刚体转动惯量测定实验

合集下载

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。

实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。

实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。

根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。

2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。

实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。

(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。

(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。

(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。

(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。

2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。

(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。

(3)移动转轴的位置,直到平衡木重新平衡。

(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。

实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。

(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。

2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。

实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。

分析实验数据的偏差和不确定度,讨论实验结果的可靠性。

恒力矩转动法测刚体转动惯量实验报告及数据相对误差

恒力矩转动法测刚体转动惯量实验报告及数据相对误差

恒力矩转动法测刚体转动惯量实验报告及数据相对误差实验报告:恒力矩转动法测刚体转动惯量一、实验目的:1.了解刚体的转动惯量及其计算方法;2.学习使用恒力矩转动法测量刚体的转动惯量;3.掌握数据处理和相对误差的计算方法。

二、实验仪器和材料:1.转动惯量测量装置;2.刚体样品(如圆柱体、薄壳等);3.倾角计;4.动力学测量仪。

三、实验原理:刚体的转动惯量是描述刚体对转动运动的惯性的物理量。

根据牛顿第二定律和刚体转动的基本方程可得,刚体的转动惯量与刚体所受的力矩和角加速度之间存在着关系:I=M/α其中,I为刚体的转动惯量,M为刚体所受的力矩,α为刚体的角加速度。

实验中可以通过施加一个恒定的力矩,使刚体绕固定轴线转动一定角度,并测量转动过程中的时间,再根据实验测得的数据计算得到刚体的转动惯量。

四、实验步骤:1.将刚体样品装在转动惯量测量装置上,使其绕固定轴线转动;2.使用倾角计测量刚体的转动角度,并记录数据;3.同时使用动力学测量仪测量刚体在转动过程中所受的力矩,并记录数据;4.根据实验测得的数据,计算得到刚体的转动惯量。

五、实验数据:1. 刚体样品质量m = 0.5 kg;2.刚体绕轴线转动的角度θ=20°;3.转动过程中施加的恒定力矩M=2N·m;4.转动过程中的时间t=5s。

六、数据处理:根据实验数据,可以计算得到刚体的转动惯量:I = M/α = M/(θ/t) = (2 N·m)/(20°/5 s) = 0.5 kg·m²七、相对误差计算:与理论值进行比较,刚体的转动惯量的理论值为0.1 kg·m²。

相对误差ε的计算公式为:ε = ,(实测值 - 理论值)/理论值,某 100% = ,(0.5 kg·m² -0.1 kg·m²)/0.1 kg·m²,某 100% = 400%八、实验结论:通过恒力矩转动法测量得到的刚体转动惯量为0.5 kg·m²,相对误差为400%。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告
未来可以进一步研究非均质刚体(如内部质 量分布不均的物体)的转动惯量,探讨其测 量方法和影响因素。
拓展应用领域
将刚体转动惯量的测定方法应用于工程领域,如机 械设计、航空航天等领域,为实际问题的解决提供 理论支持。
发展新的测量技术
随着科技的不断发展,可以探索更为精确、 高效的刚体转动惯量测量新技术,提高实验 测量的准确性和效率。
提供实验依据
本实验为刚体转动惯量的研究提供了可靠的实验数据和依据。
验证理论模型
通过实验验证理论模型的正确性,为刚体转动惯量的理论 研究提供有力支持。
推动相关领域发展
刚体转动惯量的研究在力学、物理学、工程学等多个领域 具有广泛应用,本实验的研究方法和结论有助于推动相关 领域的发展。
THANKS FOR WATCHING
得出结论
根据实验数据和误差分析结果,得出不同形 状刚体转动惯量的测量值和实验结论。
CHAPTER 04
实验结果分析与讨论
数据整理与图表展示
数据整理
详细记录了实验过程中各测量点 的数据,包括转动角度、时间、 扭矩等,并对数据进行了初步处 理,如计算平均值、标准差等。
图表展示
根据整理后的数据,绘制了相应 的图表,如转动角度-时间曲线、 扭矩-时间曲线等,以便更直观地 展示实验结果。
设备操作注意事项
实验前应检查实验台是否 水平、稳固,确保实验过 程中刚体不会晃动或倾斜。
调整光电传感器时应确保 其与刚体转动平面垂直,
且光线能够准确照射到刚 体表面。
ABCD
安装刚体及附件时应确保 连接牢固、稳定,避免实 验过程中发生脱落或移位。
实验过程中应保持环境安 静、避免干扰,确保数据 采集的准确性和可靠性。
掌握数据处理方法

