数列习题2013.4.16
高中数学数列习题(含答案)

高中数学数列习题(含答案)1.下列说法中正确的是(C)正确选项是C,因为数列{}表示一个空集合,A、B、D 选项都有错误。
2.下列四个数列中,既是无穷数列又是递增数列的是(C)正确选项是C,因为该数列是无穷数列且是递增数列,其他选项都有错误。
3.(2013福州八县一中高三联考)若数列的前4项分别是-,-,-,-,则该数列的一个通项公式为(A)正确选项是A,因为数列中项的符号是先正后负,可用(-1)n+1或(-1)n-1表示,又每项分式的分母与项数n之间的关系为n+1.4.已知数列{an}的通项公式an=,则a2013·a2014·a2015等于(C)正确选项是C,根据通项公式计算即可。
5.(2013___高二第一次月考)下列四个数中,是数列{n(n+2)}中的项的是(A)正确选项是A,根据n(n+2)的值求解可得。
6.数列3,33,333,3333,…的一个通项公式是。
正确答案是an=(10n-1),因为该数列是由9,99,___,9999,…去掉最高位的数字而来,而9,99,___,9999,…的一个通项公式是10n-1.7.已知数列{an}的通项公式为an=,求第4项。
正确答案是4,根据通项公式计算即可。
8.一张长方形桌子可坐a1=6人,按___所示把桌子拼在一起,n张桌子可坐人数an等于。
正确答案是an=6n,因为每张桌子可坐6人,n张桌子可坐的人数就是6n。
2.已知一张桌子可坐2人,且每张桌子都有4个椅子,问n张桌子最多可坐多少人?解析:一张桌子可坐2人,加上4个椅子,总共可以坐6人。
所以,n张桌子最多可坐6n人。
答案为6n。
9.已知数列{an}的前4项为11.102.1003.,求该数列的一个通项公式。
解析:观察数列,可以发现第n项为10n+n-1.所以,该数列的一个通项公式为an=10n+n-1.10.在数列-,-,-,…中,-是它的第几项?解析:观察数列,可以发现第n项为(-1)^(n+1)*n。
数列的概念练习题(有答案)百度文库

一、数列的概念选择题1.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时,12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24B .26C .28D .302.已知数列{}n a 满足: 12a =,111n na a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007B .1008C .1009.5D .10103.在数列{}n a 中,11a =,11n na a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( )A .()3,+∞B .[)3,+∞C .()2,+∞D .[)2,+∞4.数列{}n a 的通项公式是276n a n n =-+,4a =( )A .2B .6-C .2-D .15.已知数列{}n a 的前n 项和为n S ,且21n S n n =++,则{}n a 的通项公式是( )A .2n a n =B .3,12,2n n a n n =⎧=⎨≥⎩C .21n a n =+D .3n a n =6.在数列{}n a 中,已知11a =,25a =,()*21n n n a a a n N ++=-∈,则5a 等于( )A .4-B .5-C .4D .57.数列1,3,5,7,9,--的一个通项公式为( )A .21n a n =-B .()1(21)nn a n =--C .()11(21)n n a n +=--D .()11(21)n n a n +=-+8.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有1n n a a +=成立,则称数列{}n a 为周期数列,周期为T .已知数列{}n a 满足()111,10,{1,01n n n n na a a m m a a a +->=>=<≤ ,则下列结论错误的是( )A .若34a =,则m 可以取3个不同的数;B .若m =,则数列{}n a 是周期为3的数列;C .存在m Q ∈,且2m ≥,数列{}n a 是周期数列;D .对任意T N *∈且2T ≥,存在1m >,使得{}n a 是周期为T 的数列. 9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有()()()f x f y f x y ⋅=+,若112a =,()()*n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( ) A .1324n S ≤< B .314n S ≤< C .102n S <≤D .112n S ≤< 10.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和383969a a a ++⋅⋅⋅+=( )A .180B .160C .150D .14011.已知数列{}n a 的前5项为:12a =,232a =,343a =,454a =,565a =,可归纳得数列{}n a 的通项公式可能为( ) A .1+=n n a nB .21n n a n +=+ C .3132n n a n -=-D .221n na n =- 12.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1013.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45B .46C .47D .4814.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-15.设数列{}n a 的通项公式为2n n a n+=,要使它的前n 项的乘积大于36,则n 的最小值为( ) A .6B .7C .8D .916.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-17.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么24620201a a a a +++++=( )A .2021aB .2022aC .2023aD .2024a18.数列{}n a 满足:12a =,111nn na a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-B .16-C .16D .619.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .4020.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 二、多选题21.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .422.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12d =B .12d =-C .918S =D .936S =23.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .824.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤D .当且仅当0nS <时,26n ≥25.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大B .在数列{}n a 中,3a 或4a 最大C .310S S =D .当8n ≥时,0n a <26.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数) B .数列{}n a -是等差数列 C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 D .1n a +是n a 与2n a +的等差中项27.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 28.定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .2020202320202S = D .2S ,4S ,6S 成等差数列29.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列30.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列31.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-32.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <33.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为2134.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <35.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17aB .35SC .1719a a -D .1916S S -【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】先写出新数列的各项,找到数列的周期,即得解. 【详解】由题意可知“斐波那契数列”的各项依次被4整除后的余数构成一个新的数列{}n b , 此数列的各项求得:1,1,2,3,1,0,1,1,2,3,1,0,1……,则其周期为6, 其中1+1+2+3+1+0=8,则201819201812S S b b S b b =++=++381126=⨯++=, 故选:B.2.D解析:D 【分析】根据题设条件,可得数列{}n a 是以3为周期的数列,且3132122S =+-=,从而求得2017S 的值,得到答案.【详解】由题意,数列{}n a 满足: 12a =,111n na a +=-, 可得234111,121,1(1)2,22a a a =-==-=-=--=,可得数列{}n a 是以3为周期的数列,且3132122S =+-= 所以20173672210102S =⨯+=. 故选:D. 【点睛】本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.3.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.4.B解析:B 【分析】 令4n = 代入即解 【详解】令4n =,2447466a =-⨯+=-故选:B. 【点睛】数列通项公式n a 是第n 项与序号n 之间的函数关系,求某项值代入求解.5.B解析:B 【分析】根据11,1,2n nS n a S S n -=⎧=⎨-≥⎩计算可得;【详解】解:因为21n S n n =++①,当1n =时,211113S =++=,即13a =当2n ≥时,()()21111n S n n -=-+-+②,①减②得,()()2211112n n n n n n a ⎡⎤++--+-+=⎦=⎣所以3,12,2n n a n n =⎧=⎨≥⎩故选:B 【点睛】本题考查利用定义法求数列的通项公式,属于基础题.6.B解析:B 【分析】根据已知递推条件()*21n n n a a a n N ++=-∈即可求得5a【详解】由()*21n n n a a a n N++=-∈知:3214a a a 4321a a a 5435a a a故选:B 【点睛】本题考查了利用数列的递推关系求项,属于简单题7.C解析:C 【分析】分别观察各项的符号、绝对值即可得出. 【详解】数列1,-3,5,-7,9,…的一个通项公式()()112nn a n =--. 故选C . 【点睛】本题考查了球数列的通项公式的方法,属于基础题.8.C解析:C 【解析】试题分析:A:当01m <≤时,由34a =得1;125m m =<≤时,由34a =得54m =; 2m >时,()2311,,24a m a m =-∈+∞=-= 得6m = ;正确 .B:234111,11,1,m a a a =>∴====> 所以3T =,正确.C :命题较难证明,先考察命题D .D :命题的否定为“对任意的T N *∈,且2T ≥,不存在1m >,使得{}n a 是周期为T 的数列”,而由B 显然这个命题是错误的,因此D 正确,从而只有C 是错误. 考点:命题的真假判断与应用.【名师点睛】本题主要考查周期数列的推导和应用,考查学生的推理能力.