1.2不等关系及简单不等式的解法

合集下载

不等式与不等式组全章教案

不等式与不等式组全章教案

不等式与不等式组全章教案第一章:不等式的概念与性质1.1 不等式的定义介绍不等式的基本概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。

通过实例理解不等式的表示方法,如2x > 3。

1.2 不等式的性质探讨不等式的基本性质,如不等式两边加(减)同一个数(式子)不等号方向不变等。

通过例题演示不等式性质的应用,并进行练习。

第二章:不等式的解法2.1 简单不等式的解法介绍解简单不等式的方法,如直接解、移项、合并同类项等。

通过例题讲解解简单不等式的步骤,并进行练习。

2.2 不等式组的解法介绍解不等式组的方法,如图像法、代数法等。

通过例题讲解解不等式组的步骤,并进行练习。

第三章:不等式应用题3.1 线性不等式应用题介绍线性不等式应用题的解法,如线性不等式表示的区域内的问题。

通过例题讲解线性不等式应用题的解法,并进行练习。

3.2 不等式组应用题介绍不等式组应用题的解法,如不等式组表示的区域内的问题。

通过例题讲解不等式组应用题的解法,并进行练习。

第四章:不等式的综合应用4.1 线性不等式的图像介绍线性不等式的图像表示方法,如斜率、截距等。

通过例题讲解线性不等式图像的绘制方法,并进行练习。

4.2 不等式组的图像介绍不等式组的图像表示方法,如可行域等。

通过例题讲解不等式组图像的绘制方法,并进行练习。

第五章:不等式的拓展与应用5.1 不等式的拓展知识介绍不等式的拓展知识,如拉格朗日乘数法等。

通过例题讲解不等式拓展知识的应用,并进行练习。

5.2 不等式在实际问题中的应用介绍不等式在实际问题中的应用,如优化问题等。

通过例题讲解不等式在实际问题中的应用方法,并进行练习。

第六章:不等式的标准形式6.1 不等式的标准形式介绍不等式的标准形式,包括一元不等式和多元不等式。

通过例题演示如何将不等式转换为标准形式,并进行练习。

6.2 不等式标准形式的重要性探讨不等式标准形式在解题和分析中的重要性。

通过例题展示不等式标准形式在解题中的应用,并进行练习。

一元二次不等式及其解法

一元二次不等式及其解法

一元二次不等式及其解法【知识归纳】1.一元二次不等式的解法(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax 2+bx +c >0 (a >0)或ax 2+bx +c <0 (a >0).(2)求出相应的一元二次方程的根.(3)利用二次函数的图像与x 轴的交点确定一元二次不等式的解集. 2.一元二次不等式与相应的二次函数及一元二次方程的关系如下表:判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c(a >0)的图像一元二次方程ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2) 有两相等实根x 1=x 2=-b 2a没有实数根 ax 2+bx +c >0(a >0)的解集{x |x <x 1或x >x 2} {x |x ≠x 1} {x |x ∈R } ax 2+bx +c <0(a >0)的解集{x |x 1< x <x 2} ∅ ∅【难点提升】1.一元二次不等式的解集及解集的确定 一元二次不等式ax 2+bx +c <0 (a ≠0)的解集的确定受a 的符号、b 2-4ac 的符号的影响,且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y =ax 2+bx +c (a≠0)的图像,数形结合求得不等式的解集.若一元二次不等式经过不等式的同解变形后,化为ax 2+bx +c >0(或<0)(其中a >0)的形式,其对应的方程ax 2+bx +c =0有两个不等实根x 1,x 2(x 1<x 2) (此时Δ=b 2-4ac >0),则可根据“大于取两边,小于夹中间”求解集.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.【学前强化】1.不等式x 2<1的解集为________.2.函数y =x 2+x -12的定义域是____________.3.已知不等式x 2-2x +k 2-1>0对一切实数x 恒成立,则实数k 的取值范围为_____________.4.不等式x -12x +1≤0的解集为 ( ) A.⎝⎛⎦⎤-12,1 B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎤-∞,-12∪[1,+∞)5.若不等式ax 2+bx -2<0的解集为{x |-2<x <14},则ab 等于( ) A .-28 B .-26 C .28 D .266.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6, x <0, 则不等式f (x )>f (1)的解集是________.7.已知f (x )=ax 2-x -c >0的解集为(-3,2),则a =________,c =________.8.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围为________________.题型一 一元二次不等式的解法【例1】解下列不等式:思维启迪: 解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根;(4)根据对应二次函数的图象,写出不等式的解集.(1)-x 2+2x -23>0; (2)9x 2-6x +1≥0. (3)x 2+2x -3≤0;(4)x -x 2+6<0; (5)4x 2+4x +1<0; (6)x 2-6x +9≤0;【变式】 解下列不等式:(1)2x 2+4x +3<0; (2)-3x 2-2x +8≤0; (3)8x -1≥16x 2.题型二 含参数的一元二次不等式的解法【例2】已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b },求a ,b 的值;思维启迪:先化简不等式为标准形式,再依据解集确定a 的符号,然后利用根与系数的关系列出a ,b 的方程组,求a ,b 的值.【变式】解关于x的不等式ax2-(a+1)x+1<0.题型三一元二次不等式恒成立问题【例3】已知f(x)=x2-2ax+2 (a∈R),当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.思维启迪注意等价转化思想运用,二次不等式在区间上恒成立的问题可转化为二次函数区间最值问题.【变式1】已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立,求实数a 的取值范围.思维启迪:化为标准形式ax 2+bx +c >0后分a =0与a ≠0讨论.当a ≠0时,有⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0.【变式2】当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,求m 的取值范围。

