...与证明第36讲简单不等式的解法课件文_图文.ppt.ppt

合集下载

高三数学高考第一轮复习课件:不等式

高三数学高考第一轮复习课件:不等式
4.构造函数,进而通过导数来证明不等式或解决不等 式恒成立的问题是高考热点问题.
第六单元 │ 使用建议
使用建议
1.本单元内容理论性强,知识覆盖面广,因此教学中 应注意:
(1)复习不等式的性质时,要克服“想当然”和“显 然成立”的思维定式,一定使要用注建议意不等式成立的条件,强化 或者弱化了条件都有可能得出错误的结论.
第34讲 │ 编读互动 编读互动
第34讲 │ 知识要点 知识要点
第34讲 │ 知识要点
第34讲 │ 知识要点
第34讲 │ 双基固化 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
(1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于 它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式|a|-|b|≤|a+b|≤|a|+| b|.
第六单元 │ 复习策略
复习策略
不等式
目录
第34讲 不等式的概念与性质 第35讲 均值不等式 第36讲 不等式的解法 第37讲 不等式的证明 第38讲 含绝对值的不等式
第六单元 不等式
第六单元 │ 知识框架 知识框架
第六单元 │ 考点解读 考点解读
不等式、不等式的基本性质、不等式的证明、不等式的 解法、含绝对值的不等式.
第六单元 │ 考点解读
第35讲 │ 双基固化
第35讲 │ 双基固化
第35讲 │ 双基固化
第35讲 │ 双基固化

不等式的证明ppt

不等式的证明ppt

不等式的证明ppt不等式的证明ppt不等式的证明ppt不等式的证明1.比较法作差作商后的式子变形,判断正负或与1比较大小作差比较法-----要证明a>b,只要证明a-b>0。

作商比较法---已知a,b都是正数,要证明a>b,只要证明a/b>1 例1 求证:x2+3>3x证明:∵(x2+3)-3x=x2-3x+( )2-( )2+3= + ≥ >0∴ x2+3>3x例2 已知a,bR+,并且a≠b,求证a5+b5>a3b2+a2b3证明:(a5+b5)-(a3b2+a2b3)=(a5-a3b2)-(a2b3-b5)=a3(a2-b2)-b3(a2-b2)=(a2-b2)(a3-b3)=(a+b)(a-b)2(a2+ab+b2)∵ a,bR+∴ a+b>0, a2+ab+b2>0又因为a≠b,所以(a-b)2>0∴ (a+b)(a-b)2(a2+ab+b2)>0即 (a5+b5)-(a3b2+a2b3)>0∴ a5+b5>a3b2+a2b3例3 已知a,bR+,求证:aabb≥abba证明: = ∵a,bR+,当a>b时, >1,a-b>0, >1;当a≤b时, ≤1,a-b≤0, ≥1.∴≥1, 即aabb≥abba综合法了解算术平均数和几何平均数的概念,能用平均不等式证明其它一些不等式定理1 如果a,bR,那么a2+b2≥2ab(当且仅当a=b时劝=”号)证明:a2+b2-2ab=(a-b)2≥0当且仅当a=b时取等号。

所以a2+b2≥2ab(当且仅当a=b时取等号)。

定理2 如果a,b,cR+,那么a3+b3+c3≥3abc(当且仅当a=b=c时劝=”号)证明:∵a3+b3+c3-3abc=(a+b)3+c3-3a2b-3ab2-3abc=(a+b+c)(a2+b2+c2-ab-bc-ac)=(a+b+c)[(a-b)2+(b-c)2+(a-c)2]≥0∴ a3+b3+c3≥3abc,很明显,当且仅当a=b=c时取等号。

不等式的解法(共28张PPT)

