约束混凝土模型在大震作用下8度区结构中的比较研究

合集下载

约束混凝土损伤塑性模型的研究

约束混凝土损伤塑性模型的研究

约束混凝土损伤塑性模型的研究葛康;陈世鸣【摘要】混凝土损伤塑性模型经常用于混凝土结构的动力损伤分析中,目前国内外针对此模型的研究还仅限在未约束混凝土中,探讨了基于我国现行设计规范中所提供的混凝土单轴本构模型、未约束混凝土塑性损伤模型理论与约束混凝土的单向受压本构模型,提出了适用于约束混凝土的损伤塑性模型,并通过对约束混凝土柱实例进行分析,为进一步将该损伤模型应用于约束混凝土结构的非线性损伤分析提供了参考依据.【期刊名称】《结构工程师》【年(卷),期】2015(031)001【总页数】7页(P14-20)【关键词】混凝土;本构关系;塑性损伤模型;约束混凝土【作者】葛康;陈世鸣【作者单位】同济大学结构工程与防灾研究所,上海200092;同济大学结构工程与防灾研究所,上海200092【正文语种】中文随着现代复杂高层结构的日益增多,传统的弹性设计和分析方法已不能满足混凝土结构设计的需要。

在现有抗震规范中也建议对于不规则且具有明显薄弱部位可能导致重大地震破坏的建筑结构,应运用有限元分析软件进行罕遇地震作用下的弹塑性变形和受力分析。

其中在通用有限元分析软件中提供的多种混凝土材料模型中,损伤塑性模型[1-3](Concrete Damaged Plasticity(CDP) Model)可以模拟出混凝土材料的拉裂和压碎等力学现象,并考虑了混凝土材料的损伤效应,非常适合模拟在动力作用下的混凝土结构行为。

但目前国内外针对该模型的研究和应用仅局限于未约束的普通混凝土材料,在约束混凝土结构分析中还未涉及。

本文基于我国现行混凝土设计规范中提供的未约束混凝土的单轴本构模型、受压受拉塑性损伤因子、约束混凝土的受压本构模型,提出了适用于约束混凝土的塑性损伤模型,为约束混凝土结构的非线性损伤分析提供参考依据。

通用有限元分析软件ABAQUS中的塑性损伤模型是由Lubliner[4]提出并由Lee J 和Fenves G L[5]改进的塑性损伤模型,一般可用来模拟混凝土和其他脆性材料在与中等围压条件(围压通常小于单轴抗压强度的五分之一)下不可逆损伤特性。

mander约束【混凝土】本构模型

mander约束【混凝土】本构模型

1 横向配筋的作用混凝土结构中的配筋有两种:直接钢筋和间接钢筋。

直接配筋即沿构件轴力或主应力方向设置的纵向钢筋,直接承担拉力或者压力,钢筋的应力与轴力方向一致;间接配筋又称横向配筋,沿与压应力与最大主压应力垂直的方向设置,通过约束混凝土的横向变形,提高轴向抗压承载力。

横向配筋有多种,比如螺旋(圆形)箍筋、矩形箍筋、钢管、焊接网片等。

其主要作用是约束其内部混凝土的横向变形,使之处于三轴受压应力状态,从而提高了其强度和变形能力。

下面就箍筋对混凝土的约束作用做以简单分析。

箍筋的作用有许多种,•抗剪。

除了直接承受剪力外,还间接限制了斜裂缝的开展宽度,增强了腹部混凝土的骨料咬合力;还约束了纵筋对混凝土保护层的撕脱,增大了钢筋的销栓力;同时,纵筋与腹筋形成的骨架使内部混凝土受到约束,这也有利于抗剪;•通过减小纵筋的自由长度,防止纵筋受力后压屈,充分发挥其抗压强度,同时也起到固定纵筋位置的作用;•对于密排箍筋,通过约束核心区混凝土,提高了混凝土的抗压强度及延性(极限变形能力);•长期荷载作用下,可以承受因混凝土收缩和环境湿度变化等产生的横向应力,以防止或减少纵向裂缝;其中,通过约束核心区混凝土,提高受压混凝土的抗压强度及延性,对于地震区的混凝土结构尤为重要。

适当地增加箍筋和改进构造形式成为提高结构抗震性能的最简单、经济和有效的措施之一。

2 影响箍筋约束作用的因素箍筋对约束混凝土的增强作用,除了受被约束混凝土自身强度的影响外,主要取决于它能够施加在核心区混凝土表面的约束力的大小。

约束力越大,对混凝土的增强就越多。

约束力主要受以下几个因素影响:•体积配箍率。

体积配箍率隐含反应了四个因素:箍筋强度、直径、间距及(计算配箍方向的)核心区宽度(对于螺旋或圆形配箍的圆形截面,指核心区直径)。

箍筋的强度和直径直接决定了箍筋所能提供的约束力的大小,箍筋间距及核心区宽度则影响约束力在相邻箍筋间的分布。

对于矩形截面,通常两个方向上的尺寸和配箍形式不一样,因此提供的约束力也不一样,所以应分别计算两个方向的配箍率。

超高层建筑结构 benchmark 模型及其地震反应分析

超高层建筑结构 benchmark 模型及其地震反应分析

超高层建筑结构 benchmark 模型及其地震反应分析吕西林;姜淳;蒋欢军【摘要】参照上海中心,根据设定的性能目标设计了一个超高层建筑结构的benchmark 模型用于超高层建筑结构抗震研究。

该结构总高度为606.1 m,抗震设防烈度为7度,场地类别为 IV 类,设计分组为第一组。

该结构采用巨型框架-核心筒-伸臂桁架钢-混凝土混合结构体系,8道环带桁架将结构分为9个区,环带桁架与型钢混凝土巨柱共同构成了巨型框架结构体系,并通过6道伸臂桁架与核心筒相连,共同承受水平荷载。