此题首先要理解新定义“周期为T 的数列”,然后对A 、B 、C 、D 四个命题一一验证,A 、B 两个命题按照数列的递推公式进行计算即可,命题C 较难证明,但出现在选择题中,考虑到数学选择题中必有一个选项正确,因此我们先研究D 命题,并且在命题D 本身也很难的情况下,采取“正难则反”的方法,考虑命题D 的否定,命题D 的否定由命题B 很容易得出是错误的,从而命题D 是正确的.9.D解析:D 【分析】根据题意得出1112n n n a a a a +==,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】取1x =,()y n n N*=∈,由题意可得()()()111112n n n af n f f n a a a +=+=⋅==, 112n n a a +∴=,所以,数列{}n a 是以12为首项,以12为公比的等比数列,11112211212n n n S ⎛⎫- ⎪⎝⎭∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即112n S ≤<. 故选:D.【点睛】本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.10.B解析:B 【分析】根据题意可得n a 为421167n n +的个位数为27n n +的个位数,而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,即可求和. 【详解】由n a 为421167n n +的个位数, 可得n a 为27n n +的个位数, 而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,所以27n n +的个位数是以9,3,1,7为周期, 即421167n n +的个位数是以9,3,1,7为周期, 第38项至第69项共32项,共8个周期, 所以383969a a a ++⋅⋅⋅+=8(9317)160⨯+++=. 故选:B11.A解析:A 【分析】将前五项的分母整理为1,2,3,4,5,则其分子为2,3,4,5,6,据此归纳即可. 【详解】 因为12a =,232a =,343a =,454a =,565a =,故可得1223,12a a ==, 343a =,454a =,565a =, 故可归纳得1+=n n a n. 故选:A.【点睛】本题考查简单数列通项公式的归纳总结,属基础题.12.C解析:C 【分析】利用443a S S =-计算. 【详解】由已知22443(44)(33)8a S S =-=+-+=.故选:C .13.C解析:C 【分析】利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解 【详解】当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47. 故选C14.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论. 【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯, 4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.15.C解析:C 【分析】先求出数列{}n a 的前n 项的乘积为n D ,令0n D >解不等式,结合*n N ∈,即可求解. 【详解】记数列{}n a 的前n 项的乘积为n D ,则()()12112451232312n n n n n n n D a a a a n n -++++=⋅⋅=⨯⨯⨯⨯⨯=- 依题意有()()12362n n ++>整理得()()23707100n n n n +-=-+> 解得:7n >,因为*n N ∈,所以min 8n =, 故选:C16.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.解析:A 【分析】根据数列的递推关系式即可求解. 【详解】由21(1),n n n a a a n ++=+≥ 则2462020246210201a a a a a a a a a +++++++++=+3462020562020201920202021a a a a a a a a a a =+++=+++=+=.故选:A18.A解析:A 【分析】根据递推公式推导出()4n n a a n N *+=∈,且有12341a a a a=,再利用数列的周期性可计算出2018T 的值. 【详解】12a =,()*111++=∈-nn n a a n N a ,212312a +∴==--,3131132a -==-+,411121312a -==+,51132113a +==-,()4n n a a n N *+∴=∈,且()12341123123a a a a ⎛⎫=⨯-⨯-⨯= ⎪⎝⎭,201845042=⨯+,因此,()5042018450421211236T T a a ⨯+==⨯=⨯⨯-=-.故选:A. 【点睛】本题考查数列递推公式的应用,涉及数列周期性的应用,考查计算能力,属于中等题.19.B解析:B 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入即可求解. 【详解】由已知()1121nn n a a n ++-=-,①得()121121n n n a a n ++++-=+,②由()1n⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.20.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=- ⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.二、多选题 21.BD 【分析】利用递推关系可得,再利用数列的单调性即可得出答案. 【详解】 解:∵, ∴时,, 化为:,由于数列单调递减,可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本解析:BD 【分析】 利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2. ∴1nn a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.22.BD 【分析】由等差数列下标和性质结合前项和公式,求出,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】 因为, 所以.因为,,所以公差. 故选:BD解析:BD 【分析】由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】因为1937538a a a a +=+=+=, 所以()1999983622a a S +⨯===. 因为35a =,73a =,所以公差731732a a d -==--. 故选:BD23.BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差即每一层比上一层多的根数为,设一共放层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差解析:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+= 整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.24.AB 【分析】根据等差数列的性质及可分析出结果. 【详解】 因为等差数列中, 所以, 又, 所以,所以,,故AB 正确,C 错误; 因为,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由解析:AB 【分析】根据等差数列的性质及717S S =可分析出结果. 【详解】因为等差数列中717S S =, 所以89161712135()0a a a a a a ++++=+=,又10a >,所以12130,0a a ><,所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +==<,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.25.AD 【分析】利用等差数列的通项公式可以求,,即可求公差,然后根据等差数列的性质判断四个选项是否正确. 【详解】 因为,所以 , 因为,所以, 所以等差数列公差, 所以是递减数列,故最大,选项A解析:AD 【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.26.ABD 【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项. 【详解】A.因为数列是等差数列,所以,即,所以A 正确;B. 因为数列是等差数列,所以,那么,所以数解析:ABD 【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项. 【详解】A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确;C.111111n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭不是等差数列,故C 不正确;D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确. 故选:ABD 【点睛】本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型.27.BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数, 是等方差数解析:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k k k aa a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题.28.AC 【分析】由题意可知,即,则时,,可求解出,易知是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出,判断C ,D 的正误. 【详解】 解:由, 得, 所以时,, 得时,, 即时,, 当时,由解析:AC 【分析】 由题意可知112222n n nn a a a H n-+++==,即112222n n n a a a n -+++=⋅,则2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误. 【详解】 解:由112222n n nn a a a H n-+++==,得112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错, 所以()32n n n S +=,所以2020202320202S =,故C 正确.25S =,414S =,627S =,故D 错,故选:AC . 【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般.29.AD 【分析】利用求出数列的通项公式,可对A ,B ,D 进行判断,对进行配方可对C 进行判断【详解】 解:当时,, 当时,, 当时,满足上式, 所以,由于,所以数列为首项为,公差为2的等差数列, 因解析:AD 【分析】 利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式, 所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误, 故选:AD 【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题30.ABD 【分析】首项根据得到,从而得到是以首项为,公差为的等差数列,再依次判断选项即可. 【详解】对选项A ,因为,, 所以,即所以是以首项为,公差为的等差数列,故A 正确. 对选项B ,由A 知:【分析】 首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121n n n a a a +=+,11a =, 所以121112n n n na a a a ++==+,即1112n n a a +-= 所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确. 对选项B ,由A 知:112121n n n a 数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212n n n S n +-==,故B 正确. 对选项C ,因为121n n a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD【点睛】 本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.31.AC【分析】利用等差数列的前项和公式、通项公式列出方程组,求出,,由此能求出与.【详解】等差数列的前项和为.,,,解得,,.故选:AC .