一元二次不等式及其解法

一元二次不等式及其解法
【解】
由f(x)= x - 2x- 4ln x,定义域为(0,+∞ ), 2 4 2( x - x- 2) ∴ f′(x)= 2x- 2- = , x> 0, x x 由 f′(x)> 0且 x> 0,得 x2- x- 2>0且 x>0, 即 (x- 2)(x+ 1)> 0且 x> 0, 解之得x> 2, ∴不等式f′(x)> 0的解集为{x|x> 2}.


(1)化为标准形式;(2)确定判别式Δ的符号; (3)若Δ≥0,则求出该不等式对应的二次方程 的根,若Δ<0,则对应的二次方程无根; (4)结合二次函数的图象得出不等式的解 集.特别地,若一元二次不等式的左边的

(2013·九江调研)若将例1的函数f(x)的解析 式改为“f(x)=x2-2x-4ln x”,求不等式 f′(x)>0的解集. 2

一元二次不等式及其解法

1.一元二次不等式与相应的二次函数及一 元二次方程的关系如下表
判别式 Δ=b2-4ac Δ>0 Δ=0 Δ<0
二次函数 y=ax2+bx +c (a>0)的图像
一元二次方程 有两相异实根 2 ax + bx+c= 0 x1,x2(x1< x2) (a> 0)的根 一元二次不等 {x| x<x1 式 或x>x2 } ax2+ bx+c> 0 ____________ (a> 0)的解集 ax2+ bx+c< 0 {x|x <x<x } 1 2 ___________ (a> 0)的解集
6< s1< 8, 图6-2-1所示,其中 14< s2< 17.
(1)求n的值; (2)要使刹车距离不超过12.6 m,则行驶的 最大速度是多少? 【审题视点】 (1)由图象信息,将v=40, v=70时,代入求s1,s2,得关于n的不等 式组;(2)解关于v的不等式,求最大值.