利用 PERFORM-3D 软件建立了结构的非线性数值计算模型,对结构进行了弹塑性地震反应分析,验证了结构的抗震性能。

计算结果表明,满足现行设计规范的该超高层结构在大震作用下具有较大的安全余量。

%This paper proposes a benchmark model of mega-tall buildings for investigating the seismic performance.The structure is designed based on the prototype of Shanghai Tower with the specific seismic performance objective.The total height of the structure is 606.1 m,with the seismic fortification of intensity of 7.The soil type is IV,and the seismic design class is the 1st class.The mega frame-core tube with outriggers steel-concrete composite structure system is adopped.The structure is divided into 9 zones by 8 belted trusses which form the mega frame system together with SRC mega-columns.The mega frame is connected to the core tube with 6 outrigger trusses,resisting the lateral load together.The elasto-plastic analysis of the model is conducted to validate the seismic performance by using PERFORM-3D software.The result shows that thestructure which meets the requirements of the current design code has a considerable safety margin under severe earthquakes.【期刊名称】《结构工程师》【年(卷),期】2015(000)004【总页数】8页(P100-107)【关键词】超高层建筑;Benchmark 模型;抗震性能;数值模拟【作者】吕西林;姜淳;蒋欢军【作者单位】同济大学结构工程与防灾研究所,上海 200092;同济大学结构工程与防灾研究所,上海 200092;同济大学结构工程与防灾研究所,上海 200092【正文语种】中文Abstract This paper proposes a benchmark model of mega-tall buildings for investigating the seismic performance.The structure is designed based on the prototype of Shanghai Tower with the specific seismic performance objective.The total height of the structure is 606.1 m,with the seismic fortification of intensity of 7.The soil type is IV,and the seismic design class is the 1st class.The mega frame-core tube with outriggers steel-concrete composite structure system is adopped.The structure is divided into 9 zones by 8 belted trusses which form the mega frame system together with SRC mega-columns.The mega frame is connected to the core tube with 6 outrigger trusses,resisting the lateral load together.The elasto-plastic analysis of the model is conducted tovalidate the seismic performance by using PERFORM-3D software.The result shows that the structure which meets the requirements of the current design code has a considerable safety margin under severe earthquakes.Keywords mega-tall building,benchmark model,seismic performance,numerical simulation随着我国经济的快速发展,超高层建筑结构普遍出现在我国的各大城市,超高层结构的抗震问题也成了学术界研究的一个热点。

论述钢筋混凝土框架结构设计过程中一些问题

论述钢筋混凝土框架结构设计过程中一些问题

论述钢筋混凝土框架结构设计过程中一些问题0前言在框架结构设计过程中,特别是采用设计软件进行设计计算时,对设计软件不是很熟悉的设计人员常常会出现独立基础设计荷载取值不当、框架计算简图不合理、基础拉梁层的计算模型不符合实际情况、基础拉梁设计不当以及结构计算中几个重要设计参数的选取不合理等问题,由此将会造成设计结果不正确而使设计方案无法使用,从而浪费了设计人员的很大精力。

本文就这些问题逐一进行分析,并结合设计实际情况对问题的解决提出一系列经验方法,希望给广大设计人员有所帮助。

1关于结构计算模式中几个问题1.1框架计算简图的确定对于无地下室的钢筋混凝土多层框架结构设计,当独立基础埋置较深且-0105m左右设有基础拉梁时,是否应将基础拉梁按一个楼层记取于框架计算简图中,这是一个值得关注的问题。

以某学生宿舍楼为例,该项目为3层钢筋混凝土框架结构,丙类建筑,建筑场地为Ⅱ类;层高3.3m,基础埋深4.0m,基础高度0.8m,室内外高差0.45m。

若根据《建筑抗震设计规范》第6.1.2条规定“在8度地震区该工程框架结构的抗震等级为二级”,设计者可按3层框架房屋计算:首层层高取3.35m,即假定框架房屋嵌固在-0.05m处的基础拉梁顶面;基础拉梁的断面和配筋按构造设计;基础按中心受压计算。

如果照此计算简图运算,就会出现2个问题:第1是按构造设计的拉梁无法平衡柱脚弯矩;第2是不符合GB50010-2002《混凝土结构设计规范》第7.3.11条的规定,即“框架结构底层柱的高度应取基础顶面至首层楼盖顶面的高度”。

在实际工程设计中,为了能够达到设计与实践的高度吻合,我们可以将基础拉梁层按层1记取输入。

为此,上例框架结构按4层进行整体分析计算(拉梁上如有荷载作用应将荷载一并输入),计算剪力的首层层高为H1=4.0�C0.8�C0.05=3.15m,第2层层高为3.35m,第3、4层高为3.3m。