【点睛】本题考查等差数列的通项公式求和公【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =, ∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-== 故选:AC .【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.32.BC【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.【详解】A 选项,若,则,那么.故A 不正确;B 选项,若,则,又因为,所以前8项为正,从第9项开始为负,因为解析:BC【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确;B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负,因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确;C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC .【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.33.BC【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D .【详解】由公差,可得,即,①由a7是a解析:BC【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D .【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对; 由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭*n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错;故选:BC【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题. 34.AD【分析】先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案.【详解】解:根据等差数列前项和公式得:,所以,,由于,,所以,,所以,中最大,由于,所以,即:解析:AD【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<,由于11162a a a +=,11267a a a a +=+,所以60a >,760a a <-<,所以0d <,{}n S 中6S 最大,由于11267490a a a a a a +=+=+<,所以49a a <-,即:49a a <.故AD 正确,BC 错误.故选:AD.【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题. 35.BD【分析】由得,利用可知不正确;;根据可知 正确;根据可知不正确;根据可知正确.【详解】因为,所以,所以,因为公差,所以,故不正确;,故正确;,故不正确;,故正确.故选:BD.解析:BD【分析】由1718S S =得180a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确.【详解】因为1718S S =,所以18170S S -=,所以180a =, 因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确; 135********()35235022a a a S a +⨯====,故B 正确; 171920a a d -=-≠,故C 不正确;19161718191830S S a a a a -=++==,故D 正确. 故选:BD.【点睛】本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.。
D:数列(文科2013年) Word版含答案

D单元数列D1数列的概念与简单表示法15.D1,D5对于E={a1,a2,...,a100}的子集X={ai1,ai2,...,ai k},定义X的“特征数列”为x1,x2,...,x100,其中xi1=xi2=...=xi k=1,其余项均为0.例如:子集{a2,a3}的“特征数列”为0,1,1,0,0, 0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于________;(2)若E的子集P的“特征数列”p1,p2,…,p100满足p1=1,p i+p i+1=1,1≤i≤99;E 的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q 的元素个数为________.15.2 17 (1)由特征数列的定义可知,子集{a1,a3,a5}的“特征数列”为1,0,1,0,1,0…,0,故可知前三项和为2.(2)根据“E的子集P的“特征数列”p1,p2,…,p100满足p1=1,p i+p i+1=1,1≤i≤99”可知子集P的“特征数列”为1,0,1,0,…,1,0.即奇数项为1,偶数项为0.根据“E 的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98”可知子集Q的“特征数列为1,0,0,1,0,0,…,0,1.即项数除以3后的余数为1的项为1,其余项为0,则P∩Q的元素为项数除以6余数为1的项,可知有a1,a7,a13,…,a97,共17项.4.D1下面是关于公差d>0的等差数列{a n}的四个命题:p1:数列{a n}是递增数列; p2:数列{na n}是递增数列;p3:数列a nn是递增数列;p4:数列{a n+3nd}是递增数列.其中的真命题为( )A.p1,p2 B.p3,p4C.p2,p3 D.p1,p44.D 因为数列{a n}为d>0的数列,所以{a n}是递增数列,则p1为真命题.而数列{a n +3nd}也是递增数列,所以p4为真命题,故选D.D2 等差数列及等有效期数列前n 项和19.D2,D4 设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n∈N *,函数f(x)=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f′⎝ ⎛⎭⎪⎫π2=0. (1)求数列{a n }的通项公式; (2)若b n =2⎝⎛⎭⎪⎫a n +12a n ,求数列{b n }的前n 项和S n . 19.解:(1)由题设可得,f ′(x)=a n -a n +1+a n +2-a n +1sin x -a n +2cos x.对任意n∈N *,f′π2=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d =1, 所以a n =2+1·(n-1)=n +1. (2)由b n =2a n +12a n =2⎝ ⎛⎭⎪⎫n +1+12n +1=2n +12n +2知, S n =b 1+b 2+…+b n =2n +2·n (n +1)2+121-12n1-12=n 2+3n +1-12n .7.D2 设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .27.A 设公差为d ,则8a 1+28d =4a 1+8d ,即a 1=-5d ,a 7=a 1+6d =-5d +6d =d =-2,所以a 9=a 7+2d =-6.20.M2,D2,D3,D5 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q>1,所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1, d i =A i -B i =a i -a i +1=a 1(1-q)qi -1.因此d i ≠0且d i +1d i =q(i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i≤n-2,因为B i ≤B i +1,d>0,所以A i +1=B i +1+d i +1≥B i +d i +d>B i +d i =A i . 又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n . 所以a i =A i =B i +d i =a n +d i .因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d , 即a 1,a 2,…,a n -1是等差数列.17.D2、D4 等差数列{a n }中,a 7=4,a 19=2a 9. (1)求{a n }的通项公式;(2)设b n =1na n ,求数列{b n }的前n 项和S n .17.解:(1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d.因为⎩⎪⎨⎪⎧a 7=4,a 19=2a 9,所以⎩⎪⎨⎪⎧a 1+6d =4,a 1+18d =2(a 1+8d ),解得a 1=1,d =12.所以{a n }的通项公式为a n =n +12. (2)因为b n =1na n =2n (n +1)=2n -2n +1,所以S n =21-22+22-23+…+2n -2n +1=2n n +1. 17.D2,D3 已知等差数列{a n }的公差d =1,前n 项和为S n . (1)若1,a 1,a 3成等比数列,求a 1; (2)若S 5>a 1a 9,求a 1的取值范围. 17.解:(1)因为数列{a n }的公差d =1, 且1,a 1,a 3成等比数列,所以a 21=1×(a 1+2), 即a 21-a 1-2=0,解得a 1=-1或a 1=2. (2)因为数列{a n }的公差d =1,且S 5>a 1a 9, 所以5a 1+10>a 21+8a 1,即a 21+3a 1-10<0,解得-5<a 1<2.17.D2,D3 已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.17.解:(1)设{a n }的公差为d.由题意,a 211=a 1a 13, 即(a 1+10d)2=a 1(a 1+12d), 于是d(2a 1+25d)=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而 S n =n2(a 1+a 3n -2)=n2(-6n +56) =-3n 2+28n.20.D2 设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n∈N *,求{b n }的前n 项和T n .20.解:(1)设等差数列{a n }的首项为a 1,公差为d.由S 4=4S 2,a 2n =2a n +1得⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1. 解得a 1=1,d =2. 因此a n =2n -1,n∈N *.(2)由已知b 1a 1+b 2a 2+…+b n a n =1-12n ,n∈N *,当n =1时,b 1a 1=12;当n≥2时,b n a n =1-12n -⎝ ⎛⎭⎪⎫1-12n -1=12n .所以b n a n =12n ,n∈N *.由(1)知a n =2n -1,n∈N *,所以b n =2n -12n ,n∈N *.又T n =12+322+523+…+2n -12n ,12T n =122+323+…+2n -32n +2n -12n +1, 两式相减得12T n =12+⎝ ⎛⎭⎪⎫222+223+…+22n -2n -12n +1=32-12n -1-2n -12n +1, 所以T n =3-2n +32n .17.D2 设S n 表示数列{}a n 的前n 项和. (1)若{}a n 是等差数列,推导S n 的计算公式;(2)若a 1=1,q≠0,且对所有正整数n ,有S n =1-qn1-q .判断{}a n 是否为等比数列,并证明你的结论.17.解: (1)方法一:设{}a n 的公差为d ,则 S n =a 1+a 2+…+a n =a 1+(a 1+d)+…+, 又S n =a n +(a n -d)+…+,∴2S n =n(a 1+a n ), ∴S n =n (a 1+a n )2.方法二:设{}a n 的公差为d ,则 S n =a 1+a 2+…+a n =a 1+(a 1+d)+…+, 又S n =a n +a n -1+…+a 1 =++…+a 1, ∴2S n =++…+ =2na 1+n(n -1)d , ∴S n =na 1+n (n -1)2 d.(2){}a n 是等比数列.证明如下: ∵S n =1-q n1-q ,∴a n +1=S n +1-S n=1-q n +11-q -1-q n1-q =q n(1-q )1-q=q n .