多边形的内角和和外角和
多边形内角和与外角和

课堂练习
求下列图形中x的值:
1400
x0
x0
(1)
800
1200
750
x0
(3)
1500
1200
2X 0
x0
(2)
D
E
x0
1500
600
C
1350
A (4) B
AB∥CD
巩固练习
1、十二边形的内角和是________;
2、若一个多边形的内角和是1620°,则此多边形的 边数是_________.
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权
权
文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
VIP有效期内享有搜索结果页以及文档阅读页免广告特权,清爽阅读没有阻碍。
VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
VIP有效期内享有搜索结果页以及文档阅读页免广告特权,清爽阅读没有阻碍。
多端互通
抽奖特权 福利特权
其他特 VIP专享精彩活动
权
VIP专属身份标识
VIP有效期内可以无限制将选中的文档内容一键发送到手机,轻松实现多端同步。 开通VIP后可以在VIP福利专区不定期抽奖,千万奖池送不停! 开通VIP后可在VIP福利专区定期领取多种福利礼券。 开通VIP后可以享受不定期的VIP优惠活动,活动多多,优惠多多。
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能阅读全文), 每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
计算正多边形的内角和和外角之和

计算正多边形的内角和和外角之和正多边形是指所有边相等、所有角相等的多边形。
在这篇文章中,我们将探讨如何计算正多边形的内角和和外角之和。
一、正多边形的内角和为了计算正多边形的内角和,我们首先需要了解一个公式:正多边形的内角和公式,也被称为欧拉公式。
根据欧拉公式,正多边形的内角和等于(边数-2)×180度。
例如,一个正三角形的内角和为(3-2)×180度=180度;一个正四边形的内角和为(4-2)×180度=360度;一个正五边形的内角和为(5-2)×180度=540度,以此类推。
二、正多边形的外角和正多边形的外角是指每个角与其相邻的内角的补角。
一般情况下,我们求解外角和时候会用到以下公式:正多边形的外角和等于360度。
根据这个公式,不论正多边形的边数是多少,其外角和都等于360度。
三、计算示例让我们通过一些示例来计算正多边形的内角和和外角和。
1. 计算一个正七边形的内角和:根据欧拉公式,正七边形的内角和为(7-2)×180度=900度。
2. 计算一个正六边形的内角和:根据欧拉公式,正六边形的内角和为(6-2)×180度=720度。
3. 计算一个正五边形的内角和和外角和:根据欧拉公式,正五边形的内角和为(5-2)×180度=540度。
根据正多边形的外角和公式,正五边形的外角和为360度。
四、总结在本文中,我们探讨了如何计算正多边形的内角和和外角和。
根据欧拉公式,我们可以通过正多边形的边数来计算其内角和。
而根据外角和公式,不论正多边形的边数是多少,其外角和都等于360度。
这个知识点在几何学中具有重要的意义,可用于解决各种涉及正多边形的问题。
理解正多边形的内角和和外角和的计算方法,将为我们在学术和实际应用中提供帮助。
多边形内角和外角和的公式

多边形内角和外角和的公式
多边形的内角和公式是:n边形的内角和等于(n-2)×180°。
其中,n是多边形的边数。
而多边形的外角和总是等于360°,它与边数的多少无关。
对于内角和,随着多边形边数的增加,内角和也会增加;反之,边数减少,内角和也会减少。
每增加一条边,内角的和就增加180°,且多边形的内角和必须是180°的整数倍。
另外,一个多边形最多有三个内角为锐角,最少可以没有锐角(如矩形);而多边形的外角中最多有三个钝角,最少可以没有钝角。
以上内容仅供参考,如需更全面准确的信息,可查阅数学相关书籍或请教数学专业人士。
《多边形的内角和与外角和》知识清单

《多边形的内角和与外角和》知识清单一、多边形的定义在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
如果一个多边形有 n 条边,那么就称这个多边形为 n 边形。
比如,三角形就是有 3 条边的多边形,四边形就是有 4 条边的多边形,以此类推。
二、多边形的内角和1、三角形的内角和三角形的内角和是 180°。
这是一个基本且重要的定理,可以通过多种方法来证明,比如将三角形的三个角剪下来拼在一起,可以形成一个平角,也就是 180°。
2、四边形的内角和四边形可以分成两个三角形,因为三角形内角和是 180°,所以四边形的内角和是 360°。
3、 n 边形的内角和从 n 边形的一个顶点出发,可以引出(n 3)条对角线,将 n 边形分成(n 2)个三角形。
所以 n 边形的内角和为(n 2)×180°。
例如:五边形的内角和=(5 2)×180°= 540°六边形的内角和=(6 2)×180°= 720°三、多边形的外角和1、外角的定义多边形的一边与另一边的延长线所组成的角叫做多边形的外角。
2、外角和的定义在每个顶点处取一个外角,这些外角的和叫做多边形的外角和。
3、多边形外角和的性质任意多边形的外角和都为 360°。
不管是三角形、四边形还是 n 边形,它们的外角和始终是 360°。
例如,三角形的三个外角和为 360°,四边形的四个外角和也是 360°。
四、内角和与外角和的应用1、已知内角和求边数如果已知一个多边形的内角和,可以通过内角和公式(n 2)×180°来求出边数 n。
例如,一个多边形的内角和为1080°,则有(n 2)×180°=1080°,解得 n = 8,所以这个多边形是八边形。
2、已知边数求内角和如果已知多边形的边数 n,可以直接使用公式(n 2)×180°求出内角和。
多边形的内角和与外角和的关系