2018届一轮 复习1.2 不等关系及简单不等式的解法

2018届一轮    复习1.2 不等关系及简单不等式的解法

1.2 不等关系及简单不等式的解法●知识梳理1.一元一次不等式的解法.任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式. 当a >0时,解集为{x |x >a b };当a <0时,解集为{x |x <ab }. 2.一元二次不等式的解法.任何一个一元二次不等式经过不等式的同解变形后,都可以化为ax 2+bx +c >0(或<0)(其中a >0)的形式,再根据“大于取两边,小于夹中间”求解集.3.简单的高次不等式、分式不等式的求解问题可采用“数轴标根法”. 思考讨论用“数轴标根法”解高次、分式不等式时,对于偶次重根应怎样处理? ●点击双基1.不等式32-+x x x )(<0的解集为A.{x |x <-2或0<x <3}B.{x |-2<x <0或x >3}C.{x |x <-2或x >0}D.{x |x <0或x >3}解析:在数轴上标出各根. -2 0 3答案:A2.若不等式|ax +2|<6的解集为(-1,2),则实数a 等于 A.8 B.2 C.-4 D.-8 解析:由|ax +2|<6得-6<ax +2<6,即-8<ax <4.∵不等式|ax +2|<6的解集为(-1,2),易检验a =-4. 答案:C3.已知函数f (x )是R 上的增函数,A (0,-1)、B (3,1)是其图象上的两点,那么| f (x +1)|<1的解集是A.(1,4)B.(-1,2)C.(-∞,1]∪[4,+∞)D.(-∞,-1]∪[2,+∞)解析:由题意知f (0)=-1,f (3)=1. 又| f (x +1)|<1⇔-1<f (x +1)<1, 即f (0)<f (x +1)<f (3). 又f (x )为R 上的增函数, ∴0<x +1<3.∴-1<x <2. 答案:B4.不等式x 2-|x -1|-1≤0的解集为____________.解析:当x -1≥0时,原不等式化为x 2-x ≤0,解得0≤x ≤1. ∴x =1;当x -1<0时,原不等式化为x 2+x -2≤0, 解得-2≤x ≤1.∴-2≤x <1. 综上,x ≥-2.答案:{x |-2≤x ≤1}(文)不等式ax 2+(ab +1)x +b >0的解集为{x |1<x <2},则a +b =_______. 解析:∵ax 2+(ab +1)x +b >0的解集为{x |1<x <2}, ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-<.2310a ba ab a ,,解得⎪⎩⎪⎨⎧-=-=121b a ,或⎩⎨⎧-=-=.21b a , ∴a +b =-23或-3. 答案:-23或-3 5.不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式ax 2-bx +c >0的解集为_______. 解析:令f (x )=ax 2+bx +c ,其图象如下图所示,再画出f (-x )的图象即可.答案:{x |-3<x <-2} ●典例剖析【例1】 解不等式3252---x x x<-1.剖析:这是一个分式不等式,其左边是两个关于x 的多项式的商,而右边是非零常数,故需移项通分,右边变为零,再利用商的符号法则,等价转化成整式不等式组.解:原不等式变为3252---x x x+1<0,即322322--+-x x x x <0⇔⎪⎩⎪⎨⎧<-->+-⎪⎩⎪⎨⎧>--<+-⇔0320230320232222x x x x x x x x 或,-1<x <1或2<x <3.∴原不等式的解集是{x |-1<x <1或2<x <3}.【例2】 求实数m 的范围,使y =lg [mx 2+2(m +1)x +9m +4]对任意x ∈R 恒有意义. 剖析:mx 2+2(m +1)x +9m +4>0恒成立的含义是该不等式的解集为R . 故应⎩⎨⎧>.00<,Δm解:由题意知mx 2+2(m +1)x +9m +4>0的解集为R ,则⎩⎨⎧<+-+=>.04941402)()(,m m m Δm 解得m >41. 评述:二次不等式ax 2+bx +c >0恒成立的条件:⎩⎨⎧<>.00Δa ,若未说明是二次不等式还应讨论a =0的情况.思考讨论本题若要使值域为全体实数,m 的范围是什么? 提示:对m 分类讨论,m =0适合. 当m ≠0时,⎩⎨⎧≥>.00Δm ,解m 即可.【例3】 若不等式2x -1>m (x 2-1)对满足|m |≤2的所有m 都成立,求x 的取值范围.剖析:对于m ∈[-2,2],不等式2x -1>m (x 2-1)恒成立,把m 视为主元,利用函数的观点来解决.解:原不等式化为(x 2-1)m -(2x -1)<0. 令f (m )=(x 2-1)m -(2x -1)(-2≤m ≤2).则⎪⎩⎪⎨⎧<---=<----=-.01212201212222)()()(,)()()(x x f x x f解得271+-<x <231+. 深化拓展1.本题若变式:不等式2x -1>m (x 2-1)对一切-2≤x ≤2都成立,求m 的取值范围.2.本题若把m 分离出来再求m 的范围能行吗? ●闯关训练 夯实基础1.不等式x +12+x >2的解集是 A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)解法一:x +12+x >2⇔x -2+12+x >0⇔11+-x x x )(>0⇔x (x -1)(x +1)>0⇔-1<x <0或x >1.解法二:验证,x =-2、21不满足不等式,排除B 、C 、D.答案:A2.设f (x )和g (x )都是定义域为R 的奇函数,不等式f (x )>0的解集为(m ,n ),不等式g (x )>0的解集为(2m ,2n ),其中0<m <2n,则不等式f (x )·g (x )>0的解集是A.(m ,2n ) B.(m ,2n )∪(-2n,-m ) C.(2m ,2n )∪(-n ,-m ) D.(2m ,2n )∪(-2n ,-2m) 解析:f (x )、g (x )都是定义域为R 的奇函数,f (x )>0的解集为(m ,n ),g (x )>0的解集为(2m ,2n). ∴f (-x )>0的解集为(-n ,-m ),g (-x )>0的解集为(-2n ,-2m), 即f (x )<0的解集为(-n ,-m ),g (x )<0的解集为(-2n ,-2m ). 由f (x )·g (x )>0得⎩⎨⎧>>00)(,)(x g x f 或⎩⎨⎧<<.00)(,)(x g x f .又0<m <2n,∴m <x <2n 或-2n<x <-m . 