一题多变——瞬时加速度的求法

合集下载

考点一由纸带求瞬时速度和瞬时加速度

考点一由纸带求瞬时速度和瞬时加速度

答案
• 解析 (1)由题图中所标纸带每段位移的大小,可知在相邻相等时 间内的位移差相等,可近似认为Δy=8 mm. • (2)由题图中的x轴作为时间轴,以纸带的宽度表示相等的时间间 隔T=0.1 s,每段纸带最上端中点对应v轴上的速度恰好表示每段 时间的中间时刻的瞬时速度,即vn=;因此可以用纸带的长度表 示每小段时间中间时刻的瞬时速度,将纸带上端中间各点连接起 来,可得到v-t图象,如图所示. • (3)利用图象求斜率 • 或用Δy=aT2均可 • 以求得小车的加速 • 度a=0.8 m/s2. • 答案 (1)相邻相等 • 的时间内的位移差 • 相等(2)见解析图 • (3)0.8 m/s2
• 若无法再做实验,可由以上信息推知: • (1)相邻两计数点的时间间隔为________ s; • (2)打C点时物体的速度大小为________m/s(取2位有效数 字); • (3)物体的加速度大小为____(用sA、sB、sD和f表示).
习题
• 在“测定匀变速直线运动的加速度”的实验中,用打点 计时器记录纸带运动的时间。计时器所用电源的频率为 50Hz,下图为一次实验得到的一条纸带,纸带上每相邻 的两计数点间都有四个点未画出,按时间顺序取0、1、2 3、4、5六个计数点,用米尺量出1、2、3、4、5点到0点 的距离如图所示(单位:cm)。由纸带数据计算可得计 数点4所代表时刻的即时速度大小v4=________m/s,小 车的加速度大小a=________m/s2
• • •
图实Ⅰ-9 (1)OD间的距离为________ cm. (2)图实Ⅰ-10是根据实验数据绘出的s-t2图线 (s为各计数点至同一起点的距离),斜率表示________, 其大小为________ m/s2(保留三位有效数字).

瞬间加速度问题

瞬间加速度问题
2 3 g C.g
3
D. 3 g
3
课后练习
1.如图所示,A、B两小球分别连在弹簧两端,B端用细线固定在倾 角为30°光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B 两球的加速度分别为 ( )
g
A.都等于 2
MA MB C. M B

g 2
和0
B. g 和 0
2
D.0和 M A M B • g
MB
2
2. 如图所示,木块A与B用一轻弹簧相连,
竖直放在木块C上,三者静置于地面上,
它们的质量之比是1∶2∶3.设所有接触
面都光滑,在沿水平方向抽出木块C的瞬
间,木块A和B的加速度分别是
aA= ,aB=
.
• 3.如图所示,弹簧S1的上端固定在天花板上, 下端连一小球A,球A与球B之间用线相连.球B
⑶轻绳的弹力如何突变? 由物体的受力和物体的运动状态决定 ⑷刚性杆、绳(线)或接触面都可以认为是一种不发生明显形变就
能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不 需要形变恢复时间,一般题目中所给杆、细线和接触面在不加 特殊说明时,均可按此模型来处理。
Ⅱ“弹簧”和“橡皮绳” :
(1)轻:其质量和重力均可视为等于零,同一弹簧两端及其 中间各点的弹力大小相等。 (2)弹簧既能承受拉力,也能承受压力;橡皮绳只能承受
解析 (1)因此时水平面对小球的弹力为零,小球在 绳没有断时受到绳的拉力FT和弹簧的弹力F作用而处 于平衡状态,依据平衡条件得
竖直方向有:FTcosθ=mg,水平方向有:FTsinθ=F 解得弹簧的弹力为:F=mgtanθ=10 N
(2)剪断绳后小球在竖直方向仍平衡,水平面支持力 平衡重力FN=mg 由牛顿第二定律得小球的加速度为 a= F F=N8 m/s2,方向向左.