同时,根据《建筑抗震设计规范》第6.2.3条规定,可以将框架柱底层柱脚弯矩设计值乘以增大系数1.25。

钢-混凝土组合结构抗震性能研究进展

钢-混凝土组合结构抗震性能研究进展

㊃综㊀述㊃钢结构(中英文),38(12),1-26(2023)DOI :10.13206/j.gjgS 23062902ISSN 2096-6865CN 10-1609/TF㊀㊀编者按:当前我国第五代GB 18306 2015‘中国地震动参数区划图“明确了基本㊁多遇㊁罕遇和极罕遇等四级作用的地震动参数确定方法并提高了工程结构抗震设防标准㊂组合结构适应国家新型城镇化建设重大需要,在城市人口密集区域和抗震设防高烈度区域具有广泛应用价值㊂由于钢管混凝土柱存在间接约束以及界面滑移等特性,其抗震能力可进一步挖掘,以提升强震下重要工程结构的安全性,或者在维持相同性能时节约材料用量㊂学者们通过模型试验㊁理论研究以及关键技术研发,所形成的系列成果在工程结构中得到了成功应用㊂为此,‘钢结构(中英文)“杂志特邀丁发兴教授为主编,系统组织了两期(本期及2024年第1期) 组合结构抗震性能与韧性提升 专栏,向读者介绍国内针对钢管混凝土柱㊁钢管混凝土柱-组合梁节点㊁组合框架以及组合框架-筒体结构等方面的最新研究成果,探讨各有效措施对抗震性能的影响规律,以期推动组合结构技术的完善与升级㊂钢-混凝土组合结构抗震性能研究进展∗丁发兴1,2㊀许云龙1㊀王莉萍1,2㊀吕㊀飞1,2㊀段林利1,2㊀余志武1,2(1.中南大学土木工程学院,长沙㊀410075;2.湖南省装配式建筑工程技术研究中心,长沙㊀410075)摘㊀要:钢-混凝土组合结构因具有抗弯刚度大㊁承载力高㊁延性好和施工便捷等优点,适应国家新型城镇化建设重大需要,在城市人口密集区域和抗震设防高烈度区域应用广泛㊂在提高工程结构抗震设防标准的背景下,研究钢-混凝土组合结构的抗震性能,进一步提升其抗震韧性,建立具有更高韧性的钢-混凝土组合结构抗震设计方法对促进建筑结构实现 双碳 战略目标具有重要意义㊂为此,归纳总结了钢-混凝土组合结构抗震性能的研究进展,包括钢-混凝土组合梁㊁钢管混凝土柱及钢管混凝土柱-组合梁节点的滞回性能试验研究,以及钢-混凝土组合结构体系的拟静力㊁拟动力及振动台试验研究,讨论并比较了各种抗震分析模型及其方法,提出了当前研究存在的一些问题和尚需深入研究的方向㊂基于现有研究成果总结得到:1)组合梁主要依靠钢梁耗能,可采取增大钢梁截面尺寸的措施提高耗能能力㊂钢管混凝土柱主要依靠钢管和混凝土耗能,可采取拉筋增强约束措施直接约束混凝土,使其由脆性向塑性转变从而提高框架柱的耗能能力㊂与其他类型组合节点相比,刚性连接组合节点具有更好的耗能能力㊂2)罕遇地震下框架结构以梁耗能为主,而在超罕遇地震下仍以梁作为主要耗能部件将使工程成本大幅增加㊂由于超罕遇地震发生概率极低,若采取适当的增强约束措施使柱也具备耗能能力并参与耗能,则可在适当增加工程建设成本的同时使结构具有抵抗超罕遇地震的能力,此时组合结构抗震设计理念可由罕遇地震时的 强柱弱梁,梁耗能为主 向超罕遇地震时的 梁柱共同耗能 推进㊂3)基于平截面假定的杆系纤维模型计算软件通常适用于弹性和弹塑性小变形阶段分析,而当组合结构处于塑性大变形阶段时,结构杆件便不再符合平截面假设㊂对强震下组合结构体系的动力响应仿真模拟需要克服弹塑性小变形阶段的假定条件,采用适用于塑性大变形阶段结构分析的混凝土三轴弹塑性本构模型及相应的体-壳元模型是一种有效的途径㊂4)剪力墙结构具有整体性好㊁侧向刚度大等优点,但传统构造下其抗震能力较弱,可通过提升连梁和墙肢等耗能构件的耗能能力以增强结构整体耗能能力,如采用钢-混凝土组合连梁㊁型钢混凝土连梁或合理构造钢板连梁,以及型钢-约束混凝土或钢管混凝土墙肢等㊂5)工程结构在使用阶段面临着诸多灾害考验,传统方法根据不同外荷载进行独立抵抗设计,忽视了多灾害耦合作用机制,使结构综合抗灾性能难以满足使用需求,故建立安全可靠的抗多灾害设计方法和结构体系是结构工程师在防灾减灾领域的一项重大课题㊂关键词:钢-混凝土组合梁;钢管混凝土柱;钢-混凝土组合结构;抗震性能;试验研究∗国家自然科学基金项目(51978664)㊂第一作者:丁发兴,男,1979年出生,博士,教授㊂通信作者:王莉萍,女,1987年出生,博士,副教授,wlp2016@㊂收稿日期:2023-06-290㊀引㊀言中国是世界上地震灾害最严重的国家之一,地震灾害给人类社会活动造成了不可估量的损失㊂大量建筑结构因抗震能力不足而倒塌,造成的人员伤1丁发兴,等/钢结构(中英文),38(12),1-26,2023亡和经济损失使得抗震减灾技术成为结构工程师们面临的主要考验㊂为提高建筑结构的抗震性能,研究者们在结构布置和局部构造等方面展开了大量的研究工作㊂钢-混凝土组合结构因充分发挥了两种材料的力学性能优势,提升了结构的刚度㊁承载力和耗能能力而在高层及超高层建筑结构中得到了广泛应用[1]㊂随着经济社会的发展,工程结构抗震设防标准也在不断提升,研究钢-混凝土组合结构的抗震性能,进一步提升其抗震韧性,建立具有更高韧性的钢-混凝土组合结构抗震设计方法,对促进建筑结构实现 双碳 战略目标具有重要意义㊂组合结构中,钢-混凝土组合梁和钢管混凝土柱的材料利用效率最高,其抗震性能提升明显㊂为此,笔者对国内外相关钢-混凝土组合结构的主要研究成果进行归纳总结,对组合结构抗震性能方面需要进一步深入研究的工作进行展望,以期为后续研究工作提供一些参考和建议㊂1㊀钢-混凝土组合构件及节点抗震性能1.1㊀钢-混凝土组合梁钢-混凝土组合梁由钢梁和混凝土板通过栓钉连接而成,发挥了混凝土的抗压性能和钢材的抗拉性能优势㊂Daniels等[2]对组合框架中的组合梁进行了抗震性能研究,并给出了组合梁的弹塑性分析方法㊂文献[3-5]先后对组合梁进行了低周往复试验研究,结果表明组合梁具有良好的耗能能力和延性,增设腹板加劲肋或增加腹板厚度能明显提高组合梁的极限承载力,改善构件延性㊂Gattesco 