答案:B3.若关于x 的不等式-21x 2+2x >mx 的解集为{x |0<x <2},则实数m 的值为_______. 解析:由题意,知0、2是方程-21x 2+(2-m )x =0的两个根, ∴-212--m=0+2.∴m =1. 答案:14.已知f (x )=⎩⎨⎧<-≥.0101x x ,则不等式x +(x +2)·f (x +2)≤5的解集是____________. 解析:当x +2≥0,即x ≥-2时. x +(x +2)f (x +2)≤5⇔2x +2≤5⇔x ≤23. ∴-2≤x ≤23. 当x +2<0即x <-2时,x +(x +2)f (x +2)≤5⇔x +(x +2)·(-1)≤5⇔-2≤5, ∴x <-2.综上x ≤23.答案:(-∞,23] 5.定义符号函数sgn x =⎪⎩⎪⎨⎧<-=>.010001)(),(),(x x x 当x ∈R 时,解不等式(x +2)>(2x -1)sgn x .解:当x >0时,原不等式为x +2>2x -1. ∴0<x <3.当x =0时,成立. 当x <0时,x +2>121-x . x -121-x +2>0. 1224122--+--x x x x >0.123322--+x x x >0.∴-4333+<x <0.综上,原不等式的解集为{x |-4333+<x <3}. 6.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:原不等式变形为ax 2+(a -2)x -2≥0. ①a =0时,x ≤-1;②a ≠0时,不等式即为(ax -2)(x +1)≥0, 当a >0时,x ≥a2或x ≤-1; 由于a 2-(-1)=aa 2+,于是 当-2<a <0时,a2≤x ≤-1; 当a =-2时,x =-1; 当a <-2时,-1≤x ≤a2. 综上,当a =0时,x ≤-1;当a >0时,x ≥a 2或x ≤-1;当-2<a <0时,a2≤x ≤-1; 当a =-2时,x =-1;当a <-2时,-1≤x ≤a2. 培养能力7.解关于x 的不等式log a 3x <3log a x (a >0,且a ≠1). 解:令y =log a x ,则原不等式化为y 3-3y <0, 解得y <-3或0<y <3, 即log a x <-3或0<log a x <3. 当0<a <1时,不等式的解集为{x |x >a 3-}∪{x |a3<x <1};当a >1时,不等式的解集为{x |0<x <a 3-}∪{x |1<x <a 3}.8.有点难度哟!已知适合不等式|x 2-4x +a |+|x -3|≤5的x 的最大值为3,求实数a 的值,并解该不等式. 解:∵x ≤3,∴|x -3|=3-x .若x 2-4x +a <0,则原不等式化为x 2-3x +a +2≥0.此不等式的解集不可能是集合{x |x ≤3}的子集,∴x 2-4x +a <0不成立. 于是,x 2-4x +a ≥0,则原不等式化为x 2-5x +a -2≤0.∵x ≤3, 令x 2-5x +a -2=(x -3)(x -m )=x 2-(m +3)x +3m ,比较系数,得m =2,∴a =8. 此时,原不等式的解集为{x |2≤x ≤3}. 探究创新9.关于x 的不等式⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解的集合为{-2},求实数k 的取值范围.解:由x 2-x -2>0可得x <-1或x >2.∵⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解为x =-2,又∵方程2x 2+(2k +5)x +5k =0的两根为-k 和-25. ①若-k <-25,则不等式组的整数解集合就不可能为{-2}; ②若-25<-k ,则应有-2<-k ≤3. ∴-3≤k <2.综上,所求k 的取值范围为-3≤k <2. ●思悟小结1.一元二次不等式的解集与二次项系数及判别式的符号有关.2.解分式不等式要使一边为零,转化为不等式组.如果能分解,可用数轴标根法或列表法.3.解高次不等式的思路是降低次数,利用数轴标根法求解较为容易.4.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论. ●教师下载中心 教学点睛1.解不等式的过程,实质上是不等式等价转化过程.因此在教学中向学生强调保持同解变形是解不等式应遵循的基本原则.2.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想.3.解不等式几乎是每年高考的必考题,重点仍是含参数的有关不等式,对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确.拓展题例【例1】 解关于x 的不等式12-ax ax >x (a ∈R ).解法一:由12-ax ax >x ,得12-ax ax -x >0,即1-ax x>0.此不等式与x (ax -1)>0同解.若a <0,则a1<x <0; 若a =0,则x <0; 若a >0,则x <0或x >a1. 综上,a <0时,原不等式的解集是(a1,0); a =0时,原不等式的解集是(-∞,0); a >0时,原不等式的解集是(-∞,0)∪(a1,+∞). 解法二:由12-ax ax >x ,得12-ax ax -x >0,即1-ax x>0.此不等式与x (ax -1)>0同解.显然,x ≠0.(1)当x >0时,得ax -1>0.若a <0,则x <a1,与x >0矛盾, ∴此时不等式无解;若a =0,则-1>0,此时不等式无解; 若a >0,则x >a1. (2)当x <0时,得ax -1<0. 若a <0,则x >a 1,得a1<x <0; 若a =0,则-1<0,得x <0; 若a >0,则x <a1,得x <0. 综上,a <0时,原不等式的解集是(a1,0); a =0时,原不等式的解集是(-∞,0);a >0时,原不等式的解集是(-∞,0)∪(a1,+∞).【例2】 f (x )是定义在(-∞,3]上的减函数,不等式f (a 2-sin x )≤f (a +1+cos 2x )对一切x ∈R 均成立,求实数a 的取值范围.解:由题意可得⎪⎪⎩⎪⎪⎨⎧++≥-≤++≤-x a x a x a x a 2222cos 1sin 3cos 13sin ,, 即⎪⎪⎩⎪⎪⎨⎧--≥---≤+≤222221sin 49cos 2sin 3)(,,x a a x a x a 对x ∈R 恒成立. 故⎪⎪⎩⎪⎪⎨⎧--≥--≤≤max22221sin 4912)(,,x a a a a ∴-2≤a ≤2101-.。