∵a 1=1,q≠0,∴当n≥1时,有 a n +1a n =q nq n -1=q.因此,{a n }是首项为1且公比为q 的等比数列.16.D2,D3 在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项、公比及前n 项和.16.解:设该数列的公比为q ,由已知,可得 a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以,a 1(q -1)=2,q 2-4q +3=0,解得q =3或q =1. 由于a 1(q -1)=2,因此q =1不合题意,应舍去. 故公比q =3,首项a 1=1. 所以,数列的前n 项和S n =3n-12.17.D2、D4 已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和.17.解:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d.由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5, 解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n. (2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=12⎝ ⎛⎭⎪⎫12n -3-12n -1,数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为12⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1=n 1-2n . 19.D2 在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |. 19.解:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0.故d =-1或d =4.所以a n =-n +11,n∈N *或 a n =4n +6,n∈N *.(2)设数列{a n }的前n 项和为S n ,因为d<0,由(1)得d =-1,a n =-n +11,则 当n≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n.当n≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎪⎨⎪⎧-12n 2+212n ,n≤11,12n 2-212n +110,n≥12.16.D2和D3 设数列{a n }满足:a 1=1,a n +1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为其前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20. 16.解:(1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n -1,S n =1-3n1-3=12(3n-1).(2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d ,所以公差d =5,故T 20=20×3+20×192×5=1 010.12.D2 若2,a ,b ,c ,9成等差数列,则c -a =________. 12.72 设公差为d ,则d =9-25-1=74,所以c -a =2d =72.D3 等比数列及等比数列前n 项和20.M2,D2,D3,D5 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q>1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1, d i =A i -B i =a i -a i +1=a 1(1-q)qi -1.因此d i ≠0且d i +1d i =q(i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i≤n-2,因为B i ≤B i +1,d>0,所以A i +1=B i +1+d i +1≥B i +d i +d>B i +d i =A i . 又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n .所以a i =A i =B i +d i =a n +d i .因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d , 即a 1,a 2,…,a n -1是等差数列.11.D3 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.11.2 2n +1-2 ∵a 3+a 5=q(a 2+a 4),∴40=20q ,∴q=2,∴a 1(q +q 3)=20,∴a 1=2,∴S n =2(1-2n)1-2=2n +1-2.22.H6、H8、D3 已知双曲线C :x 2a 2-y2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB|,|BF 2|成等比数列.22.解:(1)由题设知c a =3,即a 2+b 2a 2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2. 将y =2代入上式,并求得x =±a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k(x -3),|k|<22,代入①并化简得(k 2-8)x 2-6k 2x +9k 2+8=0.设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1), |BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1. 由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=-23.故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199. 由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1, 故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16. 因而|AF 2|·|BF 2|=|AB|2,所以|AF 2|,|AB|,|BF 2|成等比数列.7.D3 已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-310)C .3(1-3-10) D .3(1+3-10)7.C 由3a n +1+a n =0,得a n ≠0(否则a 2=0)且a n +1a n =-13,所以数列{a n }是公比为-13的等比数列,代入a 2可得a 1=4,故S 10=4×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101+13=3×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1310=3(1-3-10).17.D2,D3 已知等差数列{a n }的公差d =1,前n 项和为S n . (1)若1,a 1,a 3成等比数列,求a 1; (2)若S 5>a 1a 9,求a 1的取值范围. 17.解:(1)因为数列{a n }的公差d =1, 且1,a 1,a 3成等比数列,所以a 21=1×(a 1+2), 即a 21-a 1-2=0,解得a 1=-1或a 1=2. (2)因为数列{a n }的公差d =1,且S 5>a 1a 9, 所以5a 1+10>a 21+8a 1,即a 21+3a 1-10<0,解得-5<a 1<2.11.D3 设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________. 11.15 方法一:易求得a 2=-2,a 3=4,a 4=-8,∴a 1+|a 2|+a 3+|a 4|=15. 方法二:相当于求首项为1,公比为2的等比数列的前4项和,S 4=1-241-2=15.14.D3 在正项等比数列{a n }中,a 5=12,a 6+a 7=3. 则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.14.12 设{a n }的公比为q.由a 5=12及a 5(q +q 2)=3得q =2,所以a 1=132,所以a 6=1,a 1a 2…a 11=a 116=1,此时a 1+a 2+…+a 11>1.又a 1+a 2+…+a 12=27-132,a 1a 2…a 12=26<27-132,所以a 1a 2…a 12>a 1a 2…a 12,但a 1+a 2+…+a 13=28-132,a 1a 2…a 13=26·27=25·28>28-132,所以a 1+a 2+…+a 13<a 1a 2…a 13,故最大正整数n 的值为12.12.D3 某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N *)等于________.12.6 S n =2(1-2n)1-2=2n +1-2≥100,得n≥6.14.D3 已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.14.63 由题意可知a 1+a 3=5,a 1·a 3=4.又因为{a n }为递增的等比数列,所以a 1=1,a 3=4,则公比q =2,所以S 6=1×(1-26)1-2=63.17.D2,D3 已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.17.解:(1)设{a n }的公差为d.由题意,a 211=a 1a 13, 即(a 1+10d)2=a 1(a 1+12d), 于是d(2a 1+25d)=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而 S n =n2(a 1+a 3n -2)=n2(-6n +56) =-3n 2+28n.16.D2,D3 在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项、公比及前n 项和.16.解:设该数列的公比为q ,由已知,可得 a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以,a 1(q -1)=2,q 2-4q +3=0,解得q =3或q =1.由于a 1(q -1)=2,因此q =1不合题意,应舍去. 故公比q =3,首项a 1=1. 所以,数列的前n 项和S n =3n-12.6.D3 设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n6.D a n =⎝ ⎛⎭⎪⎫23n -1,S n =1-23n 1-23=31-23a n =3-2a n . 16.D2和D3 设数列{a n }满足:a 1=1,a n +1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为其前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20. 16.解:(1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n -1,S n =1-3n1-3=12(3n-1).(2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d ,所以公差d =5,故T 20=20×3+20×192×5=1 010.D4 数列求和19.D2,D4 设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n∈N *,函数f(x)=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f′⎝ ⎛⎭⎪⎫π2=0. (1)求数列{a n }的通项公式; (2)若b n =2⎝⎛⎭⎪⎫a n +12a n ,求数列{b n }的前n 项和S n . 19.解:(1)由题设可得,f ′(x)=a n -a n +1+a n +2-a n +1sin x -a n +2cos x.对任意n∈N *,f′π2=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d =1, 所以a n =2+1·(n-1)=n +1. (2)由b n =2a n +12a n =2⎝ ⎛⎭⎪⎫n +1+12n +1=2n +12n +2知, S n =b 1+b 2+…+b n =2n +2·n (n +1)2+121-12n1-12=n 2+3n +1-12n .17.D2、D4 等差数列{a n }中,a 7=4,a 19=2a 9. (1)求{a n }的通项公式;(2)设b n =1na n ,求数列{b n }的前n 项和S n .17.