瞬时加速度的计算

瞬时加速度的计算

A
在木板C 上,三者静置于地面,它们的质量之比是
1:2:3,设所有接触面都光滑,当沿水平面方向迅速抽
出木板C的瞬时,A和B的加速度大小分别为多大?
解:撤去木板C前, 对A、B球进行受力分析 C
B
kxmg ① Nkx2mg② kx
N
撤去木板C瞬时,A和B的重力及弹簧
A
的弹力不变 ,B物体受到的支持力突
例10. 竖直光滑杆上套有一个小球和两根弹簧,两弹簧的
M
一端各 与小球相连,另一端分别用销钉M N固定于杆上,
小球处于静止状态.若拔去销钉M的瞬间,小球的加速度
大小为12m/s2,若不拔去销钉M而拔去销钉N的瞬间,
小球的加速度
B. 22m/s2,方向竖直向下 C. 2m/s2, 方向竖直向上
瞬时加速度的计算
物体的加速度a与物体所受合外力F合瞬时对应。a为某一瞬时 的加速度,F合即为该时刻物体所受的合力。
求物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受 力情况及其变化.先看不变量,再看变化量;加速度与合外力瞬 时一一对应.
轻绳(线、弹簧、橡皮绳)即其质量和重力均可视为等于零, 同一根绳(线、弹簧、橡皮绳)的两端及其中间各点的弹力大小 相等。
A
θB O
解F :O剪A断弹m簧gc前,o小t 球F受O力B 分析smi如ng图 所示.
弹簧在B处剪断瞬间, FOB立即消失, mg和FOA不变,小球将受到地面对它的 支持力N,它与重力平衡,小球受到的 FOA 合外力为FOA,根据牛顿第二定律得
aFOAgcot
m
θ FOB
mg
球和墙之间发生的是微小形变,弹簧发生的明显形变.发生微小形变产生 的弹力可以突变,发生明显形变产生的弹力发生变化需要一定的时间.

牛顿第二定律的瞬时性问题

牛顿第二定律的瞬时性问题
马鞍山中加双语学校 高一物理组
绳子未断时,受力如图,由共点力平衡条件得
刚剪短弹簧Ⅰ瞬间,细绳弹力突变为0,故小球只受重力,加速度为g,竖直向下,故A 正确,C错误; 刚剪短细线瞬间,弹簧弹力和重力不变,受力如图
由几何关系,F合=T1sinθ=T2=ma,因而
因而B正确,D错误;
故选A、B.
马鞍山中加双语学校 高一物理组
课题导入
专题:瞬时加速度
马鞍山中加双语学校 高一物理组
上午7时7分40秒
目标引领
1、理解a与F合的瞬时对应关系
2、会分析瞬时问题的两种模型 3、学会解决此类问题的基本方法
马鞍山中加双语学校 高一物理组
上午7时7分40秒
独立自学
【例题】 小球 A、B 的质量分别为 m 和 2m,用轻弹簧相连,然后用细线悬挂而静止, 如图所示,在剪断细线瞬间,A、B 的加速度各是多少?方向如何?
(3)求物体在状态变化前后所受的合外力,利用牛顿第二 定律,求出瞬时加速度。
马鞍山中加双语学校 高一物理组
• 2-1:如下图所示,A、B两木块间连一轻 质弹簧,A、B质量相等,一起静止地放在
一块光滑木板上,若将此木板突然抽去, 在此瞬间,A、B两木块的加速度分别是
• A.aA=0,aB=2g • B.aA=g,aB=g • C.aA=0,aB=0 • D.aA=g,aB=2g
突变 压力
微小不
既可有拉力也可有
可以突变

支持力
马鞍山中加双语学校 高一物理组
实例分析
如图所示,质量m的球与弹簧Ⅰ和水平细线Ⅱ相连,Ⅰ、Ⅱ的另 一端分别固定于P、Q.球静止时,Ⅰ中拉力大小T1,Ⅱ中拉力大 小T2,当仅剪断Ⅰ、Ⅱ中的一根的瞬间,球的加速a应是( ) A.若断Ⅰ,则a=g,竖直向下 B.若断Ⅱ,则a= T2 /m ,方向水平向左 C.若断Ⅰ,则a= T1 /m ,方向沿Ⅰ的延长线 D.若断Ⅱ,则a=g,竖直向下