一元二次不等式及其解法和基本不等式

一元二次不等式及其解法和基本不等式

一元二次不等式及其解法和基本不等式3.2一元二次不等式及其解法第1课时教学目标:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力。

重点:从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。

难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。

教学过程1.课题导入从实际情境中抽象出一元二次不等式模型: 教材P84互联网的收费问题教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:250x x -< (1)2.讲授新课1)一元二次不等式的定义象250x x -<这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2)探究一元二次不等式250x x -<的解集怎样求不等式(1)的解集呢? 探究:(1)二次方程的根与二次函数的零点的关系:二次方程的根就是二次函数的零点。

(2)观察图象,获得解集画出二次函数25y x x =-的图象,如图,观察函数图象,可知: 250x x ->;当 x<0,或x>5时,函数图象位于x 轴上方,此时,y>0,即当0<x<5时,函数图象位于x 轴下方,此时,y<0,即250x x -<;所以,不等式250x x -<的解集是{}|05x x <<,从而解决了本节开始时提出的问题。

3)探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式:220,(0)0,(0)ax bx c a ax bx c a ++>>++<>或一般地,怎样确定一元二次不等式c bx ax ++2>0与c bx ax ++2<0的解集呢? 组织讨论,总结讨论结果:(l )抛物线 =y c bx ax ++2(a> 0)与 x 轴的相关位置,分为三种情况,这可以由一元二次方程 c bx ax ++2=0的判别式ac b 42-=∆三种取值情况(Δ> 0,Δ=0,Δ<0)来确定.因此,要分二种情况讨论(2)a<0可以转化为a>0分Δ>O ,Δ=0,Δ<0三种情况,得到一元二次不等式c bx ax ++2>0与c bx ax ++2<0的解集 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格)有两相异实根 有两相等实根[范例讲解]例2 (课本第87页)求不等式01442>+-x x 的解集. 解:因为210144,0212===+-=∆x x x x 的解是方程.所以,原不等式的解集是⎭⎬⎫⎩⎨⎧≠21x x 例3 (课本第88页)解不等式0322>-+-x x . 解:整理,得0322<+-x x .因为032,02=+-<∆x x 方程无实数解,所以不等式0322<+-x x的解集是∅.从而,原不等式的解集是∅.3.随堂练习: 课本第89的练习1(1)、(3)、(5)、(7)4.课时小结:解一元二次不等式的步骤:① 将二次项系数化为“+”:A=c bx ax ++2>0(或<0)(a>0) ② 计算判别式∆,分析不等式的解的情况:ⅰ.∆>0时,求根1x <2x ,⎩⎨⎧<<<><>.002121x x x A x x x A ,则若;或,则若ⅱ.∆=0时,求根1x =2x =0x ,⎪⎩⎪⎨⎧=≤∈<≠>.00000x x A x A x x A ,则若;,则若的一切实数;,则若φⅲ.∆<0时,方程无解,⎩⎨⎧∈≤∈>.00φx A R x A ,则若;,则若③ 写出解集.5.评价设计: 课本第89页习题3.2[A]组第1题§3.2一元二次不等式及其解法第2课时教学目标:巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一元二次不等式的解法;重点:熟练掌握一元二次不等式的解法难点:理解一元二次不等式与一元二次方程、二次函数的关系 教学过程:1.课题导入1.一元二次方程、一元二次不等式与二次函数的关系 2.一元二次不等式的解法步骤——课本第86页的表格2.讲授新课[范例讲解]例1某种牌号的汽车在水泥路面上的刹车距离s m 和汽车的速度 x km/h 有如下的关系:21120180s x x =+在一次交通事故中,测得这种车的刹车距离大于39.5m ,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h )解:设这辆汽车刹车前的速度至少为x km/h ,根据题意,我们得到21139.520180x x +>移项整理得:2971100x x +->显然 0> ,方程2971100x x +-=有两个实数根,即1288.94,79.94x x ≈-≈。