等[6-7]㊁Taplin等[8]和Bursi等[9-10]着重研究了剪力连接件对组合梁抗震性能的影响,指出剪力连接件的布置方式直接影响界面滑移量,进而影响组合梁极限承载力㊂国内聂建国等[11]首先进行了6组钢-混凝土叠合板组合梁低周往复荷载试验研究,结果表明钢-混凝土叠合板组合梁的滞回曲线饱满,且存在界面滑移,其剪力连接度直接影响构件正向极限抗弯承载力,而反向极限抗弯承载力则可依据简化塑性方法计算得出㊂此后,蒋丽忠等[12-16]和Ding等[17]先后对低周往复荷载下钢-混凝土组合梁的抗震性能进行了系列试验研究,分别探讨了剪力连接度㊁力比㊁栓钉直径㊁腹板厚度㊁纵向和横向配箍率对组合梁抗震性能的影响规律,并建立了恢复力模型[13]㊂Liu等[18]建立了三维实体-壳元模型,其中钢梁采用壳单元,混凝土采用实体单元,栓钉采用梁单元或弹簧单元,分析结果表明组合梁的抗震能力主要依靠钢梁翼缘,增大钢梁尺寸有利于提高抗震能力,而增大栓钉剪力连接度也有利于提高钢梁的耗能㊂1.2㊀钢管混凝土柱钢管混凝土柱由外钢管内部填充混凝土而成㊂自1965年日本九州大学学者Sasaksi和Wakaba-yashi对方钢管配筋混凝土柱进行拟静力试验后[19],Tomii等[20]也开展了圆钢管混凝土柱拟静力试验研究,表明钢管混凝土柱比钢筋混凝土柱具有更大的极限承载力,更好的延性和耗能能力,以及更小的刚度退化等特点㊂Elremaily等[21]最早根据试验结果和理论分析指出钢管约束作用提升了柱承载力和抗震性能㊂随后有关钢管混凝土柱抗震性能研究越来越丰富,研究者们分别从材料强度㊁轴压比㊁宽(径)厚比和长细比等方面探讨了钢管混凝土柱抗震性能规律㊂在材料强度方面,吕西林等[22]㊁韩林海等[23]和Liu等[24]先后研究了混凝土强度对钢管混凝土柱抗震性能的影响规律,结果显示随着混凝土强度的提升,试件初始刚度略有增大,极限承载力也有所提高,但其延性和耗能能力均下降,且刚度退化加快㊂游经团等[25]和Yadav等[26]的试验结果表明:增大钢管屈服强度能够明显提升极限承载力,但对初始抗弯刚度几乎无影响㊂Varma等[27-28]探讨了钢材强度对柱抗震性能的影响规律,低轴压比下柱的延性系数随钢材强度的增大而降低,而当轴压比较大时,该规律并不明显㊂在轴压比方面,吕西林等[22]㊁Liu等[24]㊁游经团等[25]㊁Varma等[27-28]㊁张春梅等[29]㊁李学平等[30]㊁李斌等[31]㊁聂瑞锋等[32]和Cai等[33]通过试验研究发现,轴压比是影响柱抗震能力的直接因素,增大轴压比导致水平承载力㊁延性和耗能能力下降,刚度退化明显㊂在宽(径)厚比方面,吕西林等[22]㊁Liu等[24]㊁Yadav等[26]和李学平等[30]的试验表明,试件水平极限承载力随着宽(径)厚比增大而降低㊂Varma 等[27-28]㊁李斌等[31]和余志武等[34]指出,提高宽(径)厚比可使其延性系数下降㊂聂瑞锋等[32]和Matsui等[35]指出,宽(径)厚比越大,耗能能力越弱㊂在长细比方面,李斌等[31]㊁聂瑞锋等[32]和邱增美等[36]通过试验研究表明,随着长细比的增加,钢管混凝土柱初始刚度明显降低,刚度退化加快,水平2钢-混凝土组合结构抗震性能研究进展承载力和耗能能力变弱,延性系数也明显下降,当长细比达到一定值时延性系数下降更快㊂为加强大宽(径)厚比钢管对混凝土的约束作用而提升其抗震性能,学者们陆续提出了诸多约束措施,如在柱端部焊接钢板或角钢[37],包裹纤维复合材料[38],设置约束拉杆[39]㊁栓钉[40]㊁加劲肋[41]或斜拉肋[42]等局部加强措施,如图1a ~1g 所示,这些局部加强构造一定程度上延缓了柱端塑性铰的形成与发展㊂a 钢板约束;b 角钢约束;c 纤维复合材料约束;d 拉杆约束;e 栓钉约束;f 加劲肋约束;g 斜拉肋约束;h 内拉筋约束㊂图1㊀各种约束方式下的钢管混凝土柱由于钢管对混凝土的约束作用为间接被动约束,丁发兴[43]在比较各种约束方式后提出了内拉筋约束钢管混凝土柱技术,如图1h 所示,并揭示了内拉筋直接约束混凝土的工作原理㊂此后,丁发兴课题组开展了端部拉筋钢管混凝土柱抗震性能试验研究,截面形式包括矩形[44]㊁圆形[45]㊁椭圆形[46]㊁圆端形[47]等,探讨了拉筋与钢管内表面接触方式的影响[48],试验结果表明,实际轴压比高达0.8的超高轴压比钢管混凝土柱仍呈现延性破坏,且钢管混凝土柱塑性铰展现出小偏压和大偏压两个阶段,其韧性得到进一步提升㊂同时,课题组基于体-壳元模型进行了有限元模拟,其中混凝土采用实体单元,钢管采用壳单元,拉筋采用杆单元,分析结果表明,压弯荷载下拉筋具有降低界面滑移㊁直接约束混凝土以及促进钢管抗弯等效果,从而提高抗弯刚度㊁承载力和耗能能力,其中拉筋大幅度提高了混凝土的耗能能力[49]㊂1.3㊀钢管混凝土柱-组合梁节点作为钢-混凝土组合结构的关键传力部位,组合节点的剪力主要通过钢梁腹板传递,其次通过节点区混凝土和钢管壁间的黏结力和摩擦力传递,而弯矩则主要由加强环板㊁内隔板等构件传递[50]㊂现有节点试验不少是以钢管混凝土柱和纯钢梁的连接为研究对象,而相关组合框架及组合节点的试验研究结果表明,钢梁与楼板在进入弹塑性阶段之后仍能发挥明显的组合效应[51],这种组合效应能显著提高结构的刚度㊁强度及耗能能力,抑制钢梁上翼缘屈曲,增强钢梁的稳定性[52]㊂另外,当节点区域受正向弯矩作用时,楼板与钢梁的组合效应更为显著[53-54],楼板的存在将使中性轴上移,导致钢梁下翼缘应变明显增大,从而促使下翼缘更易发生屈服及破坏,降低组合梁的转动能力[55]㊂鉴于钢筋混凝土楼板对节点区域及结构体系具有重要影响,笔者仅对考虑楼板的组合节点抗震性能试验进行梳理㊂组合梁节点及框架试验表明负弯矩区钢梁下翼缘由于受压易过早出现局部屈曲和失稳的问题,李杨等[56]在普通组合梁负弯矩区下翼缘增设一块混凝土板,开展了钢-混凝土双面组合梁节点的抗震性能试验,与普通组合梁节点相比,双面组合梁节点具有更高的刚度和承载力,但在刚度退化㊁延性系数和耗能能力等方面无明显优势㊂在削弱式节点方面,Xiao 