解:(1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d.因为⎩⎪⎨⎪⎧a 7=4,a 19=2a 9,所以⎩⎪⎨⎪⎧a 1+6d =4,a 1+18d =2(a 1+8d ),解得a 1=1,d =12.所以{a n }的通项公式为a n =n +12. (2)因为b n =1na n =2n (n +1)=2n -2n +1,所以S n =21-22+22-23+…+2n -2n +1=2n n +1. 16.D4 正项数列{a n }满足:a 2n -(2n -1)a n -2n =0. (1)求数列{a n }的通项公式a n ;(2)令b n =1(n +1)a n,求数列{b n }的前n 项和T n .16.解:(1)由a 2n -(2n -1)a n -2n =0,得(a n -2n)(a n +1)=0. 由于{a n }是正项数列,所以a n =2n.(2)由a n =2n ,b n =1(n +1)a n ,则b n =12n (n +1)=12⎝ ⎛⎭⎪⎫1n -1n +1,T n =12⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n +1n -1n +1=12⎝⎛⎭⎪⎫1-1n +1=n2(n +1). 17.D2、D4 已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和. 17.解:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d.由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5, 解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n. (2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=12⎝ ⎛⎭⎪⎫12n -3-12n -1,数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为12⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1=n 1-2n .D5 单元综合20.M2,D2,D3,D5 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q>1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1, d i =A i -B i =a i -a i +1=a 1(1-q)qi -1.因此d i ≠0且d i +1d i =q(i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i≤n-2,因为B i ≤B i +1,d>0,所以A i +1=B i +1+d i +1≥B i +d i +d>B i +d i =A i . 又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n . 所以a i =A i =B i +d i =a n +d i .因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d , 即a 1,a 2,…,a n -1是等差数列.19.D5,E9 设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n∈N *,且a 2,a 5,a 14构成等比数列.(1)证明:a 2=4a 1+5; (2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12.19.解:19.D5 已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18. (1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.19.解:(1)设数列{a n }的公比为q ,则a 1≠0,q≠0.由题意得⎩⎪⎨⎪⎧S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18, 即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2,故数列{a n }的通项公式为a n =3(-2)n -1.(2)由(1)有S n =3[1-(-2)n]1-(-2)=1-(-2)n.若存在n ,使得S n ≥2 013,则1-(-2)n≥2 013, 即(-2)n≤-2 012.当n 为偶数时,(-2)n>0,上式不成立;当n 为奇数时,(-2)n=-2n≤-2 012,即2n≥2 012,则n≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n|n =2k +1,k∈N ,k≥5}. 15.D1,D5 对于E ={a 1,a 2,...,a 100}的子集X ={ai 1,ai 2,...,ai k },定义X 的“特征数列”为x 1,x 2,...,x 100,其中xi 1=xi 2=...=xi k =1,其余项均为0.例如:子集{a 2,a 3}的“特征数列”为0,1,1,0,0, 0(1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于________;(2)若E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i≤99;E 的子集Q 的“特征数列”q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j≤98,则P∩Q 的元素个数为________.15.2 17 (1)由特征数列的定义可知,子集{a 1,a 3,a 5}的“特征数列”为1,0,1,0,1,0…,0,故可知前三项和为2.(2)根据“E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i≤99”可知子集P 的“特征数列”为1,0,1,0,…,1,0.即奇数项为1,偶数项为0.根据“E 的子集Q 的“特征数列”q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j≤98”可知子集Q 的“特征数列为1,0,0,1,0,0,…,0,1.即项数除以3后的余数为1的项为1,其余项为0,则P∩Q 的元素为项数除以6余数为1的项,可知有a 1,a 7,a 13,…,a 97,共17项.19.D5 设{a n }是首项为a ,公差为d 的等差数列(d≠0),S n 是其前n 项的和.记b n =nS nn 2+c,n∈N *,其中c 为实数.(1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n∈N *); (2)若{b n }是等差数列,证明:c =0.19.解:由题设,S n =na +n (n -1)2d. (1)由c =0,得b n =S n n =a +n -12d.又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d ,化简得d 2-2ad =0.因为d≠0,所以d =2a. 因此,对于所有的m∈N *,有S m =m 2a.从而对于所有的k ,n∈N *,有S nk =(nk)2a =n 2k 2a =n 2S k .(2)设数列{b n }的公差是d 1,则b n =b 1+(n -1)d 1,即nS n n 2+c =b 1+(n -1)d 1,n∈N *,代入S n 的表达式,整理得,对于所有的n∈N *,有⎝ ⎛⎭⎪⎫d 1-12d n 3+⎝⎛⎭⎪⎫b 1-d 1-a +12d n 2+cd 1n =c(d 1-b 1). 令A =d 1-12d ,B =b 1-d 1-a +12d ,D =c(d 1-b 1),则对于所有的n∈N *,有An 3+Bn 2+cd 1n =D(*).在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1, 从而有⎩⎪⎨⎪⎧7A +3B +cd 1=0,①19A +5B +cd 1=0,②21A +5B +cd 1=0,③由②,③得A =0,cd 1=-5B ,代入方程①,得B =0,从而cd 1=0. 即d 1-12d =0,b 1-d 1-a +12d =0,cd 1=0.若d 1=0,则由d 1-12d =0得d =0,与题设矛盾,所以d 1≠0.又因为cd 1=0,所以c =0.19.D5 已知首项为32的等比数列{a n }的前n 项和为S n (n∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明S n +1S n ≤136(n∈N *).19.解:(1)设等比数列{a n }的公比为q ,因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12.又a 1=32,所以等比数列{a n }的通项公式为a n =32×-12n -1=(-1)n -1·32n .(2)证明:S n=1--12n,S n+1S n=1--12n+11--12n=⎩⎪⎨⎪⎧2+12n(2n+1),n 为奇数,2+12n(2n-1),n 为偶数.当n为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.故对于n∈N *,有S n +1S n ≤136.。
2013年高考数列练习题及答案(理科)

2.(本小题满分16分)(2013江苏卷)设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b nn +=2, *N n ∈,其中c 为实数.(1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈); (2)若}{n b 是等差数列,证明:0=c .3.(本题满分14分)(2013浙江.理)在公差为d的等差数列{an }中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,an;(Ⅱ) 若d<0,求|a1|+|a2|+|a3|+…+|an| .4. (本小题满分12分) (2013陕西.理)设{}na是公比为q的等比数列.(Ⅰ) 推导{}na的前n项和公式;(Ⅱ) 设1q≠, 证明数列{1}na+不是等比数列.(Ⅱ)对任意*p N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足0n n p x x n+<-<8.(本小题满分14分)(2013广东.理) 设数列{}n a 的前n 项和为n S ,已知11a =,2*1212,()33n n S a n n n N n +=---∈. (1)求2a 的值(2)求数列{}n a 的通项公式n a (3)证明:对一切正整数n ,有1211174n a a a +++<L .11.(本小题满分12分)(2013江西.理)正项数列{}n a 的前n 项和n S 满足: (1) 求数列{}n a 的通项公式n a ; (2) 令221(2)n nn b n a +=+,数列{}n b 的前n 项和为n T .证明:对于任意n N *∈,都有564n T <.23. (本小题满分14分) (2013天津.理)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且335544,,S a S a S a +++成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值13.(本小题共13分)(2013北京.理)已知{}n a 是由非负整数组成的无穷数列,该数列前n 项的最大值记为n A ,第n 项之后各项12,,n n a a ++…的最小值记为n B ,n n n d A B =-.(Ⅰ)若{}n a 为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n *∈N ,4n n a a +=),写出1234,,,d d d d 的值;(Ⅱ)设d 是非负整数,证明:(1,2,3,n d d n =-=…)的充分必要条件为{}n a 是公差为d 的等差数列;(Ⅲ)证明:若12a =,1(1,2,3,n d n ==…),则{}n a 的项只能是1或者2,且有无穷多项为1.15. (本小题满分12分) (2013全国卷.理) 设{}n a 是公比为q 的等比数列. (Ⅰ) 推导{}n a 的前n 项和公式;(Ⅱ) 设1q ≠, 证明数列{1}n a +不是等比数列.20.(本小题满分12分)(2013四川.理)在等差数列{}n a 中,831=+a a ,且4a 为2a 和9a 的等比中项,求数列{}n a 的首项,公差及前n 项和。