重难点06加速度瞬时问题专题高一物理题组法突破重难点(人教版2019必修第一册)(解析版)

重难点06加速度瞬时问题专题高一物理题组法突破重难点(人教版2019必修第一册)(解析版)

人教版新教材高中物理必修第一册 第四章 运动和力的关系牛顿运动定律---加速度瞬时性专题(题组分类训练)题组特训特训内容 题组一力、加速度和速度的关系 题组二轻弹簧瞬时问题模型 题组三刚性绳瞬时问题模型(杆、细线、接触面等) 题组四 超重和失重现象的理解及应用1.加速度与合力的关系由牛顿第二定律F =ma ,加速度a 与合力F 具有瞬时对应关系,合力增大,加速度增大,合力减小,加速度减小;合力方向变化,加速度方向也随之变化.2.速度与加速度(合力)的关系速度与加速度(合力)方向相同或夹角为锐角,物体做加速运动;速度与加速度(合力)方向相反或夹角为钝角,物体做减速运动.3.合力、加速度、速度的关系(1)物体的加速度由所受合力决定,与速度无必然联系.(2)合力与速度夹角为锐角,物体加速;合力与速度夹角为钝角,物体减速.(3)a =Δv Δt 是加速度的定义式,a 与v 、Δv 无直接关系;a =F m是加速度的决定式. 题组特训一:力、加速度和速度的关系1. 一个做直线运动的物体受到的合外力的方向与物体运动的方向相同,当合外力减小时,物体运动的加速度和速度的变化是( )A .加速度增大,速度增大B .加速度减小,速度减小C .加速度增大,速度减小D .加速度减小,速度增大【答案】D【解析】当合外力减小时,根据牛顿第二定律a =Fm 知,加速度减小,因为合外力的方基础知识清单向与速度方向相同,则加速度方向与速度方向相同,故速度增大,D 正确.2. (多选)雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关.一雨滴从空中由静止开始沿竖直方向下落,雨滴下落过程中所受重力保持不变,其速度-时间图像如图所示,则雨滴下落过程中( )A .速度先增大后减小B .加速度先减小后不变C .受到的合力先减小后不变D .受到的空气阻力不变【答案】BC【解析】由题图可知,雨滴的速度先增大后不变,故A 错误;因为v -t 图像的斜率表示加速度,可知加速度先减小后不变,根据F =ma 可知雨滴受到的合力先减小后不变,故B 、C 正确;根据mg -F f =ma 可知雨滴受到的空气阻力先增大后不变,故D 错误.3. 如图所示,一个小球从竖直立在地面上的轻弹簧正上方某处自由下落,在小球与弹簧开始接触到弹簧被压缩到最短的过程中,小球的速度和加速度的变化情况是( )A .加速度越来越大,速度越来越小B .加速度和速度都是先增大后减小C .速度先增大后减小,加速度方向先向下后向上D .速度一直减小,加速度大小先减小后增大【答案】C【解析】在接触的第一个阶段mg >kx ,F 合=mg -kx ,合力方向竖直向下,小球向下运动,x 逐渐增大,所以F 合逐渐减小,由a =F 合m 得,a =mg -kx m ,方向竖直向下,且逐渐减小,又因为这一阶段a 与v 都竖直向下,所以v 逐渐增大.当mg =kx 时,F 合=0,a =0,此时速度达到最大.之后,小球继续向下运动,mg <kx ,合力F 合=kx -mg ,方向竖直向上,小球向下运动,x 继续增大,F 合增大,a =kx -mg m ,方向竖直向上,随x 的增大而增大,此时a 与v 方向相反,所以v 逐渐减小.综上所述,小球向下压缩弹簧的过程中,F 合的方向先向下后向上,大小先减小后增大;a 的方向先向下后向上,大小先减小后增大;v 的方向向下,大小先增大后减小.故C 正确.4. 有一轻质橡皮筋下端挂一个铁球,手持橡皮筋的上端使铁球竖直向上做匀加速运动,若某时刻手突然停止运动,则下列判断正确的是( )A.铁球立即停止上升,随后开始向下运动B.铁球立即开始向上做减速运动,当速度减到零后开始下落C.铁球立即开始向上做减速运动,当速度达到最大值后开始下落D.铁球继续向上做加速运动,当速度达到最大值后才开始做减速运动【答案】 D【解析】铁球匀加速上升,受到拉力和重力的作用,且拉力的大小大于重力,手突然停止运动瞬间,铁球由于惯性继续向上运动,开始阶段橡皮条的拉力还大于重力,合力竖直向上,铁球继续向上加速运动,当拉力等于重力后,速度达到最大值,之后拉力小于重力,铁球开始做减速运动,故A、B、C错误,D正确.5.一质点受多个力的作用,处于静止状态.现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小.在此过程中,其他力保持不变,则质点的加速度大小a 和速度大小v的变化情况是( )A.a和v都始终增大B.a和v都先增大后减小C.a先增大后减小,v始终增大D.a和v都先减小后增大【答案】 C【解析】质点受多个力的作用,处于静止状态,则多个力的合力为零,其中任意一个力与剩余所有力的合力大小相等、方向相反,使其中一个力的大小逐渐减小到零再恢复到原来大小的过程中,则所有力的合力先变大后变小,但合力的方向不变,根据牛顿第二定律知,a先增大后减小,v始终增大,C正确.基础知识清单1.加速度瞬时问题的两种关键模型①轻弹簧模型(轻弹簧、橡皮绳、弹性绳等)明显形变产生的弹力,在两端连接有物体时,形变恢复需较长时间,其弹力不能突变。