等[57]和Li 等[58]对带楼板的狗骨式节点进行了拟静力试验,结果表明,减小梁截面可促进削弱区域塑性铰的形成,有效避免节点核心区焊缝撕裂㊂在传统刚性节点方面,聂建国课题组先后完成了内隔板式节点[59]㊁栓钉内锚固式节点㊁外隔板式节点[60]和内隔板贯通式节点[61]的拟静力试验研究㊂研究发现:内隔板式节点表现出较强的极限承载能力,但其位移延性系数低;而栓钉内锚固式节点具有较强的变形能力,但极限承载力较低;相比之下,外隔板式节点和内隔板贯通式节点在极限承载能力㊁位移延性系数和耗能能力等方面均具有良好的性能[60-61]㊂此外,聂建国等[62]建立了组合节点剪力-剪切变形曲线的恢复力模型,提出了组合节点屈服抗剪承载力和极限抗剪承载力计算公式㊂韩林海课题组[63-64]采用外环板式节点对圆钢管混凝土柱-组合梁节点进行拟静力试验研究,提出了节点的抗剪承载力公式和核心区剪力-剪切变形恢复力模型㊂周期石等[65]提出了楼板钢筋和钢梁翼缘削弱穿入钢管混凝土柱的刚接节点,发现楼板钢筋的穿入增强了节点区域钢梁抗弯刚度和楼板的组合效应,而钢梁翼缘削弱的穿入降低了穿入钢梁对浇筑柱中混凝土的影响㊂研究表明,对于钢梁翼缘削弱穿入钢管混凝土柱的刚接节点,当削弱程度不大时,节点具有良好的抗震性能,但仍将降低节点的刚3丁发兴,等/钢结构(中英文),38(12),1-26,2023度㊁承载力和耗能能力㊂在半刚性节点方面,Mirza等[66]分别对半刚性单边螺栓节点进行了静力和拟静力试验,并根据有限元分析结果给出了构造设计方法㊂王静峰等[67-69]进行了半刚性单边螺栓节点试验,包含圆㊁方钢管和带纵向加劲肋钢管的拟静力试验以及带纵向加劲肋钢管混凝土柱的拟动力试验㊂试验结果表明,圆钢管混凝土柱-组合梁节点的承载力和弹性刚度要大于方截面[67];外伸端板连接节点的承载力和弹性刚度要大于平齐端板连接,而其转动能力和延性性能要低于平齐端板连接[68-69]㊂Yu等[70]提出了上焊下栓式的节点连接方式,即钢梁上翼缘与柱隔板焊接,下翼缘与柱隔板通过螺栓连接,螺栓连接处板件的滑移有利于降低钢梁下翼缘应力,避免出现过早断裂的现象㊂欧洲规范[71]中,根据初始转动刚度大小,将节点分为铰接㊁半刚性连接和刚性连接;根据抗弯承载力大小,将节点分为铰接㊁部分强度和全强度㊂Ding 等[72]认为该分类标准对于半刚性连接节点的定义较为宽泛,难以准确判定试件的类型,应根据节点的初始转动刚度㊁抗弯承载力和耗能能力等性能指标综合定义,并将其细化为半刚接㊁准刚接㊁Ⅰ类刚接和Ⅱ类刚接四类㊂据此,丁发兴等[73]完成了端板螺栓连接和加强环连接组合梁节点的拟静力试验,利用柱内拉筋 强柱 构造和加劲肋 强梁 构造技术实现了节点核心区强连接,显著提升了螺栓连接节点的初始转动刚度㊁抗弯承载力和耗能能力,使栓连节点达到了刚性节点的性能要求㊂同时,内拉筋 强柱 构造技术实现了轴压比高达0.8时,组合节点梁端发生弯曲破坏的失效模式㊂除了以上相关平面框架组合节点抗震性能试验研究外,樊健生等[74-75]从加载路径㊁混凝土楼板㊁柱类型及节点位置等方面对空间组合内隔板贯通式节点进行了拟静力试验,结果表明空间受力的节点在承载力和延性性能等方面均有明显下降,因此平面荷载作用不能完全反映其抗震性能,在节点设计中应考虑空间荷载的耦合作用㊂2㊀钢-混凝土组合结构体系抗震性能组合梁㊁柱及其组合节点等构件的研究最终以在结构体系中的应用为落脚点,因而各类组合构件集成后的体系响应是工程实践重要的关注点之一㊂笔者以钢-混凝土组合框架结构为主要对象,根据不同试验方法分别梳理了研究者在有关结构体系抗震方面的研究成果㊂2.1㊀试验研究2.1.1㊀拟静力试验Matsui[76]㊁Kawaguchi等[77-78]㊁马万福[79]㊁钟善桐等[80]㊁李斌等[81]㊁王来等[82]㊁李忠献等[83]和王先铁等[84]对钢-混凝土组合框架模型进行了系列抗震性能试验研究,指出钢-混凝土组合框架结构的抗震性能要优于钢筋混凝土框架和钢框架结构㊂为研究混凝土楼板在框架结构中的组合效应,聂建国等[85]完成了4层单跨纯钢框架和组合框架结构的拟静力试验㊂结果表明:与整体性较差的纯钢框架相比,组合框架的抗侧刚度因混凝土楼板空间作用而大幅提升㊂Tagawa等[86]㊁Nakashima 