测刚体转动实验报告

测刚体转动实验报告

一、实验目的1. 理解并掌握根据转动定律测转动惯量的方法;2. 熟悉电子毫秒计的使用;3. 通过实验验证转动惯量的基本概念和规律。

二、实验原理转动惯量是物体转动惯性的量度,表示物体绕某轴转动时,其质量分布对转动的影响程度。

转动惯量越大,物体转动越困难。

转动惯量的大小与物体的质量、质量分布和转轴的位置有关。

根据转动定律,刚体绕固定轴转动时,所受合外力矩等于刚体的转动惯量与角加速度的乘积。

即:M = Iα其中,M为外力矩,I为转动惯量,α为角加速度。

本实验采用恒力矩法测量刚体的转动惯量。

恒力矩法是通过测量刚体绕固定轴转动时的角加速度,然后根据转动定律计算转动惯量。

三、实验仪器1. 刚体转动惯量实验仪2. 通用电脑式毫秒计3. 砝码4. 水平仪四、实验步骤1. 将刚体转动惯量实验仪放置在水平桌面上,使用水平仪调整实验仪的水平状态;2. 将砝码挂在实验仪的挂钩上,确保砝码与实验仪的旋转轴平行;3. 使用电子毫秒计测量砝码从静止开始下落至接触刚体所需的时间t1;4. 改变砝码的位置,重复步骤3,测量不同位置下砝码下落时间t2、t3、...、tn;5. 计算每次实验中砝码下落过程中所受的平均力F;6. 根据转动定律,计算刚体的转动惯量I。

五、数据处理1. 计算砝码下落过程中所受的平均力F:F = (mg + T) / n其中,m为砝码质量,g为重力加速度,T为砝码与实验仪的摩擦力,n为实验次数。

2. 计算刚体的转动惯量I:I = F t / (n α)其中,t为砝码下落时间,α为角加速度。

六、实验结果与分析1. 通过实验测量,得到不同砝码位置下砝码下落时间t1、t2、t3、...、tn;2. 计算砝码下落过程中所受的平均力F;3. 根据转动定律,计算刚体的转动惯量I;4. 对实验数据进行处理,分析转动惯量与砝码位置的关系。

七、实验结论1. 通过实验验证了转动定律的正确性;2. 确定了刚体的转动惯量与其质量、质量分布和转轴位置的关系;3. 熟练掌握了电子毫秒计的使用方法。

转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

刚体转动惯量测定实验

刚体转动惯量测定实验

四.实验方法和步骤
5.用手轻微转动上部圆盘,使三线摆产生一个初扭转 角,然后释放圆盘,三线摆发生扭转振动 6.点击“复位”按钮,再点击“开始”按钮,系统自 动记录扭转20次所需时间,取平均即为振动周期
7.重新稳定圆盘,按“开始”按钮连续测量6次 8.重新调整摆长约为700mm和500mm,重复3-7步骤,分 析不同摆长对转动惯量测试值的影响
刚体转动惯量测定实验刚体转动惯量的测定刚体转动惯量实验报告刚体转动惯量实验仪刚体转动惯量刚体的转动惯量三线摆测刚体转动惯量刚体转动惯量数据处理测量刚体的转动惯量刚体转动惯量误差分析
工程中常见非均质物体
一.实验目的
1.了解并掌握用“三线摆”测取物体转
动惯量的原理与方法 2.掌握用“等效法”简化并解决实际工
四.实验方法和步骤
(二)非均质物体转动惯量测定
1. 点击“非均质物体转动惯量测试”按钮,进入测试界 面 2.松开三线摆顶部固定螺栓,转动手轮,使三线摆长为 600mm,调整圆盘至水平状态 3.输入等效圆柱质量m=80g,直径d=16mm、摆长l=600mm 4.将非均质物体放入圆盘,使其转动中心与盘心重合, 转动上部圆盘产生扭转振动,记录振动周期
r B’
R
三.实验原理
设圆盘最大转角为θmax,当圆盘转
角为θ 时,有
A
C
B
r l , r max l max
设三线摆作初始转角等于0、转动角 速度等于ωn的简谐振动,则有:
d max sin n t , n max dt max
四.实验方法和步骤
(二)非均质物体转动惯量测定
6.使两等效圆柱中心间距s为30、40、50、60mm,测出 其扭转振动周期,并用平行移轴定理计算转动惯量 7.用插入法求得非均质物体转动惯量

转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告引言刚体转动惯量是描述刚体在旋转过程中抵抗转动的性质,它是刚体围绕轴线旋转时所具有的惯性量。

在本实验中,我们通过测定刚体关于不同轴线的转动惯量,了解刚体转动惯量的概念与测定方法。

实验目的1.了解刚体转动惯量的概念与意义;2.学习刚体转动惯量的测定方法;3.实验测量刚体转动惯量,验证测定方法的正确性;4.掌握实验仪器的使用方法。

实验原理刚体转动惯量的定义为:$$I=\\Sigma m r^{2}$$其中,I为刚体的转动惯量,m为刚体质点的质量,r为质点到轴线的距离。

本实验主要使用转动盘进行转动惯量的测定。

转动盘由一个固定轴和一个可以转动的圆盘构成。

通过改变转动盘上的物体的位置,改变物体相对于固定轴的距离,可以测定不同轴线上刚体的转动惯量。

根据转动盘的平衡条件,可以得到刚体转动惯量的表达式:$$I=\\frac{T^{2} m}{4\\pi^{2}}$$其中,I为刚体的转动惯量,T为转动盘的周期,m为物体的质量。

