激光器件3-工作物质的热效应

合集下载

激光器件3工作物质的热效应

激光器件3工作物质的热效应

§2.1.4 固体激光器的热效应
21
不同YAG棒的屈光度与泵浦功率的关系
Refracting power(m-1)
5.0
4.5
4.0
3.5
3.0
2.5
7mm , Nd doping 1%
2.0
6mm , Nd doping 0.8%
8mm , Nd doping 1% 1.5
4
5
6
7
8
9
10
Pump power(KW)
15
热焦距表示热透镜效应,则由折射率变化引起的热焦距为
fT
'
1 n2 L
K QL
(18)
端面效应形成的焦距用几何光学薄透镜公式表示为
fT"
R 2(n0 1)
K
r0Q(n0
1)
(19)
组合薄透镜为
1 fT
1 fT '
1 fT "
QL[1 dn K 2 dT
n03Cr,
n(r) n(0) n(r)T n(r)c
(12)
n(r)为棒截面内任意半径r处的折射率,n(0)为棒中心的折射率,Δn(r)T为与棒中心温 差引起的折射率变化量,Δn(r)c为热应力引起的折射率变化量
n(r ) T
[T(r) T(0)] dn dT
Q 4k
dn dT
r2
(13)
dn/dT为折射率温度系数
§2.1.4 固体激光器的热效应
1
固体激光器工作时,输入泵浦灯的能量只有少 部分转化为激光输出,其余能量转化为热损耗, 工作物质自身温度升高,引起荧光谱线加宽、 量子效率降低,导致激光器阈值升高和效率降 低。激光棒一方面吸收光泵辐射发热,另一方 面由于冷却不均匀会造成工作物质内部温度分 布不均匀,导致热应力、应力双折射和热透镜 效应等,这些热影响称之为热效应。

激光工作物质系统的负温度状态与负的热力学温度

激光工作物质系统的负温度状态与负的热力学温度

第11卷第3期山 东 建 材 学 院 学 报Vol.11No.31997年9月JOU R NA L O F SHA N DON G IN ST IT U T E O F BU IL DIN G M A T ERI AL S Sep.1997 收稿日期:1995.07.05;修改稿收到日期:1995.11.07第一作者:女,1955年生,副教授激光工作物质系统的负温度状态与负的热力学温度张永利 孙成栋(山东建材学院基础部,复合材料研究所,济南,250022)摘要 从玻耳兹曼发布律出发,对处于负温度状态(即实现粒子数反转)的三能级激光工作物质系统的热力学温度进行了讨论,指出在负温度状态下,粒子系统的热力学温度仍可以大于零,证明了负温度状态并不等同于热力学温度T <0的状态。

关键词 粒子数反转;负温度状态;负的热力学温度中图法分类号 O 414对于一粒子系统,当其实现了粒子数反转时,常称其是处在了负温度状态。

然而这并不意味着此时系统的热力学温度也为负。

激光器作为一种新型光源,它的发光机制是基于粒子数反转系统的受激发射(无粒子数反转的激光系统除外)。

但在一般情况下(即粒子系统没有受到外界的特殊干扰或能量激励的情况下),粒子系统处于热平衡状态,粒子数按不同能量状态或能级的分布服从玻耳兹曼分布规律,即粒子系统的热力学温度为T 时,处于能量为E i 的高能级上的粒子数N i 与处于能量为E j 的低能级上的粒子数N j 之比为:N i N j=e -(E i -E j )/kT式中k 为玻耳兹曼常数。