等[87]和聂建国等[52,88]分别进行了足尺框架子结构拟静力试验,探讨了混凝土楼板对结构刚度㊁强度㊁耗能及变形能力的影响规律,确定了在结构设计中楼板组合效应的有效计算宽度㊂王文达等[89]㊁王先铁等[90]和余志武等[91]以柱截面形状㊁材料强度㊁含钢率㊁轴压比和梁柱线刚度比等为研究对象,对组合框架结构开展了往复荷载作用下的试验研究,探讨了各参数对组合框架结构抗震性能的影响规律,提出了钢管混凝土框架荷载-侧移实用恢复力模型及位移延性系数简化计算方法㊂王静峰等[92-94]和王冬花等[95]研究了往复荷载作用下半刚性单边高强螺栓连接组合框架的抗震性能和破坏机理,分析了滞回及骨架曲线㊁强度和刚度退化规律㊁延性及耗能能力等力学性能指标,并建立了半刚性钢管混凝土框架的弹塑性地震反应分析模型,提出了一种适用于半刚性钢管混凝土框架的P-Δ关系曲线的简化二阶方程和弹塑性层间位移的简化计算方法㊂此外,赵均海等[96]提出了装配式复式钢管混凝土框架结构及其极限承载力简化计算方法,阐述了柱-柱拼接节点和加强块梁柱节点在此类结构中的应用效果㊂Ren等[97]和王波等[98]在钢管混凝土框架中增设屈曲约束支撑装置,研究水平反复荷载作用下耗能减震部件对结构抗震性能的影响㊂结果表明:增设屈曲支撑不仅对结构的刚度和承载力有提升作用,还能延缓塑性铰的形成,增强结构延性和耗能能力㊂丁发兴等[99]完成了2层2跨组合框架对比试验研究,结果表明:内拉筋强柱构造措施提升了框架结构的刚度和承载力,延缓了柱端塑性铰的形成,增强了结构延性和耗能能力㊂由此可见,内拉筋提升框架柱的刚度㊁承载力和耗能能力,其效果相当于增4钢-混凝土组合结构抗震性能研究进展设屈曲支撑㊂2.1.2㊀拟动力试验宗周红等[100]通过对缩尺比例为1/3的半刚性两层空间组合框架的拟动力试验,从层间刚度㊁自振频率㊁加速度反应㊁位移反应和滞回曲线等方面评估了该结构的动力响应和耗能性能,研究了峰值加速度㊁频谱特性和强震持续时间对结构动力响应和力学性能的影响,建立了组合框架结构动力分析模型㊂Herrera等[101]按照3/5的比例对一幢节点采用T型连接方式的4层组合框架进行了拟动力试验,结果表明此类节点的组合框架满足美国相关设计标准㊂在半刚性节点组合框架方面,He等[102]对缩尺比例为4/7的端板螺栓连接组合框架子结构模型先后进行了拟动力㊁拟静力和静力推覆试验,从层间位移及剪力㊁应变㊁转角和耗能等方面分析结构在多遇地震㊁设防地震㊁罕遇地震和超罕遇地震水准下的动力响应㊂完海鹰等[103]对节点采用长螺栓式双腹板顶底角钢半刚性连接的钢管混凝土框架进行拟动力试验研究,探讨不同峰值加速度下结构的受力特征㊁刚度退化㊁动力响应及耗能能力㊂王静峰等[104-105]通过两组拟动力试验分别研究了钢管混凝土柱-组合梁框架和钢管混凝土柱-钢梁框架的动力性能和破坏特征,探讨了柱截面形式和端板类型对结构性能的影响㊂试验结果表明,圆形柱组合框架的最大位移响应和累积耗能均大于方形柱组合框架,但其初始刚度和承载力则弱于方形柱组合框架㊂此外,王静峰等[106]还采用混合试验方法对装配式中空夹层钢管混凝土组合框架开展了拟动力试验研究,分析了该组合框架结构在峰值加速度为0.62g和1.24g时的动力响应和破坏机理㊂在屈曲约束支撑组合框架方面,Tsai等[107-108]完成了多级地震作用下3层3跨足尺钢管混凝土柱屈曲约束支撑框架拟动力试验研究,探讨了屈曲约束支撑对结构整体抗震性能的影响,并从有效刚度㊁耗能和位移延性系数等方面评估了支撑构件连接方式的有效性㊂郭玉荣等[109]完成了防屈曲支撑组合框架子结构拟动力试验,提出了防屈曲支撑可增强结构的抗侧刚度和变形恢复能力㊂2.1.3㊀振动台试验黄襄云等[110-111]利用振动台试验对5层2跨2开间钢管混凝土空间框架结构的动力特性㊁加速度反应和位移反应进行了分析,并分别按等强度㊁刚度㊁截面积的原则将钢管混凝土柱换算成钢筋混凝土柱进行试算,综合评定了该结构的抗震性能㊂杜国锋等[112]采用单输入㊁单输出方式对8层单跨2开间钢管混凝土柱-钢梁框架进行动力特性试验,并通过3种不同地震波作用分析了结构的最大地震作用力㊁层间剪力㊁位移和应变反应㊂邹万山等[113]通过振动台试验得出,不同频谱特性的地震波对模型结构的加速度和位移反应分布曲线形状影响较小,且模型各层绝对加速度主要由前两阶振型决定,其他高阶振型的影响可以忽略㊂罗美芳[114]研究了不同工况下4层钢-混凝土组合框架结构的动力响应及破坏模式,评价了该结构的抗震性能㊂童菊仙等[115-116]设计并制作了有㊁无侧向耗能支撑的5层单跨2开间的方钢管混凝土柱框架模型,利用振动台试验对两种框架的动力特性和地震响应进行分析,得到了结构的振型㊁周期和阻尼比等基本属性,以及地震波作用下的位移㊁加速度和应力响应㊂结果表明:即使没有楼板的组合作用,结构仍具有较好的抗震性能;侧向支撑可承担部分水平地震作用,减小了结构的动力反应㊂陈建斌[117]和吕西林等[118]完成了国内首个方钢管混凝土高层组合框架-支撑结构振动台试验㊂试验中发现结构支撑体系的破坏较为严重,试验结果表明:该结构的动力性能介于钢筋混凝土结构和钢结构之间且更倾向于钢结构,其塑性㊁韧性和抗震性能表现良好,并通过计算结果显示阻尼器对加快结构峰值反应后的振动衰减具有较大作用㊂为研究地震作用下半刚性连接组合梁框架的动力特性以及破坏模式,李国强等[119]进行了1个足尺半刚性连接组合梁框架结构模型振动台试验研究㊂结果显示:当峰值加速度高达1.2g时,结构整体仍未发生明显损坏,表明该结构形式可满足高烈度区域的抗震设防要求㊂Han等[120]对两个由组合框架结构和钢筋混凝土剪力墙混合形成的高层建筑模型进行了振动台试验,对比分析了圆钢管混凝土柱和方钢管混凝土柱对该混合结构体系整体性能的影响,验证了组合框架结构与核心剪力墙结构在地震作用下优良的复合效应和抗震性能㊂2.2㊀理论分析静力弹塑性分析法是以反应谱为基础,首先依据抗震需求谱和结构能力谱得到地震作用下建筑结构所产生的目标位移,随后在建筑结构上施加稳定的竖向荷载,同时施加单调递增的水平荷载直至达到目标位移,最后评估结构最终状态下的抗震性能㊂通过该方法可以评估地震作用下结构的内力和变形5。