高中数学第一章不等关系与基本不等式1.2含有绝对值的

高中数学第一章不等关系与基本不等式1.2含有绝对值的

【做一做3】 解不等式|2x-5|-|x+1|<2.
分析:利用零点分区间法解题.
解:令 2x-5=0,得 x= 5 . 令x+1=0,得 x=-1.
2
(1)当 x≤-1 时,原不等式等价于-(2x-5)+(x+1)<2,
即-x+6<2,即 x>4,无解.
(2)当-1<x<
5 2
时,原不等式等价于-(2x-5)-(x+1)<2,
题型一 题型二 题型三
解法一:(几何法)如图,设数轴上与-2,1对应的点分别是A,B,则A,B 两点的距离是3,因此区间[-2,1]上的数都不是原不等式的解.为了求 出不等式的解,关键要在数轴上找出与点A,B的距离之和为5的点. 将点A向左移动1个单位到点A1,这时有|A1A|+|A1B|=5;
同理,将点B向右移动1个单位到点B1,这时也有|B1A|+|B1B|=5. 从数轴上可以看到,点A1与B1之间的任何点到点A,B的距离之和 都小于5;点A1的左边或点B1的右边的任何点到点A,B的距离之和都 大于5. 所以,原不等式的解集是(-∞,-3]∪[2,+∞).
2.2 绝对值不等式的解法
1.会用数轴上的点表示绝对值不等式的范围. 2.会解|ax+b|≤c,|ax+b|≥c,|x-a|+|x-b|≥c和|x-a|+|x-b|≤c四种类 型的绝对值不等式.
1.(1)解绝对值不等式的主要依据 解含绝对值的不等式的主要依据为绝对值的定义、绝对值的几 何意义及不等式的性质. (2)绝对值不等式的解法
【做一做1】 解下列绝对值不等式: (1)|x|<3;(2)|x|>4.

高中数学第一章不等关系与基本不等式1.2.2绝对值不等式的解法课件北师大版选修4_5

高中数学第一章不等关系与基本不等式1.2.2绝对值不等式的解法课件北师大版选修4_5
• 所以实数a的取值范围是(-∞,3).
• [互动探究]若本例条件变为“若关于x的不等式|x+2| -|x-1|≥a的解集为R”,求实数a的取值范围.
解:法一 令 y1=|x+2|-|x-1|,y2=a, 3,x≥1,
则 y1=2x+1,-2≤x<1, -3,x<-2.
• 函数y1,y2的图像如图所示.由图可知当a<-3时,
• 不等式|x-1|-|x-5|<2的解集是( ) • A.(-∞,4) B.(-∞,1) • C.(1,4) D.(1,5) • 解析:①当x<1时,原不等式等价于 • 1-x-(5-x)<2,即-4<2, • 所以x<1.
• ②当1≤x≤5时,原不等式等价于 • x-1-(5-x)<2,即x<4, • 所以1≤x<4. • ③当x>5时,原不等式等价于x-1-(x-5)<2, • 即4<2,无解. • 综合①②③知x<4. • 答案:A
• 3.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解
法 几何意义
• (1)可以利用绝对值不等式的___________零_.点
• (2)利用分类讨论的思想,以绝对值的
“____________”为分界点,将数轴分成几个区间,
然后确定符号各个绝对值中的多绝对项值式符号的____________,
• 所以实数a的取值范围是(-∞,-3).
• 【点评】 (1)含参数的绝对值不等式的解法与不含 参数的绝对值不等式的解法完全一样,只不过要注 意对参数的取值的讨论.
• (2)对于已知含参数的绝对值不等式的解集情况或恒 成立情况,求参数的值或取值范围的问题,关键是 根据其解集或恒成立构建关于参数的方程、不等式 或函数,再求解.
第一章 不等关系与基本不等式