多边形的内角和与外角和的关系在我们的日常生活中,很少有形状是一个简单的正方形或长方形的东西。
相反,我们更经常遇到的是有许多条边和角的形状,这些形状被称为多边形。
了解多边形的内角和与外角和的关系非常重要,因为这可以帮助我们更好地理解和处理这些形状。
内角和和外角和的概念首先,我们需要了解一些术语。
一个多边形是一个由三条或更多边组成的形状。
顶点是相邻的两条边的端点。
内角是多边形中的一个角,内角和是多边形内所有角的度数和。
外角是多边形内与内角相邻的角之一和外侧相邻直线的夹角,即外角等于与之相对的内角。
内角和公式多边形的内角和可以通过几种方式计算。
对于一个n边形,内角和的公式为:sum = (n-2) * 180°这个公式的意思是,将n边形划分成n-2个三角形,每个三角形的内角和为180度,所以n边形的内角和就等于(n-2)乘以180度。
对于一个三角形,它只有三个内角,所以它的内角和是固定的,为180度。
外角和公式现在我们来看看如何计算多边形的外角和。
对于一个n边形,外角和的公式为:sum = 360°也就是说,多边形的外角和总是恒定的,为360度。
这是因为每一个内角都有一个相对的外角,而所有外角相加的结果等于一个完整的圆的角度,即360度。
例如,一个四边形的内角和是360度,而外角和也是360度。
任何非直线多边形的外角和也都是360度。
内角和和外角和的关系既然我们已经知道了如何计算多边形的内角和和外角和,那么它们之间的关系是什么呢?事实上,多边形的内角和和外角和之间存在一个重要的关系。
对于任何一个n边形,它的内角和和外角和之间满足以下公式:内角和 + 外角和 = (n * 180°)换句话说,多边形的内角和和外角和的和总是等于n乘以180度。
例如,一个四边形的内角和为360度,其外角和也为360度。
因此,它们的总和为720度,也就是4乘以180度。
理解多边形的内角和与外角和的关系可以帮助我们更好地理解和计算多边形的角度,特别是当涉及到更复杂的多边形时。
多边形的内角和与外角和

分析一 :
A D D C B B C A D D B B C A D D
A
B
C
D B B
180 °×2 = 360°
分析二 :
A D D EE C B A E E E C A D D
A D B E C B
A
180 ° ×3 -180 °=360° °
对角线:在多边形中,连接不相邻的两个顶 对角线:在多边形中,连接不相邻的两个顶 不相邻 点的线段叫做多边形的对角线。 点的线段叫做多边形的对角线。
对角线 外角 内角
顶点
边
外角: 多边形内角的一边 内角的一边与 外角: 多边形内角的一边与另一边的反向延长 成的角叫做这个多边形的外角。 线 所组 成的角叫做这个多边形的外角。 外角和:在每个顶点处取这个多边形的一个外角, 外角和:在每个顶点处取这个多边形的一个外角, 它们的和叫做这个多边形的外角和 多边形的外角和. 它们的和叫做这个多边形的外角和.
解:设这个多边形的边数为n,根据题 设这个多边形的边数为 根据题 意可得: 意可得: (n-2)×180°=1440° ) ° ° 解得: n=10 解得: 这个多边形是十边形° 答:这个多边形是十边形°
例题讲解
如果一个四边形的一组对角互补, 如果一个四边形的一组对角互补,那么另 A 一组对角有什么关系?
[提示: n边形的内角和= (n-2)×180°] 提示: 边形的内角和 边形的内角和= 2)×180° 提示
解:(8-2)×180°=1080° ) ° ° (7-2)×180°=900° ) ° ° 八边形的内角和是900°. 答:八边形的内角和是 °
练习
2、已知一个多边形的内角和 、 等于1440°,求它的边数。 等于 ° 求它的边数。 求它的边数
数学多边形的内角和外角和