地震作用下不同混凝土柱端叠层橡胶支座的应力和变形分析(精)

地震作用下不同混凝土柱端叠层橡胶支座的应力和变形分析(精)
关键词: 基础隔震; 叠层橡胶垫; 串联隔震体系; 应力; 变形
ANALYSIS OF STRESS AND DEFORMATION OF LAMINATED RUBBER BEARING CONNECTED WITH THE RC COLUMNS UNDER EARTHQUAKE
Du Yongfeng1,2 Wu Zhongtie1 Fan Pingping3 ( 1. Institute of Earthquake Protection and Disaster Mitigation,Lanzhou Univ. of Tech. ,Lanzhou 730050,China; 2. Western Center of Disaster Mitigation in Civil Engineering of Ministry of Education,Lanzhou Univ. of Tech. ,
Industrial Construction Vol. 42,No. 3,2012
系进行了 理 论 分 析 和 缩 尺 试 验。20 世 纪 40 年 代 Haringx[8]建立了 隔 震 装 置 在 小 变 形 状 态 下 的 基 本 模型。 Koh 和 Kelly[9] 提 出 了 一 种 线 性 形 式 的 非 线 性 模 型 ,探 讨 了 橡 胶 支 座 的 轴 向 载 荷 对 水 平 刚 度 的 影 响。Nagarajaiah 等人[10]根据 Koh - Kelly 模型提出了 改进的非线性解析模型,可以预测不同尺寸和形状系 数 的 橡 胶 支 座 的 非 线 性 和 后 屈 曲 行 为 ,得 到 的 屈 曲 荷 载和水平 刚 度 更 加 精 确。Buckle 和 Liu[11] 通 过 相 当