由于E i >E j ,所以在一般情况下N i /N j <1,即粒子系统不处在粒子数反转状态,因此产生不了激光。

当有一外界能源作用于粒子系统时,在它的激励下,粒子系统中处于低能级上的粒子可以大量地被抽运到高能级上,从而造成一个不同于玻耳兹曼分布的状态——粒子数反转状态。

此时粒子系统已具备了产生激光的必要条件。

激光器件作业部分答案

激光器件作业部分答案

《激光器件》作业(1)1.说明激光产生的必要和充分条件。

简述激光器的基本组成部分及其功能。

激光器基本构成:1)工作物质:激光器的核心。

谱线波段,增益,结构形态。

2)泵浦源:电、光、热、化学能、核能激励。

激光电源,控制电路,能量转换效率。

3)光学谐振腔:为激光振荡建立提供正反馈;其参数影响输出激光束的质量。

稳定性,模式;镜片加工和镀膜工艺,调整精度4)辅助设施:散热系统,滤光设施。

调Q ,锁模,稳频,选模,放大。

产生激光的必要条件——粒子数反转:受激辐射要得到放大,必须辐射作用大于吸收作用。

要求上能级的粒子数大于下能级粒子数. 理想能级结构:上能级:亚稳态(长寿命),粒子数积累。

下能级:尽量清空。

产生激光的充分条件——阈值条件:激活介质的增益不小于损耗,才能产生激光振荡。

21G R ≥2. 判断谐振腔的稳定性(单位:mm) (1)R1=90, R2=40, L=100 (2)R1=20, R2=10, L=45 (3) R1=-40, R2=75, L=60 (4) R1=∞, R2=-10, L=501、稳定腔——傍轴光线在腔内任意多次往返不会横向逸出腔外 ()2211211,1101211R L g R L g g g D A -=-=<<<+<-其中或2、非稳腔——傍轴光线在腔内有限次往返必然从侧面溢出腔外 ()()121012112121-<+<>+>D A g g D A g g 即或即3.某稳定腔两面反射镜的曲率半径分别R1=-1.25m 及 R2=1.6m 。

(1)这是哪一类型谐振腔?(2)试确定腔长L 的可能取值范围, 并作出谐振腔的简单示意图。

凹凸镜;|g 1g 2|<14、画出下图所示谐振腔的等效透镜光路,并写出往返矩阵。

⎪⎪⎭⎫ ⎝⎛⋅=⎪⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡⋅⎥⎥⎦⎤⎢⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡⋅⎥⎥⎦⎤⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛000000211110111011011101θθθθr T r D C B A r L f L f r注意:相乘时要反序乘;5. 某CO 2激光器采用平凹腔,L=50cm ,R=2m ,2a=1cm ,λ=10.6μm 。

激光与物质相互作用ppt课件

激光与物质相互作用ppt课件

• 产生等离子体的技术途径通常为核聚变、高功率激光、 强冲击波、电弧放电、高频电场和强燃烧等方式。

光•
等 离

高功率激光辐照各种气体、液体或固体靶,使部分靶介质 转变为等离子体状态的主要机制是:
(1)光电离 原子中的电子受到激光照射时,由于光电效应 或多光子能量而发生电离。
子 体

(2)热电离 高温下热运动速度很大的原子相互碰撞,使其 电子处于激发态,其中一部分电子的能量超过电离势而使原
.
激 光
代入分布函数式并积分,得到Knudsen层的质量、动 量、能量守恒方程




.
激 光 等 离 子 体
.
• 变换一下得靶表面蒸汽的温度、密度与靶材密度、 表面温度的关系。
激 光 等 离 子 体
.
•Knudsen层的蒸气马赫数Ma为


等 离
马赫数:Mach number
子 定义1:在某一介质中物体运动
这个区内电离的主要机制将是碰撞电离。
和熔化期间材料的热特性保持不变,且激光强度恒定, 均匀地作用于材料表面,熔化(液相区)也均匀地出 现在某一平面上,并假设等温面z(t),边界条件为:
.
Ti t
a li
2T i z2
i
1, 2 ,...

式中下标 1,2分
激 光 等 离 子 体
T 2 T1 L l d z (t ) z z (t ), t
(3)与磁场发生相互作用 位置、形状与运动。
利用磁场可以控制等离子体的
• (4)集体相互作用 指大量带电粒子在自己产生的电场中 运动的行为,也就是等离子体内的各种波动过程。