五边形的边逆时针走一圈又回到点P。问:管理员张三新从出发到回到原处身体共 转过多少度?
1.小明计算出一个多边形内角和是2750°,同桌小华发现小明少加了一个角。
求:(1)小明少加的那个角的度数;
(2)小明求的是几边形的内角和。
(3)五边形的对角线有条,它们内角和为.
(4)如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.
(5).一个多边形的每个外角是36°,这个多边形的边数是_______.
4.⑴12边形的内角和是多少度?若它的每个内角相等,则它的每个外角度数是多少?
⑵几边形的内角和是2160°?是否存在一个多边形内角和为1000°?
课题
7.3.1多边形的内角和2
主备人
魏
课时
目标
1、知道多边形外角和定理。
2.灵活应用多边形内角和定理和多边形外角和定理熟练地进行有关计算。
学 习 过 程
一回顾旧知: n边形内角和度
二探究新知
一、自学指导1、自学例2,
1、知道如何求六边形ABCDEF的外角和?
2、在图中任何一外角同与它相邻的内角组成,
⑶已知多边形的每个内角都是135°,求这个多边形的边数。
5.【思考题】李明同学采用将内角逐个相加的方法计算多边形的内角和,求得一多边内形的内角和为2570°,当他发现出错以后,重新检查,发现少加了一个内角,问这个角是多少度?这个多边形的边数多少?
9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.BE与DF有怎样的位置关系?为什么?
图中共能组成个这样的角,这些角的总和是180° ,这个六边形ABCDEF的内角和是180° ,
多边形的内角和与外角和

B 求∠A+∠B+∠C+∠D+∠E+∠F的度数。
F
E
HM
D
A
G
B
C
C 讨论:是否存在一个多边形,它的每个内角都等于相邻外角的
五分之一?为什么?
谢谢观赏
探究 求五边形的外角和
探究 求五边形的外角和
∠1+∠2+∠3+∠4+∠5=?
∠1+∠6=? ∠2+∠7=? ∠3+∠8=? ∠4+∠9=? ∠5+∠10=?
°
=180
1A
6
B
7 2
5
10 E
∠6+∠7+∠8+∠9+∠10=? 五边形外角和 = 五个平角-五边形内角和
8ห้องสมุดไป่ตู้
C3
= 5×180°-(5-2) × 180°
注意: 1.多边形的内角和随着边数的增加而增加; 2.多边形的外角和为一个定值,与边数无关; 3.特殊情况:
如果多边形(边数为n)的每个外角都相等
n × 每个外角的度数 =360°.
例题4 一个多边形的每个外角都是72 º,这个 多边形是几边形?
分析: n × 每个外角的度数 =360°.
解:设多边形的边数为n,根据题意,得 n·72º= 360º. 解得n=5.
A r=2
D r=2
r=2 B
r=2 C
A
A r=2 r=2 B
r=2 C
F r=2 E r=2
r=2 D
B
课堂小结
2.多边形外角和的定义 本节1.3多课.任对边你意多形有边多外哪形边角的些形的每收的一定获个外义或内角角思和,考等从?于与它
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形的内角和和外角和
◎ 多边形的内角和和外角和的定义
在平面内,由若干不在同一直线上的线段首尾顺次连接组成的封闭图形叫做多边形。
对角线:在多边形中,连接不相邻的两个顶点的线段叫做多边形的对角线。
外角:多边形的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。
如图示:
多边形的内角和:
n边形的内角和等于(n-2)·180°。
(多边形内角和定理)
多边形的外角和:
在多边形的每个顶点处取多边形的一个外角,它们的和叫做多边形的外角和。
多边形的外角和等于360°。
(与边数无关)(多边形的外角和定理)
◎ 多边形的内角和和外角和的知识扩展
1、多边形的内角和:n边形的内角和等于(n-2)·180°。
2、多边形的外角和:在多边形的每个顶点处取多边形的一个外角,它们的和叫做多边形的外角和。
3、多边形的外角和定理:多边形的外角和等于360°。
(与边数无关)
◎ 多边形的内角和和外角和的知识导图
多边形外角和列举:
◎ 多边形的内角和和外角和的教学目标
1、知道三角形内角之间的关系.
2、知道直角三角形的两个锐角互余。
3、知道三角形外角的意义以及外角和内角之间的关系。
4、能运用相关结论进行有关的推理和计算。
5、通过观察、操作、想象、推理等活动,经历三角形的内角和等于180度。
◎ 多边形的内角和和外角和的考试要求
能力要求:知道
课时要求:50
考试频率:选考
分值比重:3。