加速度的计算方法

加速度的计算方法

加速度的计算方法加速度是物理学中描述速度变化的物理量。

在许多实际情况中,我们需要计算加速度来了解物体运动的特性。

本文将介绍一些常用的加速度计算方法,旨在帮助读者更好地理解和应用这一物理概念。

一、平均加速度的计算方法平均加速度是在某一时间段内速度的变化量与该时间段的持续时间之比。

具体计算公式为:a = (v2 - v1) / t其中,a表示平均加速度,v2和v1表示物体在时间段末和时间段初的速度,t表示时间段的持续时间。

举个例子,假设一个小汽车的速度从20米/秒增加到40米/秒,时间为4秒。

我们可以使用上述公式计算该小汽车在这段时间内的平均加速度。

根据上述公式,我们可以得出:a = (40 - 20) / 4 = 5 米/秒²所以,该小汽车在这段时间内的平均加速度为5米/秒²。

二、瞬时加速度的计算方法与平均加速度不同,瞬时加速度是在某一瞬间的瞬时速度变化量与该瞬间的时间的比值。

通常情况下,瞬时加速度是通过对速度-时间图像的导数来计算的。

导数可以理解为函数变化率的极限,表示瞬时加速度。

举个例子,我们可以考虑一个物体在一条直线上做直线运动的情况。

设想物体的速度-时间图像是一条直线,斜率为2米/秒²。

这意味着物体的瞬时加速度是2米/秒²。

三、加速度与牛顿第二定律牛顿第二定律是连接力、质量和加速度的重要方程。

它的表达式为:F = m*a其中,F表示受力的大小,m表示物体的质量,a表示物体的加速度。

通过这个方程,我们可以看出,当物体的质量不变时,加速度与受力成正比。

也就是说,如果我们知道物体所受的力,我们可以通过牛顿第二定律计算出物体的加速度。

举个例子,假设一个质量为2千克的物体受到20牛的力。

根据牛顿第二定律,我们可以得出:a = F / m = 20牛 / 2千克 = 10 米/秒²所以,该物体所受力的情况下的加速度为10米/秒²。

四、加速度与自由落体自由落体是指物体只受重力作用下的运动。

牛顿第二定律应用----瞬时性问题

牛顿第二定律应用----瞬时性问题

L1
θ
y
L1
θ
律得:物体的加速度 mgsinθ=ma .
θ a=gsinθ
a
x
mg
例2、若将图1(a)中的细线L1改为长度相同、质 量不计的轻弹簧,如图2(b)所示,其他条件不变 ,现将L2线剪断,求剪断瞬时物体的加速度。( 重力加速度为g) OL L1 θ 1 L2
图2(b)
解:剪断细线前, 小球所受mg和弹簧F的 合力与T等大反向,大小等于T=mgtanθ, 弹簧弹力F=mg/cosθ
答案、C
解析:如图,AB静止时,对AB
A B
x
kx-2mg=0
A B
F
y
受力F时,对AB有
K(x+y)-2mg-F=0
撤去力F时,AB受到的合 力为F,对AB有 F=2ma
对 A有 FN-mg=ma
解之得
FN=1.5N
2、如图4所示,A、B的质量分别为 mA=0.2kg , mB=0.4kg , 盘 C 的 质 量 mC=0.6kg,现悬挂于天花板O处,处于静 止状态.当用火柴烧断O处的细线瞬间,木 块A的加速度aA= ,木块B对盘C的压力 NBC= N.(取g=10m/s2) O
A
解:撤去木板C前, 对A、B球进行受力分析
kx m g ①
N kx 2m g ②
C
kx A
B
N
撤去木板C瞬时,A和B的重力及弹簧 的弹力不变 ,B物体受到的支持力突 然变为零,所以
kx mg aA 0 m 2mg aB 1.5 g 2m
F T m mg
θ
细线剪断瞬间,T立即消失,弹簧弹力不变, 仍为F=mg/cosθ,小球所受mg和F的合力不 变,仍为mgtanθ,加速度大小a=gtanθ,方 向水平向右,