专题八:数列2013-2016高考数学全国卷(文)

1、(2016全国I 卷17题)(本题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式; (II )求{}n b 的前n 项和.【答案】(I );(II )考点:等差数列与等比数列 2、(2015全国I 卷7题)已知是公差为1的等差数列,则=4,=(A ) (B ) (C )10 (D )12解析:18141110(1)1119,82844(46),,92222n n n S na S a S a a a -=+=+==+==+=,故答案选B.3、(2015全国I 卷13题)在数列{a n }中, a 1=2,a n+1=2a n , S n 为{a n }的前n 项和。
若S n =126,则n=.答案:6 解析:由a 1=2,a n+1=2a n ,可得1172,22126,22,6n n n n n a S n ++==-===4、(2014全国I 卷17题)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
(I )求{}n a 的通项公式; (II )求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. 【解析】:(I )方程2560x x -+=的两根为2,3,由题意得22a =,43a =,设数列{}n a 的公差为 d ,,则422a a d -=,故d=12,从而132a =, 所以{}n a 的通项公式为:112n a n =+ …………6 分 (Ⅱ)设求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为S n ,由(Ⅰ)知1222n nn a n ++=, 则:23413451222222n n n n n S +++=+++++ 34512134512222222n n n n n S ++++=+++++ 两式相减得 341212131112311212422224422n n n n n n n S ++++++⎛⎫⎛⎫=++++-=+-- ⎪ ⎪⎝⎭⎝⎭ 所以1422n n n S ++=-………12分 5、(2013全国I 卷6题)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( )(A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-6、(2013全国I 卷17题)(本小题满分12分)已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-。
2013年全国各地高考文科数学试题分类汇编5:数列-Word版含答案

2013年全国各地高考文科数学试题分类汇编5:数列一、选择题1 .(2013年高考大纲卷(文))已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于( )A .()-10-61-3B .()-1011-39C .()-1031-3D .()-1031+3【答案】C2 .(2013年高考安徽(文))设n S 为等差数列{}n a 的前n 项和,8374,2S a a ==-,则9a =( )A .6-B .4-C .2-D .2【答案】A3 .(2013年高考课标Ⅰ卷(文))设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则 ( ) A .21n n S a =-B .32n n S a =-C .43n n S a =-D .32n n S a =-【答案】D4 .(2013年高考辽宁卷(文))下面是关于公差0d>的等差数列()n a 的四个命题:其中的真命题为 ( )A .12,p pB .34,p pC .23,p pD .14,p p【答案】D 二、填空题5 .(2013年高考重庆卷(文))若2、a 、b 、c 、9成等差数列,则c a -=____________.【答案】726 .(2013年高考北京卷(文))若等比数列{}n a 满足243520,40a a a a +=+=,则公比q =__________;前n 项n S =_____.【答案】2,122n +-7 .(2013年高考广东卷(文))设数列{}n a 是首项为1,公比为2-的等比数列,则1234||||a a a a +++=________【答案】158 .(2013年高考江西卷(文))某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵树是前一天的2倍,则需要的最少天数n(n∈N*)等于_____________.【答案】69 .(2013年高考辽宁卷(文))已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】6310.(2013年高考陕西卷(文))观察下列等式:照此规律, 第n 个等式可为________.【答案】)12(5312)()3)(2)(1(-⋅⋅⋅⋅=++++n n n n n n n11.(2013年上海高考数学试题(文科))在等差数列{}n a 中,若123430a a a a +++=,则23a a +=_________.【答案】15 三、解答题12.(2013年高考福建卷(文))已知等差数列{}n a 的公差1d =,前n 项和为n S .(1)若131,,a a 成等比数列,求1a ; (2)若519S a a >,求1a 的取值范围.【答案】解:(1)因为数列{}n a 的公差1d=,且131,,a a 成等比数列,所以2111(2)a a =⨯+,即21120a a --=,解得11a =-或12a =. (2)因为数列{}n a 的公差1d =,且519S a a >, 所以21115108a a a +>+;即2113100a a +-<,解得152a -<<13.(2013年高考大纲卷(文))等差数列{}n a 中,71994,2,a a a ==(I)求{}n a 的通项公式; (II)设{}1,.n n n nb b n S na =求数列的前项和 【答案】(Ⅰ)设等差数列{}n a 的公差为d,则1(1)n a a n d =+-因为719942a a a =⎧⎨=⎩,所以11164182(8)a d a d a d +=⎧⎨+=+⎩.解得,111,2a d ==. 所以{}n a 的通项公式为12n n a +=. (Ⅱ)1222(1)1n n b na n n n n ===-++, 所以2222222()()()122311n n S n n n =-+-++-=++. 14.(2013年高考湖北卷(文))已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.【答案】(Ⅰ)设数列{}n a 的公比为q ,则10a ≠,0q ≠. 由题意得2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即 23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤- 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N .15.(2013年高考湖南(文))设n S 为数列{n a }的前项和,已知01≠a ,2n n S S a a ∙=-11,∈n N *(Ⅰ)求1a ,2a ,并求数列{n a }的通项公式;(Ⅱ)求数列{n na }的前n 项和.【答案】解: (Ⅰ) 11111121.S S a a n a S ⋅=-=∴=时,当 .1,011=≠⇒a a11111111222221----=⇒-=---=-=>n n n n n n n n n a a a a S a a S a a s s a n 时,当- (Ⅱ)n n n n qa n qa qa qa qT a n a a a T ⋅++⋅+⋅+⋅=⇒⋅++⋅+⋅+⋅= 321321321321设 上式左右错位相减:*,12)1(N n n T n n ∈+⋅-=⇒.16.(2013年高考重庆卷(文))(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设数列{}n a 满足:11a =,13n n a a +=,n N +∈. (Ⅰ)求{}n a 的通项公式及前n 项和n S ;(Ⅱ)已知{}n b 是等差数列,n T 为前n 项和,且12b a =,3123b a a a =++,求20T .【答案】17.(2013年高考天津卷(文))已知首项为32的等比数列{}n a 的前n 项和为(*)n S n ∈N , 且234,2,4S S S -成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 证明13*)61(n n S n S +≤∈N . 【答案】18.(2013年高考北京卷(文))本小题共13分)给定数列12n a a a ,,,.对1,2,,1i n =-,该数列前i 项的最大值记为i A ,后n i -项12i i n a a a ++,,,的最小值记为i B ,i i i d A B =-. (Ⅰ)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值;(Ⅱ)设12n a a a ,,,(4n ≥)是公比大于1的等比数列,且10a >.证明:1d ,2d ,,1n d -是等比数列;(Ⅲ)设1d ,2d ,,1n d -是公差大于0的等差数列,且10d >,证明:1a ,2a ,,1n a -是等差数列【答案】解:(I)1232,3,6d d d ===.(II)因为10a >,公比1q >,所以12n a a a ,,,是递增数列. 因此,对1,2,,1i n =-,i i A a =,1i i B a +=.于是对1,2,,1i n =-,111(1)i i i i i i d A B a a a q q -+=-=-=-.因此0i d ≠且1i id q d +=(1,2,,2i n =-),即1d ,2d ,,1n d -是等比数列.(III)设d 为1d ,2d ,,1n d -的公差.对12i n ≤≤-,因为1i i B B +≤,0d >,所以111i i i A B d +++=+i i B d d ≥++i i B d >+=i A . 又因为{}11max ,i i i A A a ++=,所以11i i i i a A A a ++=>≥. 从而121n a a a -,,,是递增数列,因此i i A a =(1,2,,2i n =-). 又因为111111B A d a d a =-=-<,所以1121n B a a a -<<<<.因此1n a B =. 所以121n n B B B a -====.所以i i a A ==i i n i B d a d +=+. 因此对1,2,,2i n =-都有11i i i i a a d d d ++-=-=,即1a ,2a ,,1n a -是等差数列.19.(2013年高考山东卷(文))设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a(Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈ ,求{}n b 的前n 项和n T 【答案】20.(2013年高考浙江卷(文))在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(Ⅰ)求d,a n ; (Ⅱ) 若d<0,求|a 1|+|a 2|+|a 3|++|a n | .【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时, ②当12n ≤时,所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩;21.(2013年高考四川卷(文))在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和.【答案】解:设{}n a 的公比为q .由已知可得211=-a q a ,211134q a a q a +=,所以2)1(1=-q a ,0342=+-q q ,解得 3=q 或 1=q , 由于2)1(1=-q a .因此1=q 不合题意,应舍去, 故公比3=q ,首项11=a .所以,数列的前n 项和213-=n n S22.(2013年高考广东卷(文))设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(1) 证明:2a =(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<. 