不等式的解法(共28张PPT)
答案:①{x|x<-4 或 x>1 }; ② R; ③ {x|x=-3} . 练习5. 关于x的不等式ax2+5x+b>0 的解集为{x|1<x<2},则
5 10 a= , b= . 3 3
高考:(天津08)已知函数f(x)= 解集是(
A
)
x+2, x≤0 ,则不等式f(x)≥x2的 -x+2, xБайду номын сангаас0
∴ B ={x |1-a<x<1+a, a>0 }
∵ A∪B=B ∴ A B
∴ 1-a<1 且 1+a>2,故a的取值范围是:(1, +∞)
不等式的解法
五、无理不等式解法 2x 1 练习10. 解不等式: (1) | 3x 2 3 | 1; ( 2) 1. x1 分析:(1)原不等式等价于: (I) 3x 2 3 1 或 (II) 3x 2 3 1 3x-2≥0 解(I) : 3x 2 4 即 解得 x>6 3x-2>16 2 3x-2≥0 解得 ≤x<2 解(II) : 3x 2 2 即 3x-2<4 3 (2)原不等式化为: (I) x-1>0
2 ) 5
不等式的解法
二、含绝对值的不等式 高考. 1、(北京07)已知集合A={x||x-a|≤1},B={x|x2-5x+4≥0}. 若A∩B=φ,则实数a的取值范围是 (2,3) . (0, 2)
2
2、(浙江07) 不等式 |2x-1|-x<1的解集是 { x | 0<x<2 } . 3、(上海08) 不等式|x-1|<1的解集是

不等式的证明ppt课件

不等式的证明ppt课件

不等式证明——解答题13
1 1 证明 : f ( x1 ) f ( x2 ) (loga x1 loga x2 ) 2 2 x1 x2 x1 x2 loga x1 x2 , f ( ) loga 2 2 1 x1 x2 当a 1时, f ( x1 ) f ( x2 ) f 2 2 1 x1 x2 当0 a 1时, f ( x1 ) f ( x2 ) f ( ) 2 2
2 2 (b c) (c a ) 2 ( a b c ) 2 2 2
13.已知f ( x) loga x(a 0且a 1), 若x1 , x2 R* , 1 x1 x2 比较 f ( x1 ) f ( x2 )与f ( )的大小,并证明 . 2 2
2
a b 15.已知a b 0, 求证:
不等式证明——解答题15
2
8a
ab ab 2
证明:要证明原不等式成立
a b 8a 2 a b a b 只需证明: 2 2 a 2
a b 只要证明:
2


2
只需证明: 2 ab ຫໍສະໝຸດ a b a b 0 2 ab a b成立
m 0 此不等式无解 4 4m(m 1) 0
不存在实数m,能使不等式恒成立
恒成立问题——解答题11(1)
(2)若对于m 2,2不等式恒成立,求实数 x的范围
(2)原不等式变为: m( x2 1) 2x 1 0
令f (m) m( x 1) 2 x 1
16 14.已知a b 0, 求证:a 16 b( a b)
2
不等式证明——解答题14

不等式的证明.ppt

不等式的证明.ppt
证明:f (x) x
11.设f (x)在a,上二次可微,且f (a) A 0
f (a) 0,f (x) 0.(x a)
证明:f (x)]上二次可微,且f (x) 0
证明:01 f (xn )dx
f( 1 ) n 1
练习
1.
2. 设x (0,1)证明: 1 1 11 ln 2 ln(1 x) x 2
(a,b)内递增,又f (a) f (b) A(常数). 证明:对x (a,b),恒有f (x) A
9.设f (x)在0,1上连续,上(0,1)可导,
f (0) 0,且x(0,1), f (x) f (x) .
求证:在0,1上f (x) 0
10.设 lim f ( x) 1,且f ( x) 0 x0 x
证 明:
ab xf
( x)dx
a
b 2
ab
f
( x)dx
练习6. 设f (x)在[a, b]上连续且在a,b上可导,
且f (a) f (b) 0.
a,b,使f ( ) f 2( ) 0
f ( x ) f ( 0 ) 0,
从而 f ( x )在 [ 0, )上严格单增,
f( x) f(0) 0,
故当 x 0 时,
e x 1 (1 x)ln(1 x) .
不等式的证明例子:
(常值不定式的证明要转化证明函数不定式)
练习1: 提示: 练习2:
8.设f (x)在a,b上可微,且f (x)在
提示:
练习3. 设f (x)在[0, 1]上连续且递减,
证明: 0 1时, 0 f (x)dx 01 f (x)dx
练习4. 设f (x)在[a, b]上连续且在a,b上可导,
证明: a,b,使得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档