物理瞬时加速度问题

物理瞬时加速度问题

牛顿运动定律:瞬时加速度问题知识点睛牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,即m Fa ,ma F ,适用于惯性参考系中宏观、低速的物体;牛顿第二定律具有以下性质:①矢量性:加速度的方向与合外力方向一致;②瞬时性:ma F 对于过程中的每一瞬间都成立,a 和F 具有瞬时对应关系;③相对性:mFa 求得的a 是相对于惯性参考系地面而言的;④独立性:若F 是物体所受的合外力,则a 为实际加速度;若F 是某一方向上的合外力,则a 是该方向上的加速度关于力的瞬时性:(1) 物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之前或之后的力无关,不等于零的合外力作用在物体上,物体立即产生加速度;若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;若合外力变为零,加速度也立即变为零,也就是说物体运动的加速度可以突变(2) 对于中学物理的几个理想模型,如刚性绳、轻杆、轻弹簧、接触面等产生的弹力能否突变,关键要看在受力时形变是否明显,若形变不明显,则可以突变;若形变明显,则不能突变,详细如下: 比较模型 刚性绳 轻杆 接触面 弹性绳 轻弹簧 形变类型 拉伸 拉伸、压缩、扭曲 压缩 拉伸拉伸、压缩弹力方向沿着绳指向 绳收缩方向能沿着杆也可以 和杆成任意角度 垂直于接触面 指向受力物体 沿着绳指向 绳收缩方向 沿着弹簧指向弹簧 恢复原长的方向 形变大小 形变不明显 形变不明显 形变不明显 形变明显 形变明显 能否突变 可以突变可以突变可以突变不能突变不能突变例题精讲例题1:如图1,一质量为m 的物体系于长度分别为1l 和2l 的两根细绳上,1l 的一端悬挂在天花板上,与竖直方向夹角为 , 2l 水平拉直,物体处于平衡状态图1 图2(1)现将2l 线剪断,求剪断瞬间物体的加速度? 下面是某同学对该题的一种解法:设1l 线上拉力为1F ,2l 线上拉力为2F ,重力为mg ,物体在三力作用下保持平衡:mg F cos 1,21sin F F , tan 2mg F ,剪断2l 线的瞬间,2F 突然消失,物体即在2F 反方向上获得加速度,因为ma mg tan ,所以加速度 tan g a ,方向沿2F 反方向 你认为这个结果正确吗?请对该解法作出评价并说明(2)若将图中的细线1l 改为长度相同、质量不计的轻弹簧,如图2所示,其他条件不变,求解步骤与(1)完全相同,即 tan g a ,你认为这个结果正确吗?请说明理由解析:(1)结果不正确,因为2l 被剪断瞬间,轻绳1l 上张力大小发生了突变,此瞬间 cos 1mg F ,它与重力沿绳方向的分力抵消,重力垂直于绳方向的分力 sin mg 产生加速度 sin g a (2)结果正确,因为2l 被剪断瞬间,弹簧1l 的长度不能发生突变,即1F 大小方向都不变,它与重 力的合力与2F 方向相反,大小与2F 相等,所以物体的加速度大小为 tan g a例题2:光滑水平面上有一质量kg 1 m 的小球,小球与水平轻弹簧和与水平方向夹角 为 30的轻绳的一端相连,如图,此时小球处于静止状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,小球加速度的大小和方向如何?