高功率激光谱合成系统中热效应的分析

高功率激光谱合成系统中热效应的分析

高功率激光谱合成系统中热效应的分析随着科学技术的不断进步,激光技术在各个领域发挥了重要作用,并受到了广泛应用。

激光技术具有高能量、高精度、高速度等特性,在激光制造、激光加工和激光检测等方面有着重要的应用价值。

高功率激光谱合成系统由Pulse Position Modulator(PPM)驱动,其中包括多种激光器,如半导体激光器、氦氖激光、晶体激光等。

这样的复合激光源可以产生宽谱或窄谱,并且具有很高的能量和功率。

然而,这种复合激光源也存在一些问题,其中最大的问题之一是热效应。

在激光器的加热过程中,激光器会吸收大量的热量,从而导致激光器本身温度升高,使激光器的输出受到影响。

因此,对高功率激光谱合成系统中的热效应的分析变得尤为重要。

在对高功率激光谱合成系统中的热效应进行分析时,需要考虑激光器的特性、元件特性以及运行模式。

首先,针对激光器的特性和性能,关注激光器类型、激光功率、激光波长和激光脉宽等因素,这些因素会影响激光器内部温度及激光输出功率。

其次,关注激光器受控系统中元件的种类和数量,以及它们之间的热量传输关系。

最后,考虑激光器的运行模式,确定激光器的运行模式是否正确,以及激光器的散热系统是否合理。

另外,在高功率激光谱合成系统中,航空时间的变化也会对其热效应产生影响,航空时间间隔越短,激光器的负载也越大,从而会加剧其热效应。

此外,激光器负载的大小也会影响激光器的热效应,激光器负载越大,激光器表现出的热效应就越强烈。

因此,在高功率激光谱合成系统中,应尽可能避免热效应的发生。

为此,研究人员需要对激光器的功率、波长、脉宽进行理性调整,并且需要改善激光器的驱动系统,提高其运行稳定性。

另外,需要注意航空时间点的设定,避免航空时间间隔过短,使激光器受到过大的负载。

另外,需要改善激光器的散热系统,降低激光器内部温度,从而降低热效应的发生。

总之,对于高功率激光谱合成系统中的热效应,需要从激光器的特性、运行模式、航空时间的变化以及激光器的散热系统等角度,仔细分析热效应的发生原因,从而有效地避免热效应的发生。

固体激光工作物质的热效应

固体激光工作物质的热效应
4
光电子技术精品课程
4.1.1热平衡下棒内温度分布 4.1.1 热平衡下棒内温度分布
在热平衡状态下, 忽略冷却介质沿轴向的微小温度变化 认为热流主要沿棒的径向传导 热传导方程:
d T 1 dT Q 0 2 dr r dr K
T温度, 温度 Q单位体积内发热功率, 单位体积内发热功率 r棒 横截面内任一半径大小,K热导率。
热致双折射之退偏效应
退偏系统示意图 左图表示了光束的相关分量在经过系统前后的 变化,θ表示起偏器偏振方向和y* 轴的夹角( 起偏器与主双折射轴的夹角)。当光束经过起 偏器入射到激活介质时 各分量分别为 偏器入射到激活介质时,各分量分别为:
29
光电子技术精品课程
热致双折射之退偏效应
得到光束的透射强度:
当光束离开激活介质时,各分量为:
当光束离开检偏器后,各分量为:
热致双折射之退偏效应
左图说明 左图说明: 棒内光程差的大小分布和棒的长度无关 ,这不同于棒内温度场分布; 影响光程差最大的因素是注入功率,注 影响光程差最大的因素是注入功率 注 入功率越大,光程差越大,同等半径变 化内光程变化越大; 在棒的中心区域,光程差变化较缓,随 在棒的中心区域 光程差变化较缓 随 着向外延伸,光程差变化趋势越来越大 ,这体现出激活介质中心区域热致双折 射较小。
Nd:YAG晶体的取向
在热应力 在 力Nd:YAG晶体中,与棒 中 棒 轴垂直的平面内光率体的取向
22
光电子技术精品课程
[111]方向 [111] 方向Nd Nd: :YAG YAG的热致双折射 的热致双折射
X

φ
θ
nr
Y
1 3 αQ 2 2 nr n0 n0 (q2 r0 Cr r ) 2 K 1 3 αQ nφ n0 n0 (q2 r02 Cφ r 2 ) 2 K

激光器的分类

激光器的分类

激光器的分类来源:全球五金网 2011-10-31作者:佛山市科镭激光科技有限公司公司产品公司商机公司招商公司新闻激光器作为所有激光应用产品的核心部件,是所有激光应用产品的重中之重;而且激光器的种类是很多。

下面,将分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类介绍。

按工作物质分类根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体(晶体和玻璃)激光器,这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl)则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。

按激励方式分类①光泵式激光器。

指以光泵方式激励的激光器,包括几乎是全部的固体激光器和液体激光器,以及少数气体激光器和半导体激光器。

②电激励式激光器。

大部分气体激光器均是采用气体放电(直流放电、交流放电、脉冲放电、电子束注入)方式进行激励,而一般常见的半导体激光器多是采用结电流注入方式进行激励,某些半导体激光器亦可采用高能电子束注入方式激励。