【答案】(1)当1n =时,22122145,45a a a a =-=+,20n a a >∴(2)当2n ≥时,()214411n n S a n -=---,22114444n n n n n a S S a a -+=-=--()2221442n n n n a a a a +=++=+,102n n n a a a +>∴=+ ∴当2n ≥时,{}n a 是公差2d =的等差数列.2514,,a a a 构成等比数列,25214a a a ∴=⋅,()()2222824a a a +=⋅+,解得23a =,由(1)可知,212145=4,1a a a =-∴=21312a a -=-=∴ {}n a 是首项11a =,公差2d =的等差数列. ∴数列{}n a 的通项公式为21n a n =-.(3)()()1223111111111335572121n n a a a a a a n n ++++=++++⋅⋅⋅-+23.(2013年高考安徽(文))设数列{}n a 满足12a =,248a a +=,且对任意*n N ∈,函数1212()()cos -sin n n n n n f x a a a x a x a x ++++=-++⋅⋅ 满足'()02f π=(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若122nn n a b a =+(),求数列{}n b 的前n 项和n S . 【答案】解:由12a = 248a a +=所以,122n n n a a a ++=+{}n a ∴是等差数列.而12a = 34a = 1d = (2)111122121222n n n a n nb a n n +=+=++=++()()() 24.(2013年高考课标Ⅱ卷(文))已知等差数列{}n a 的公差不为零,a 1=25,且a 1,a11,a 13成等比数列.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求14732n a a a a -++++.【答案】25.(2013年高考江西卷(文))正项数列{a n }满足2(21)20n n a n a n ---=.(1)求数列{a n }的通项公式a n ; (2)令1(1)n nb n a =+,求数列{b n }的前n 项和T n .【答案】解:(21)20n n ---=2n n n n (1)由a a 得(a -2n)(a +1)=0 由于{a n }是正项数列,则2n =n a . (2)由(1)知2n =n a ,故11111()(1)(1)(2)2(1)n n b n a n n n n ===-+++26.(2013年高考陕西卷(文))设S n 表示数列{}n a 的前n 项和.(Ⅰ) 若{}n a 为等差数列, 推导S n 的计算公式;(Ⅱ) 若11,0a q =≠, 且对所有正整数n , 有11nn q S q-=-. 判断{}n a 是否为等比数列.【答案】解:(Ⅰ) 设公差为d,则d n a a n)1(1-+=)()()()(2111121121121a a a a a a a a S a a a a S a a a a S n n n n n n n n nn n ++++++++=⇒⎩⎨⎧++++=++++=---- )21(2)()(2111d n a n a a n S a a n S n n n n -+=+=⇒+=⇒. (Ⅱ) 1,011≠≠=q q a 由题知,. *21111N n q a n qn a n n n n ∈=⇒⎩⎨⎧≥==--,.所以,}{n a 数列是首项11=a ,公比1≠q 的等比数列.27.(2013年上海高考数学试题(文科))本题共有3个小题.第1小题满分3分,第2小题满分5分,第3小题满分8分.已知函数()2||f x x =-.无穷数列{}n a 满足1(),*n n a f a n N +=∈. (1)若10a =,求2a ,3a ,4a ;(2)若10a >,且1a ,2a ,3a 成等比数列,求1a 的值;(3)是否存在1a ,使得1a ,2a ,3a ,,n a 成等差数列?若存在,求出所有这样的1a ;若不存在,说明理由.【答案】28.(2013年高考课标Ⅰ卷(文))已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和.【答案】(1)设{a n }的公差为d,则S n =1(1)2n n na d -+. 由已知可得111330,1, 1.5105,a d a d a d +=⎧==-⎨+=-⎩解得(2)由(I)知212111111(),(32)(12)22321n n a a n n n n -+==-----从而数列21211n n n a a -+⎧⎫⎨⎬⎩⎭的前项和为1111111-+-++)2-1113232112nn n n-=---(.。
数列练习题及答案(通用)

必修5第二章《数列》 练习题一、选择题1.数列1,3,6,10,的一个通项公式是:( )A. 12+-=n n a nB.)1(21-=n n a nC.)1(21+=n n a nD.)1)(1(21+-=n n n a n2.若三个连续整数和为48,则紧随它们后面的三个连续整数的和是 ( ) A .48 B .46 C .54 D .573.等差数列的前三项依次为a-1,a+1,2a+3,则a 的值为 ( ) A .1 B .-1 C .0 D .24.在等差数列中,若1a +2a +…+10a =65,11a +12a +…+20a =165,则1a 的值为;( ) A. 1 B. 2 C. 3 D. 45.若ac >0,m 是a ,c 的等比中项,则有 ( )6.下列等比数列中,首项为1的是( )A.n n a 4=B.n n a 21=C.nn a ⎪⎭⎫⎝⎛⋅=313 D.122-⋅=n n a7.下列几种说法正确的是( )A. 常数列是等差数列也是等比数列B. 常数列是等比数列但不可能是等差数列C. 常数列是等差数列但不可能是等比数列D. 常数列是等差数列也可能是等比数列8.首项为3,末项为3072,公比为2的等比数列的项数有( )A. 11项B. 12项C. 13项D. 10项 9.在等比数列}{n a 中,,24,3876543==a a a a a a 则=11109a a a ( )A. 48B. 72C. 144D. 192 10.公差不为零的等差数列的第2,3,6项组成等比数列,则公比为 ( ) A 、1 B 、2 C 、3 D 、411.在等比数列{}n a 中,如果66=a ,99=a ,那么=3a ( )A 、4B 、23C 、916D 、312.在等比数列{}n a 中,5642a a a +=,则公比q 等于 ( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或213.若数列{}n a 的前n 项和322+-=n n S n ,则这个数列的前三项分别是: ( ) A. -1,1,3 B. 2,1,3 C. 2,1,0 D. 2,1,614.已知等比数列的公比是2,且前四项和为1,那么前八项之和为 ( ) A .15 B .17 C .19 D .2115.设等差数列{}n a 的公差为d ,如果它的前n 项和Sn=-n 2,那么 ( ) A 、2,12-=-=d n a n B 、2,12=-=d n a n C 、 2,12-=+-=d n a n D 、2,12=+-=d n a n二、填空题1.等差数列{a n }中,a 1=-1,a 7=8,则a 8=____。
2013年高考理科数学试题汇总解析--4数列

2013年高考理科数学试题汇总解析4、数列1.新课标1、7、设等差数列{}n a 的前n 项和为n s ,若,3,0,211==-=+-m m m s s s 则m= (A) 3 (B)4 (C)5 (D)6解:,3,2111=-==-=++-m m m m m m s s a s s a 则公差1=d ,021=⨯+=m a a s mm m m a a a a -=⇒=+⇒110,)1(2)1(21111+⨯+-=+⨯+=+++m a a m a a s m m m m 3)1(21=+⨯=m ,5=∴m 选C 2.新课标1、12、设n n n C B A ∆的三边长分别为n n n c b a ,,,n n n C B A ∆的面积为n s , ,3,2,1=n .若111112,a c b c b =+>,2,11n n n n n a c b a a +==++,21nn n a b c +=+,则 (A){}n s 为递减数列 (B){}n s 为递增数列 (C) {}12-n s 为递增数列, {}n s 2为递减数列 (D) {}12-n s 为递减数列, {}n s 2为递增数列解:取特殊值,以111C B A Δ的边111,,c a b 顺序设边长分别是:2.5,2,1.5;则第二个三角形 三边是:1.75,2,2.25;则第三个三角形三边是:2.15,2,1.875;……周长为定值4,形状越来越接近正三角形,也就是面积越来越大.选B.另解:设a a =1,则a c b 211=+,a a n =.由已知可得n nn n n a b c c b ++=+++211 当1=n 时,a a b c c b 2211122=++=+,当2=n 时,a a bc c b 2222233=++=+当3=n 时,,,2233344 a a b c c b =++=+即 a c b n n 2=+则n n n C B A ∆顶点n A 在以)(1n B B 也就是和)(1n C C 也就是为焦点,a 2为长轴的椭圆M 上,有因为n n n n c b c b -=-++2111,即11121c b c b n n n -⎪⎭⎫ ⎝⎛=--,n b 和n c 两边的差值越来越小,顶点n A 越来越靠近椭圆M 的上(或下)顶点,n n n C B A ∆边n n C B 上高越来越大,底边n n C B 长 为定值a ,所以面积越来越大.选B. 3.新课标1、14、若数列{}n a 的前n 项和3132+=n n a s ,则{}n a 的通项公式是n a . 解:1113132a a s =+=,所以11=a ,13132222+=+=a a s ,所以22-=a1>n 时,113232---=-=n n n n n a a s s a , 12--=∴n n a a 1)2(--=∴n n a4.新课标2、(3)等比数列{a n }的前n 项和为S n ,已知12310a a s += ,a 5 = 9,则a 1=(A )31 (B )-31 (C ) 91 (D )91- 解:12321310a a a a a s +=++= 99213=⇒=⇒q a a 又919811141=⇒==a a q a ,选C. 5.新课标2、(16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15 =25,则nS n 的最小值为________. 解:由S 10=0,S 15 =25,则09201101=+⇒=+d a a a ;5213251518=+⇒=d a a32,31=-=∴d a ,n n n n n d n n na s n 31031)1(313)1(2121-=-+-=-+= 2331031)(n n ns n f n -==,320,00320)(2==⇒=-='n n n n n f )(n f 在6≤n 时为递减,在7≥n 时为递增,所以 486310631)6(23-=-=f ,497310731)7(23-=-=f ,n ns 的最小值是-49. 6.安徽14、如图,互不-相同的点 n A A A A ,,,321和12,,,n B B B 分别在角O 的两条边上,所有n nA B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
√ √ 3 3 + ··· + n n
3 29. 已知数列 {an } 的前 n 项和为 Sn , 正数数列 {bn } 中 b2 = e,(e ≈ 2.718 为自然对数的底) 且 ∀n ∈ N∗ √ 总有 2n−1 是 Sn 与 an 的等差中项, bn+1 是 bn 与 bn + 1 的等比中项. (1) 求证:∀n ∈ N∗ 有 an < an+1 < 2n ; 3 (2) 求证:∀n ∈ N∗ 有 (an − 1) < ln b1 + ln b2 + · · · + ln bn < 3an − 1. (kuing) 2 30. 设正数序列 a1 , a2 , · · · , a9 a10 , 且 a1 + a2 + a3 + · · · + a10 = 30 和 a1 a2 · · · a10 < 21. 证明: 1 1 1 + + ··· + >9 a1 a2 a9 (kuing) 31. 无穷数列 {cn } 可由如下法则定义:cn+1 = |1 − |1 − 2cn ||, 而 0 c1 1.