此时轻弹簧弹力与水平面对球的弹力比值是多少?解析:小球在绳末断时受三个力的作用, 绳剪断的瞬间,作用于小球的拉力T 立即消失,但弹簧的形变还存在,故弹簧的弹力F 存在.(1)绳未断时:F T 30cos ,mg T 30sin ,解得:N 20 T , N 310 F(2)绳断的瞬间:0 T ,在竖直方向支持力mg N ,水平方向F 大小方向不变,且ma F 所以310mFa 2/s m ,此时3 N F 说明:当将弹簧改为轻绳时,斜向上拉绳剪断的瞬间,水平绳的拉力立即为零.例题3:如图,木块B A 、用轻弹簧相连,放在悬挂的木箱C 内,处于静止状态,它们质量之比是3:2:1当剪断细绳的瞬间,各物体的加速度大小及其方向?解析:设A 的质量为m ,则C B 、的质量分别为m 2、m 3在未剪断细绳时,C B A 、、均受平衡力作用,受力如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一题多变——瞬时加速度的求法
如图所示,质量分别为m 1、m 2的两个小球A 、B ,用轻细线1和轻弹簧2悬挂起
来,系统处于静止状态,求剪断轻细线1的瞬间A 、B 的加速度a 1、a 2分别为多大?
解析: 剪断前:
对系统(A 、B 和弹簧),根据平衡有FT 1=(m 1+m 2)g ;对B ,有F =m 2g 剪断细线的瞬间:
A 受到了弹簧向下的拉力(大小为F =m 2g )
和重力m 1g ,则A 受到的合力为F 合=m 1g +F .
因为F 合=m 1a 1,所以有a 1=m 1+m 2m 1
g ; 而B 受到了弹簧向上的拉力(大小为F =m 2g )和重力m 2g ,所以合力为0,则
加速度为a 2=0.
变式1 在例题中,在细线1上方拴一质量为3m 的物体C ,把C 用轻质弹簧挂在天花板上,A 、B 的质量变为m 、2m ,开始时系统静止.求将A 、C 间细线剪断的瞬间,物块A 、B 、C 的加速度大小和方向?
解析: 系统静止时,以A 、B 为系统作为研究对象,可知细线上的拉力F =3mg . 剪断细线1瞬间,两弹簧上的弹力不变、细线上弹力F 迅速消失,则:
C 受到的合力与F 等大、大小为3mg 、方向竖直向上,所以瞬时加速度为a C =F
3m =g (竖直向上); A 受到的合力也与F 等大、大小为3mg ,而方向竖直向下,所以瞬时加速度为a A =F m
=3g (竖直向下);B 受到的合力不变、加速度不变为0 答案: 3g 竖直向下 0 g 竖直向上
变式3 把例1中的弹簧2变成轻质细线,如图所示,求剪断轻细线1的瞬间两个物体的加速度a 1、a 2分别为多大?
解析:细线剪断后,A、B以共同加速度做自由落体运动,细线上张力为0,所以加速度为g,故剪断轻细线1的瞬间两个物体的加速度a1=a2=g.
答案:a1=a2=g。

相关文档
最新文档