二极管泵浦固体热容激光器热效应研究

二极管泵浦固体热容激光器热效应研究

二极管泵浦固体热容激光器热效应探究引言:二极管泵浦固体热容激光器是一种基于固体材料的激光器,其主要特点是激光器晶体中的能级较高,具有较大的固体热容。

热效应是固体激光器中的一个重要问题,热效应会降低激光器的性能和输出功率稳定性。

因此,探究二极管泵浦固体热容激光器的热效应对激光器的优化设计和性能提升具有重要意义。

一、热效应的原理二极管泵浦固体热容激光器中的热效应是由于激光器晶体在光学泵浦过程中吸纳的部分能量被转化为热能而导致的。

晶体具有较大的热容,当光子能量被吸纳后,晶体温度会上升,从而导致晶体的热膨胀。

热膨胀会引起激光器光腔的尺寸变化,从而导致激光器输出功率的变化。

此外,激光腔的尺寸变化还会引起光腔模式的偏移,进一步影响激光器的性能。

二、热效应的影响1. 输出功率的变化:热效应会导致激光器的输出功率发生波动和变化。

当晶体温度提高时,激光器腔内的折射率也会发生变化,导致腔内光的传输特性发生改变,从而影响激光的输出功率。

此外,热膨胀还可能导致腔内激光模式的偏移,使得激光器的输出功率变得不稳定。

2. 光学泵浦效率的降低:在二极管泵浦固体热容激光器中,光子能量被吸纳后会被转化为热能,而不是完全转化为激光光子。

因此,晶体的温度提高会降低光学泵浦效率,导致激光器的发射效果不佳。

3. 激光腔的稳定性降低:由于热膨胀引起的激光腔尺寸变化,使得激光器的腔内模式产生偏移,导致激光输出功率的不稳定性增加。

这将给激光器的应用带来一些困扰,特殊是对于要求高稳定性的应用。

三、热效应的探究方法1. 温度测量:探究热效应的首要任务是对晶体温度进行准确测量。

目前常用的温度测量方法有红外热像仪和热电偶等。

通过对晶体表面的温度分布进行测量,可以了解热效应在激光器中的分布和变化状况。

2. 仿真模拟:借助计算机软件进行热效应的仿真模拟是一种常用的探究方法。

通过建立激光器的热传导方程和热光耦合方程,可以得到激光器晶体的温度分布和热效应对激光器性能的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1.4 固体激光器的热效应
在同一等温线上,各点椭圆的形状和大小相同, 在同一等温线上,各点椭圆的形状和大小相同,其长轴和短轴分别沿该 点的切向和径向。 点的切向和径向。经过推导可得热应力双折射大小为
11
∆n = nr − nφ = n0
3
αQ
K
CB r 2
(11)
式中nr和nφ分别表示某点径向和切向折射率;n0为无热应力时Nd3+:YAG 式中n 分别表示某点径向和切向折射率; 为无热应力时Nd 的折射率;α为热胀系数;K为热导率;CB是与材料的泊松比和光弹性 的折射率; 为热胀系数; 为热导率; 系数有关的常数,对于Nd3+:YAG,CB≈-0.01 系数有关的常数,对于Nd YAG,
3.激光棒中的热应力双折射 3.激光棒中的热应力双折射
(10)
工作物质中温度分布不均匀会产生热应力,进而通过光弹性效应使折 工作物质中温度分布不均匀会产生热应力, 射率发生变化,使原来各相同性材料变为各相异性,即热应力双折射 射率发生变化,使原来各相同性材料变为各相异性,
光学介质的折射率特性通常由光率体描 绝大多数情况下它是椭球体, 述,绝大多数情况下它是椭球体,对于 各相同性介质,光率体为圆球体。 各相同性介质,光率体为圆球体。Nd3+: YAG在正常情况下 光率体为圆球; 在正常情况下, YAG在正常情况下,光率体为圆球;但当 内部有应力时, 内部有应力时,光率体变为椭球
§2.1.4 固体激光器的热效应
端面效应由棒内温度分布不均匀, 端面效应由棒内温度分布不均匀,引起棒端面形状发生变形所致
14
∆L ( r ) = αl0 [ T ( r ) − T ( 0)]
Qr 2 ∆L(r ) = −αr0 4K
(15) (16)