一元二次不等式及其解法

一元二次不等式及其解法
故所求不等式的解集为{x|x<-3 或 x>5}.
拓展提升 三个“二次”之间的关系
(1)三个“二次”中,二次函数是主体,讨论二次函数 主要是将问题转化为一元二次方程和一元二次不等式的形 式来研究.
(2)讨论一元二次方程和一元二次不等式又要将其与相 应的二次函数相联系,通过二次函数的图象及性质来解决问 题,关系如下:
数的关系可得-21+2=-ba, -21×2=2a,
∴a=-2,b=3, 故 ax2+bx-1>0 可变为-2x2+3x-1>0, 即 2x2-3x+1<0,解得12<x<1.
[规律小结] 1.对一元二次不等式概念的三点说明
(1)“只含一个未知数”,并不是说在代数式中不能含 有其他字母类的量,只要明确指出这些字母所代表的量,即 哪一个是变量“未知数”,哪一个是“参数”即可.
xx=94
.
(5)原不等式可化为 x2-6x+10<0,因为 Δ=62-40=-
4<0,所以原不等式的解集为∅.
(6)原不等式可化为 2x2-3x+2>0,因为 Δ=9-4×2×2
=-7<0,所以原不等式的解集为 R.
拓展提升 解不含参数的一元二次不等式的一般步骤
(1)通过对不等式的变形,使不等式右侧为 0,使二次项 系数为正.
∈R};
(2)当2a>2,即
0<a<1
时,原不等式的解集为xx>
2或 a
x<2;
(3)当2a<2,即 a<0 或 a>1 时,
原不等式的解集为xx<2a
或x>2.
综上所述,当 a=0 时,原不等式的解集为{x|x<2};
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一
知识梳理
考点自测
1.2
不等关系及简单不等式的解法
考情概览备考定向 必备知识预案自诊 必备知识预案自诊 关键能力学案突破
-8-
1.判断下列结论是否正确,正确的画“ ”,错误的画“×”. (1)a>b⇔ac2>bc2. ( × )
(2)a>b>0,c>d>0⇒������ > ������. (
解析:∵集合
1-������
B.{x|-1<x<3} D.{x|-1<x<0 或 1<x<3}
������
1-������ ������
A={x|x2-2x-3<0}={x|-1<x<3},B=
<
0 ={x|x<0 或 x>1},
∴A∩B={x|-1<x<0 或 1<x<3}.故选 D.
5.函数 y= 3-2������-������ 2 的定义域是
������
������
)
(3)若关于x的不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0. ( ) ������-2 (4)不等式 ������+1≤0 的解集是[-1,2]. ( × ) (5)若关于x的方程ax2+bx+c=0(a≠0)没有实数根,则关于x的不等 式ax2+bx+c>0的解集为R. ( × )
专题一
考点一
考点二
1.2
不等关系及简单不等式的解法
考情概览备考定向 必备知识预案自诊 关键能力学案突破 关键能力学案突破
-14-
考ห้องสมุดไป่ตู้三
考点四
学科素养微专题
对点训练1(1)已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则 a,b,c的大小关系是( A ) A.c≥b>a B.a>c≥b C.c>b>a D.a>c>b (2)已知a,b是实数,且e<a<b,其中e是自然对数的底数,则ab与ba的 大小关系是 . ab>ba 解析: (1)∵c-b=4-4a+a2=(a-2)2≥0,∴c≥b. 又b+c=6-4a+3a2,∴2b=2+2a2.∴b=a2+1.
������ ������
专题一
考点一
考点二
1.2
不等关系及简单不等式的解法
考情概览备考定向 必备知识预案自诊 关键能力学案突破 关键能力学案突破
-15-
考点三
考点四
学科素养微专题
不等式的性质及应用 例2(1)如果a∈R,且a2+a<0,那么a,a2,-a,-a2的大小关系是( D ) A.a2>a>-a2>-a B.a2>-a>a>-a2 C.-a>a2>a>-a2 D.-a>a2>-a2>a (2)设a,b为正实数.现有下列命题: ①若 a2-b2=1,则 a-b<1;
[-3,1]
.
解析:由 3-2x-x2≥0,即 x2+2x-3≤0,解得-3≤x≤1.所以函数 y= 3-2������-������ 2 的定义域是[-3,1].
专题一
考点一
考点二
1.2
不等关系及简单不等式的解法
考情概览备考定向 必备知识预案自诊 关键能力学案突破 关键能力学案突破
-11-
考点三
专题一
考点一
考点二
1.2
不等关系及简单不等式的解法
考情概览备考定向 必备知识预案自诊 关键能力学案突破 关键能力学案突破
-12-
考点三
考点四
学科素养微专题
