 当 a<1 时,[x](x-2)<0,∵2= , a −1 a −1 a −1 a −2 ①当 0<a<1 时,解是(2, ) a −1 a −2 ②当 a=0 时,解为空集,即 x∈∅;③a<0 时,解为( ,2). a −1
2
, − 4 t + 1 (t + 4) < 0
3
∴t>0 或 t<− 即 2kπ 3π
28 3
(舍),故 0<cos θ − sin θ≤ 2,
π <θ <2kπ+ (k∈Z). 4 4
练习:1、解不等式 (1)2ax>5-x(a∈R); 解析: (1) (2a+1)x>5, a>1 2 2a+1 1 5 a<- 时,x< ; 2 2a+1 5
的
5
11、已知函数 f(x)=
ax −1 x 2 −a
,当 a>0 时,解关于 x 的不等式 f(x)<0.
12、设有关于 x 的不等式 lg(∣x+3∣+∣x-7∣)>a. (1)当 a=1 时,解此不等式; (2)求当 a 为何值时,此不等式的解集为 R.
6
������ ������ ������ ������
∵不等式的解集为(4,b) ,∴方程 au2 -u+ =0 的两个根分别为 2, b,
������
������
由韦达定理得
2+ b= 2∙ b=
1 a 3
解得
a=
1 8
2a
b = 36
.
练习:解不等式 (1) 3 − x<x-1; 解析: (1) 3 − x<x-1, x≤3 3−x≥0 ①等价转化法: x − 1 ≥ 0 ⟹ x≥1 ⟹x∈(2,3]; 2 3−x< x−1 x > 2 或 < −1 ②换元法:设 t= 3 − x (t≥0) x=3-t 2 , (2) x 2 − 3x + 2>x+3.
.
x≥1 x ①当 x≥1 时,原不等式可以变形为 2x< +1, 2x < x + 1,无解; 2 2 ② 当 -1≤x<1 时 ,∣∣ x+1 ∣ + ∣ x-1 ∣∣ =2 ,则原不等式可变形为
x 2<2+1 无解; −1 ≤ x < 1
③当-2<x<-1 时,原不等式可以变形为 综合①②③可知,原不等式无解. 六、含参不等式的解法 例 4、试求不等式 θ 取值范围. 解析:∵x 2 − x + 1 = x −
即(a-5)x<5a. 当 0<a<5 时,a-5<0,x>0 当 a=5 时,不等式 0∙x<25,得 x>0; 当 a>5 时,a-5>0,解得 0<x< 五、含绝对值不等式的解法
x 例 5、解不等式:∣∣x+1∣+∣x-1∣∣< +1. 2 x 解析: +1>0 恒成立,x>-2. 2 5a a −5
即 t<3-t 2 -1,t 2 + t − 2 < 0⟹(t-1)(t+2)<0, -2<t<1,故 0≤t<1,0≤ 3 − x<1⟹2<x≤3. 3−x≥ 0 3−x≥ 0 ③求补集法: 3 − x≥x-1⟹ x − 1 ≥ 0 或 ⟹x≤2 或 x>3, x−1<0 3−x≥ x−1 2 故原不等式解集为(2,3]. ④图像法:令y1 = 3 − x,y2 =x-1,如图, y1 <y2 即 x∈(2,3].