负号表示棒外缘比棒中心短。由于端面效应, 负号表示棒外缘比棒中心短。由于端面效应,棒端面由平面变为抛物 面,表面相对中心的变形量最大
影响热焦距的因素
16
1)热焦距与棒半径r0的平方成正比,r0越大,热透镜效应越轻。 热焦距与棒半径r 的平方成正比, 越大,热透镜效应越轻。 (2)热焦距 与输入功率成反比。即输入功率越大, 热焦距f (2)热焦距fT与输入功率成反比。即输入功率越大,热透镜效 应越严重; 应越严重; 值不同,导致径向和切向振动的光热焦距不同, (3)Cr和Cφ值不同,导致径向和切向振动的光热焦距不同,光 通过热透镜后产生双聚焦现象,对于Nd =1.2, 通过热透镜后产生双聚焦现象,对于Nd3+:YAG,fΦ/fT=1.2, 括号的第一项表示温度不均匀的变化,第二项表示热应力, (4)括号的第一项表示温度不均匀的变化,第二项表示热应力, 第三项表示端面效应。三种因素中,第一项起主要作用, 第三项表示端面效应 。 三种因素中 , 第一项起主要作用 , 第 二项次之,第三项最小。 二项次之,第三项最小。 若忽略端面效应, 与棒长无关。即输入相同时, (5)若忽略端面效应,fT与棒长无关。即输入相同时,虽增加 棒长可减小棒内单位体积的耗散功率, 棒长可减小棒内单位体积的耗散功率 , 同时增大了激光在轴 向的光程差。 向的光程差。
(8)
2 Pd αE σ r0 = 8πLK (1 − µ )
红宝石 5.8x10-6 3.84x103 0.42 (2.6∼14.8)x103 YAG (7.7∼8.2)x10-6 3x103 0.11 (1.3∼2.6)x103 0.3 钕玻璃 (7.5∼10.6)x10-6 (650∼750)x103 0.012 (9∼12)x104
由(12)、(13)、(14)得 12)、(13)、(14)得 )、(13)、(14)
13
n2 2 n(r ) = n(0)[1 − r ] 2n(0)
其中n 其中n2称热透镜系数
Q 1 dn 3 n2 = ( + n0 αCr ,φ ) K 2 dT
激光棒的热效应导致折射率由中心向外逐渐减小, 激光棒的热效应导致折射率由中心向外逐渐减小,与r呈抛物线,即 呈抛物线, 当光通过激光工作物质时,通过棒中心的光线光程大, 当光通过激光工作物质时,通过棒中心的光线光程大,通过棒边缘的 光线光程小。光通过激光棒的情况与通过透镜的情况极为相似, 光线光程小。光通过激光棒的情况与通过透镜的情况极为相似,故这 种由热引起的效应称为热透镜效应
§2.1.4 固体激光器的热效应
2.激光棒中的热应力 2.激光棒中的热应力 工作物质内热应力产生的主要原因是内部温度分布不均 匀,内、外层材料由于存在温差而产生机械应力 棒中心(r=0) 棒中心(r=0) 棒表面(r=r0) 棒表面(r=r
9
6 Pd αE σ0 = − 16πLK (1 − µ )
§2.1.4 固体激光器的热效应
一、连续激光器的热效应 1.激光棒内的温度分布 1.激光棒内的温度分布 若激光棒被均匀泵浦, 若激光棒被均匀泵浦,棒周 围散热情况相同, 围散热情况相同,忽略冷却 介质沿棒轴方向的微小温度 变化, 变化,则可视热流主要沿棒 的径向传导, 的径向传导,可用一维热传 导方程描述热稳定状况下的 热流分布
§2.1.4 固体激光器的热效应
1
固体激光器工作时,输入泵浦灯的能量只有少 固体激光器工作时, 部分转化为激光输出,其余能量转化为热损耗, 部分转化为激光输出,其余能量转化为热损耗, 工作物质自身温度升高,引起荧光谱线加宽、 工作物质自身温度升高,引起荧光谱线加宽、 量子效率降低, 量子效率降低,导致激光器阈值升高和效率降 激光棒一方面吸收光泵辐射发热, 低。激光棒一方面吸收光泵辐射发热,另一方 面由于冷却不均匀会造成工作物质内部温度分 布不均匀,导致热应力、 布不均匀,导致热应力、应力双折射和热透镜 效应等,这些热影响称之为热效应。 效应等,这些热影响称之为热效应。
§2.1.4 固体激光器的热效应