y2k+1
明: 数列能取遍每个正整数并且恰好一次. (kuing) 27. 数列 {xn } 定义为 xn = 求证有如下不等式: xn+1 − xn < (kuing), (tieba), (tieba) 28. 已知 a1 = a2 = · · · = a2013 = 1,an+2013 = 自然数. (kuing) an+1 an+2 · · · an+2012 + 1 , 证明或否定: 对于任意 n,an 都是 an 1 n! √ 2+
4 √ 39. 证明数列 {[ 5n]} 中有无穷多个完全平方数. (tieba) 40. 已知数列 {an } 满足条件 an+1 = − (an + 1)2 , 首项 a1 = − 1 , 求数列的通项公式 an . (tieba) 2 an + 2
2 41. 设数列 {xn } 满足 xn+1 = ax2 n + bxn + c(a ̸= 0), 给定 x1 , 我们记 ∆ = b − 4ac, 则有 ( )2n−1 n− 1 b b (1) 当 ∆ − 2b = 0 时, 我们有 xn = a2 −1 x1 + − . 2a 2a ) n− 1 1 ( 2n−1 b (2) 当 ∆ − 2b = 8 时, 我们有 xn = α + β2 − . 2a ) a ( b t + 1 = 0 的根. (tieba) 其中 α, β 是方程 t2 − ax1 + 2
求证:{xn } 的每一项均为完全平方数. (tieba) 33. 设 µ(0, m) = 1 ,m m! 0, 而对 n 1, m 0, 递归定义:
n−1 ∑ µ(t, m + 1) t=0
µ(n, m) = 试求 µ(n, 0) 最简表达式. (tieba)
2(n − t)
34. 设数列 {an } 的前 n 项和为 Sn ,a1 ̸= 0,vSn+1 − uSn = a1 v , 其中 u, v 是正整数, 且 u > v, n ∈ N∗ .(2012 卓越) (1) 证明 {an } 为等比数列; (2) 设 a1 , ap 两项均为正整数, 其中 p i. 若 p a1 , 证明 v | u; mp−1 ,ap (m + 1)p−1 , 证明:Sp = (m + 1)p − mp 3.
2 [ √ ] [ ] 16. 已知 {xn } 满足 x1 = 1,xn+1 = 4xn + xn 11 , 求 x2013 的个位数字. 其中 x 表示对 x 取整. (kuing) 17. 设 a1 = a2 = (1 − 2an−2 )a2 1 n−1 , 且当 n = 3, 4, 5, · · · 时,an = 2 , 3 2an−1 − 4an−2 · a2 n−1 + an−2 (1) 求数列 {an } 的通项公式, 1 (2) 求证: − 2 是完全平方数. (kuing), (tieba) an
22. 在数列 {an },n ∈ N∗ 中, 已知 a1 = 1,a2k = −ak ,a2k−1 = (−1)k+1 ak ,k ∈ N∗ , 记数列 {an } 的前 n 项 和为 Sn . (1) 求 S5 ,S7 的值; (2) 求证: 对任意的 n ∈ N∗ , 有 Sn 0. (kuing)
38. 若数列 {an } 的前两项是 a1 = 3,a2 = 8, 并且该数列满足条件: (1){an } 是单调递增的; (2)an + 1 是一个完全平方数; (3) 若对于任意满足 p < q n 正整数 p、 q , 都有 ap aq + 1 是一个完全平方数; 试判断 a3 是否存在, 如果存在请求出 a3 , 如果不存在请说明理由. (tieba)
1 1 1 + +···+ = 2, 求 a2013 − 4a1 a1 a2 a2012
1 ,(n ∈ N∗ ), 求证:{an } 无上界. (kuing) a2 n 1 ,(n ∈ N∗ ), 求证:30 < a9000 < 30.01. (tieba) a2 n 1 ,(n ∈ N∗ ), 求证:14 < a100 < 15. (tieba) an 1 1 1 + + + ··· + a1 a2 a3 a2 a3 a4 a3 a4 a5
ii. 若存在正整数 m, 使得 a1 (tieba)
35. a1 = 20,a2 = 30,an+2 = 3an+1 − an . 求所有正整数 n, 使得 1 + 5an+1 an 为完全平方数. (tieba) √ an 2 1 36. 已知 a1 = 1,an+1 = + 均为正整数. (tieba) , 求证: 当 n > 1 时, 2 2 4an 2an − 1 37. 若 a1 = 1 1 , 且 an = (a1 an−1 + a2 an−2 + · · · + an−2 a2 + an−1 a1 ), 证明 {an } 单调递减. (tieba) 2 3n − 1
23. 已知:a1 = 1,an+1 an − 2n2 (an+1 − an ) + 1 = 0, 求 an . (kuing) 24. 已知:a0 = 2, a1 = 2, a2 = 6, 且对 n (kuing), (pep) 25. 已知:x0 = x1 = 1, x0 xn + x1 xn−1 + · · · + xn−1 x1 + xn x0 = 2n xn (n 26. 数列 {yn } 定义如下:y1 = 1, 对 k > 0,y2k = 2yk , 2y + 1, k k 为偶数, k 为奇数, 2). 求 xn . (kuing) 2yk , k 为奇数, = . 证 2y + 1, k 为偶数. k 3 有 an = (n + 4)an−1 − 4nan−2 + (4n − 8)an−3 . 求:an .
18. 数列 {an } 满足 an+1 = 3an − 3a2 n. 1 2 3 (1) 若 a1 = , 求证: < a2 n 2 3 4 (2) 在 (1) 条件下, 求证: 数列 an 单调递减. (tieba) 19. 设数列 {an } 满足 a1 = (tieba), 20. 已知数列 {an } 的前 n 项和为 Sn ,a1 = a(a > 0). 且满足 an+1 = 项公式. (tieba), (tieba) 21. 设无限数列 a1 1 (k 是给定的大于 1 的自然数). 求证: 2k 可以找到 k 个项, 其中最小的数大于最大的数的一半. (tieba) a2 a3 · · · 的各项的和为 1, 其中 a1 = √ 2 , 求数列 {a } 的通 a2 + aSn + Sn n 8a4 1 3(an−1 − 1) 2 n−1 , a2 = , + + 1 = 0(n 9 3 an + an−1 an + an−1 2), 求 {an } 的通项公式.
9. 已知数列 {an } 满足:a1 = 1,a2 = 2,a3 = 3,a4 = 4,a5 = 5, 且当 n 列 {bn } 满足对任意 n ∈ N , 有 bn = a1 a2 · · · an −
+
10. 数列 {an } 满足 a1 > 1,an+1 − 1 = an (an − 1), 且 (n ∈ N∗ ), 的最小值. (kuing) 11. 数列 {an } 满足 a1 > 1,an+1 = an + 12. 数列 {an } 满足 a1 = 1,an+1 = an + 13. 数列 {an } 满足 a1 = 1,an+1 = an +
数列经典题目 1. 设数列 {an },a1 = 2, an+1 = a2 n − an + 1,n = 1, 2 · · · , 1 1 1 1 证明:1 − < + + ··· + < 1. (kuing), (tieba) 2008 2008 a1 a2 a2008 2. 已知数列首项 a1 = 3, 满足递推关系 an+1 = a2 1), 求数列 an 的通项公式. (kuing), (tieba) n − 2,(n 4an − 2an−1 n为奇数 3. 已知 a0 = 1, a1 = 1, an+1 = , 求 an . (kuing) a + 3 a n为偶数