解析: (1)M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1=(a1-1)· (a2-1). ∵a1∈(0,1),a2∈(0,1), ∴a1-1<0,a2-1<0. ∴(a1-1)(a2-1)>0,即M-N>0. ∴M>N. (2)(方法一)由题意可知a,b,c都是正数.
a b
b
b+m b
b -m
a
a+m
< b -m (b-m>0).
a -m
2.(x-a)(x-b)>0 或(x-a)(x-b)<0 型不等式的解法口诀:大于取两边,小于 取中间. 3.恒成立问题的转化:a>f(x)恒成立⇒a>f(x)max;a≤f(x)恒成立 ⇒a≤f(x)min. 4.能成立问题的转化:a>f(x)能成立⇒a>f(x)min;a≤f(x)能成立 ⇒a≤f(x)max.
1.2
不等关系及简单不等式的解法
专题一
1.2
不等关系及简单不等式的解法
必备知识预案自诊 关键能力学案突破
考情概览备考定向
-2-
考纲要求 1.了解现实世界和日常生 活中存在着大量的不等关 系. 2.了解不等式(组)的实际背 景. 3.会从实际问题的情境中 抽象出一元二次不等式模 型. 4.通过函数图象了解一元 二次不等式与相应的二次 函数、一元二次方程的联 系. 5.会解一元二次不等式,对 给定的一元二次不等式,会 设计求解的程序框图.
专题一
知识梳理
考点自测
1.2
不等关系及简单不等式的解法
考情概览备考定向 必备知识预案自诊 必备知识预案自诊 关键能力学案突破
-3-
1.两个实数比较大小的方法 ������-������ > 0⇔������ > = (1)作差法 ������-������ = 0⇔������
< ������-������ < 0⇔������ ������ > 1⇔������ > ������
专题一
知识梳理
考点自测
1.2
不等关系及简单不等式的解法
考情概览备考定向 必备知识预案自诊 必备知识预案自诊 关键能力学案突破
-9-
2.(2017江西吉抚七校质量监测2,文5)若0<a<b<1,则下列不等式 成立的是( D ) 1 1 3 3 A.a >b B. ������ < ������ C.ab>1 D.lg(b-a)<0 解析:∵0<a<b<1,∴0<b-a<1,∴lg(b-a)<0. 3.已知a,b>0,且a≠1,b≠1.若logab>1,则( D ) A.(a-1)(b-1)<0 B.(a-1)(a-b)>0 C.(b-1)(b-a)<0 D.(b-1)(b-a)>0 解析:当0<a<1时,由logab>1,得b<a. ∵a<1,∴b<a<1,∴b-a<0,b-1<0,a-1<0. ∴(a-1)(b-1)>0,(a-1)(a-b)<0,(b-a)(b-1)>0. ∴排除A,B,C. 当a>1时,由logab>1,得b>a>1. ∴b-a>0,b-1>0.∴(b-1)(b-a)>0.故选D.
ln������ ,可得 ������
专题一
考点一
考点二
1.2
不等关系及简单不等式的解法
考情概览备考定向 必备知识预案自诊 关键能力学案突破 关键能力学案突破
-13-
考点三
考点四
学科素养微专题
思考比较两个数(式)大小常用的方法有哪些? 解题心得比较大小常用的方法有作差法、作商法、构造函数法. (1)作差法的一般步骤:①作差;②变形;③定号;④下结论.变形常 采用配方、因式分解、有理化等方法把差式变成积式或者完全平 方式. (2)作商法一般适用于分式、指数式、对数式,作商只是思路,关 键是化简变形,从而使结果能够与1比较大小. (3)构造函数法:构造函数,利用函数的单调性比较大小.
������, ������, ������. ������(������∈R,������ > 0), ������(������∈R,������ > 0), ������(������∈R,������ > 0).
(2)作商法 ������ = 1⇔������ ������ < 1⇔������
b
Δ=0
Δ<0
没有实 数根 R
{x|x>x2或x<x1} {x|x1<x<x2}


专题一
知识梳理
考点自测
1.2
不等关系及简单不等式的解法
考情概览备考定向 必备知识预案自诊 必备知识预案自诊 关键能力学案突破
-6-
1.若 a>b>0,m>0,则a < a+m ; a > a -m (b-m>0);b > b+m ;
五年考题统计
命题规律及趋势 高考对本节内容 很少单独命题考 查,对不等关系及 一元二次不等式 的考查常与集合 结合在一起,有时 与函数的定义域、 充要条件、判断命 题真假、数或式的 大小比较、不等式 的恒成立及同解 变形等问题结合 在一起.
2015 全国Ⅰ,文 20 2015 全国Ⅱ,文 12 2016 全国Ⅱ,文 1 2017 全国Ⅰ,文 1 2017 全国Ⅱ,文 8
(6)可开方:a>b>0⇒ ������
������
>
������
������(n∈N,n≥2).
专题一
知识梳理
考点自测
1.2
不等关系及简单不等式的解法
相关文档
最新文档