4.激光棒的热透镜效应 棒内各处的温度和热应力不同,导致各处的折射率不相同, 棒内各处的温度和热应力不同,导致各处的折射率不相同,若以棒中 心的温度为标准,棒内折射率的空间分布, 心的温度为标准,棒内折射率的空间分布,表示为
12
n( r ) = n( 0) + ∆n( r ) T + ∆n( r ) c
§2.1.4 固体激光器的热效应 热效应的坏处
2
1、引起荧光谱线加宽、量子效率降低,导致激光 引起荧光谱线加宽、量子效率降低, 器阈值升高和效率降低 2、产生热透镜效应引起光束质量变坏 产生应力双折射,引起偏振光退偏, 3、产生应力双折射,引起偏振光退偏,线偏光工 作的激光器,退偏损耗常导致器件的效率大大降低。 作的激光器,退偏损耗常导致器件的效率大大降低。 热应力过大会导致工作物质损坏。 4、热应力过大会导致工作物质损坏。 5、引起谐振腔形改变 6、限制了激光功率的进一步提高
(13)
∆n(r ) c = ∆nr ,φ
时,用Cφ表示
1 3 αQ =ห้องสมุดไป่ตู้− n0 ( )Cr ,φ r 2 K 2
(14)
Cr ,φ 为由材料的光弹性系数决定的常数,光的振动矢量沿径向r时,用C 为由材料的光弹性系数决定的常数,光的振动矢量沿径向r
表示,沿切向Φ r表示,沿切向Φ
§2.1.4 固体激光器的热效应
由(1)式可求得
Q 2 T (r ) = T (r0 ) + (r0 − r 2 ) 棒内任一点温度 4K Q 2 T (0) = T ( r0 ) + r0 棒中心温度 4K Pd Q 2 T (0) − T ( r0 ) = r0 = 棒中心与棒表面温差 4K 4πKL
(2) (3)
(4)
§2.1.4 固体激光器的热效应
dn Q dn 2 ∆n(r ) T = [T (r ) − T (0)] =− r dT 4 k dT
dn/dT为折射率温度系数 dn/dT为折射率温度系数
(12)
n(r)为棒截面内任意半径r处的折射率,n(0)为棒中心的折射率,Δn(r)T为与棒中心温 n(r)为棒截面内任意半径r处的折射率,n(0)为棒中心的折射率, 为棒截面内任意半径 为棒中心的折射率 差引起的折射率变化量, 差引起的折射率变化量,Δn(r)c为热应力引起的折射率变化量
F为激光棒与冷却介质接触的表面积(F=2πr0L);TF为冷却介质的温度; h为冷却介质与棒 为激光棒与冷却介质接触的表面积(F=2π L); 为冷却介质的温度; h为冷却介质与棒 (F=2 表面之间的热传递系数(W (W⋅ 与冷却介质的性质、流量、 表面之间的热传递系数(W⋅cm-2.℃-1),与冷却介质的性质、流量、有效流通面积等因素有 流量大而有效流通面积小时h 关。流量大而有效流通面积小时h大.
fT
组合薄透镜为
"
R K = = 2( n0 − 1) αr0 Q( n0 − 1)
(19)
αr (n − 1) 1 1 1 QL 1 dn = ' + "= [ + n03αCr ,φ + 0 0 ] fT fT K 2 dT L fT
主平面至棒端面的距离为
(20)
L h= 2n0
(21)
§2.1.4 固体激光器的热效应
热应力双折射与输入功率P 成正比, 热应力双折射与输入功率Pin成正比,随r 增加而增加,棒边缘双折射最大, 增加而增加,棒边缘双折射最大,棒中心 最小。应力双折射,将引起偏振光退偏。 最小。应力双折射,将引起偏振光退偏。 线偏光工作的激光器, 线偏光工作的激光器,退偏损耗常导致器 件的效率大大降低。 件的效率大大降低。
单位体积产生热
Pd Q= πr0 2 L
4
Pd为棒耗散的全部功率 Pd=ηPin, Pin为泵浦源的输入电功率;η为热耗功率系数, 为棒耗散的全部功率; 为泵浦源的输入电功率; 为热耗功率系数 为热耗功率系数, 表示棒内发热耗散的功率占输入电功率的比例; 为棒长 为棒长, 表示棒内发热耗散的功率占输入电功率的比例 L为棒长,r0是棒半径
相关文档
最新文档