8约束混凝土

8约束混凝土
/ MPa
4
6
8
10
12
14
e / 10-3
上升段曲线接近,应力增加不大。
当约束混凝土达峰值应力时,箍
筋应变为esv=(900~1200) 尚未屈服。 ×10-6,
10
t=0.0
0.17
10
20
30
40
50
e / 10-3
2. 当t > 0.36时,应力应变曲线 上升段斜率反而降低,原因是密 布箍筋影响了混凝土的浇捣质量 及箍筋两侧混凝土的结合。约束 混凝土到达峰值应力前,箍筋已 屈服;其混凝土强度可提高1倍,
第8章 约束混凝土
混凝土结构中受力钢筋的配设有两种基本方式。沿 构件的轴力或主应力方向设置纵向钢筋,以保证抗拉承 载力或增强抗压承载力,钢筋的应力与轴力方向一致, 称为直接配筋。沿轴压力或最大主压应力的垂直方向 (即横向)配置箍筋,以约束其内部混凝土的横向膨胀 变形,从而提高轴向抗压承载力,这种方式称横向配筋 或间接配筋。 约束混凝土处于三轴受压应力状态,提高了混凝土 的强度和变形能力,成为工程中改善受压构件或结构中 受压部分的力学性能的重要措施。
凝土抗压强度计算式
f cc f c 16.4

v f yv
1
3
2 2
2. Sheikh模型 ① 将截面划分为有效约束核心Aeff 和非约束区Aec及其相应的计算式。
②有效约束核芯混凝土抗压强度取决于体积配箍率s和约束混凝土
达峰值强度时的箍筋应力fs。核芯混凝土抗压强度提高系数。
4
f st Ast f c sdcor
箍筋屈服时,核芯混凝土的最大约束压应力为 2 f st Ast 1 1 2 t f c sdcor 2 若近似取 fcc = fc +4r =(1+2t)fc 于是: N2 =(1+2t) fc Acor+ fy As = fc Acor+ 2fyt t Acor + fy As 显然,在相同的体积配筋下,箍筋比纵向钢筋的承载效率高出一 倍。根据对试验结果分析,实测为1.7~2.9,平均约为2.0。

超大吨位屈曲约束支撑在超限高层伸臂桁架中的应用研究

超大吨位屈曲约束支撑在超限高层伸臂桁架中的应用研究

超大吨位屈曲约束支撑在超限高层伸臂桁架中的应用研究
夏心红;袁涛;王四清;杨晓;彭爱萍;龚灵力;卜丹;巫振宏
【期刊名称】《建筑结构》
【年(卷),期】2022(52)22
【摘要】屈曲约束支撑(BRB)在地震作用下可以率先吸收能量,提前进入屈服,在结
构刚度不变的情况下,成为高耗能的结构构件。

以一个超限高层项目为例,介绍了超
大吨位BRB在伸臂桁架中的应用。

开展了单根屈曲约束支撑1∶2缩尺模型的拟静力试验,并通过ABAQUS进行动力弹塑性分析。

分析结果表明:BRB滞回曲线饱满、稳定和刚度增量为正,在罕遇地震作用下,其最大内力及变形均满足设计要求;同时与之相邻的竖向混凝土关键构件,在1.5倍控制荷载作用下,很少量混凝土发生损伤;与之相邻的钢结构构件,在1.35倍控制荷载作用下,仅部分框架梁腹板达到了屈服,而
其他钢结构构件及节点均未屈服。

【总页数】7页(P101-107)
【作者】夏心红;袁涛;王四清;杨晓;彭爱萍;龚灵力;卜丹;巫振宏
【作者单位】湖南省建筑设计院集团股份有限公司;中建研科技股份有限公司
【正文语种】中文
【中图分类】TU318.1
【相关文献】
1.屈曲约束支撑在某高层设计中的应用研究
2.屈曲约束支撑在大跨度弧形桁架结构中的应用研究
3.屈曲约束支撑在超高层建筑伸臂桁架中的应用研究
4.装配式屈曲
约束支撑在北京某高层建筑中的应用研究5.屈曲约束支撑在古北财富中心高层钢结构中的应用研究
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

约束混凝土模型在大震作用下8度区结构中的比较研究周文峰;阳霞
【期刊名称】《四川建筑科学研究》
【年(卷),期】2009(035)003
【摘要】选取约束混凝土模型中具有代表性的3个模型-Mander模型、Sheikh 模型以及Park模型,然后将各模型计算机程序化,并加入基于纤维模型梁柱单元的三维空间框架非线性动力反应分析程序中.最后利用这一工具,考察了模型对8度区结构在大震下非线性动力反应分析结果的影响.
【总页数】4页(P164-167)
【作者】周文峰;阳霞
【作者单位】攀枝花学院土木工程学院,四川,攀枝花,617000;攀枝花学院土木工程学院,四川,攀枝花,617000
【正文语种】中文
【中图分类】TU311.2
【相关文献】
1.低周反复荷载下约束混凝土模型的比较研究 [J], 周文峰;黄宗明;白绍良
2.中震作用下约束混凝土模型在结构中的适用性研究 [J], 周文峰;阳霞
3.大震作用下带拱式转换层高层结构动力弹塑性分析 [J], 张敏;凌志彬
4.超限高层结构大震作用下的性能分析 [J], 胡霖嵩;赵少伟;高洪健
5.某高层住宅大震作用下结构整体性能评价 [J], 洪承禹
因版权原因,仅展示原文概要,查看原文内容请购买。

相关文档
最新文档