实验步骤1.将转动盘调整到水平,固定好;2.在转动盘上放置圆柱体,使其与转动盘的轴线垂直;3.移动圆柱体,调整圆柱体相对于轴线的距离(例如:5cm、10cm、15cm等等),记录下距离;4.切换到计时功能,转动圆盘,记录下5次振动的周期;5.根据周期与距离的关系,计算刚体的转动惯量;6.将圆柱体移动到不同距离,重复步骤4-5,记录不同距离下的转动惯量;7.根据测得的数据,绘制出转动惯量与距离的曲线图。

数据处理与分析根据实验测得的数据,我们可以计算出不同距离下的刚体转动惯量。

将数据绘制成转动惯量与距离的曲线图,可以直观地观察到二者之间的关系。

根据实验原理推导的公式,我们可以利用线性回归的方法拟合出转动惯量与距离之间的关系,得到拟合直线的斜率即为刚体转动惯量的比例系数。

结论通过本实验,我们成功地测定了刚体转动惯量,并绘制了转动惯量与距离的曲线图。

实验结果与理论预期较为一致,验证了实验方法的正确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/6/20
工程中常见非均质物体
2020/6/20
2020/6/20
2020/6/20
2020/6/20
2020/6/20
2020/6/20
2020/6/20
2020/6/20
2020/6/20
2020/6/20
一.实验目的 1.了解并掌握用“三线摆”测取物体转 动惯量的原理与方法 2.2.掌握用“等效法”简化并解决实际 工程中的测量问题
θ
C’
三.实验原理
四.圆盘转动时,最大动
能为 Ekma x 1 2Jod dt2 ma x 1 2Jo
22 n max
A
CB
l
五.最大势能为: E p m am x (1 g clo ) s 1 2 mm 2 g al1 2 xm r l2g m 2 ax 六.对于保守系统Ekm :axEpmax
2020/6/20
四.实验方法和步骤
(二)非均质物体转动惯量测定
1. 点击“非均质物体转动惯量测试”按钮,进入测试界 面 2.松开三线摆顶部固定螺栓,转动手轮,使三线摆长为 600mm,调整圆盘至水平状态 3.输入等效圆柱质量m=80g,直径d=16mm、摆长l=600mm 4.将非均质物体放入圆盘,使其转动中心与盘心重合, 转动上部圆盘产生扭转振动,记录振动周期
2.点击“均质物体转动惯量测试”按钮,进入测试界 面
3.松开三线摆顶部固定螺栓,转动手轮,使三线摆长 约为600mm,调整圆盘至水平状态
4.2输020/6入/20 m=300g,r=40mm及摆长l(自行测量)
四.实验方法和步骤
5.用手轻微转动上部圆盘,使三线摆产生一个初扭转 角,然后释放圆盘,三线摆发生扭转振动 6.点击“复位”按钮,再点击“开始”按钮,系统自 动记录扭转20次所需时间,取平均即为振动周期 7.重新稳定圆盘,按“开始”按钮连续测量6次 8.重新调整摆长约为700mm和500mm,重复3-7步骤,分 析不同摆长对转动惯量测试值的影响
2020/6/20
四.实验方法和步骤 (二)非均质物体转动惯量测定
6.使两等效圆柱中心间距s为30、40、50、60mm,测出 其扭转振动周期,并用平行移轴定理计算转动惯量 7.用插入法求得非均质物体转动惯量 8.按“返回”按钮返回主菜单
2020/6/20
五.实验注意事项
1.初始摆角应小于6° 2.试样放置时应保持中心对称以减小误差 3.摆线宜尽可能长
A
CB
l
A’ O
rB’ R
θ
C’
2020/6/20
三.实验原理
设圆盘最大转角为θmax,当圆盘转
角为θ 时,有
rl, rma xlmax
设三线摆作初始转角等于0、转动角 速度等于ωn的简谐振动,则有:
masxi nnt, d d tma xnmax
2020/6/20
A
CB
l
A’ O
rB’ R
2020/6/20
二.仪器设备 1. 理论力学实验台“三线摆实验装置” 2. 均质圆盘、非均质零件试样
2020/6/20
三.实验原理
如图1所示三线摆,均质圆盘 质量为m,半径为R,三线悬吊半径 为r。当均质圆盘作扭转角为小于 6°的微振动,测得扭振周期为T1。
讨论圆盘的转动惯量和微振动 周期T1 关系。
A’ O
rB’ R
θ
C’
2020/6/20
三.实验原理
四.圆盘固有频率n2 :mJgorl2
五.转动惯量:
Jo
2T
2
mgr2 l
六.均质圆盘转动惯量理论值
为:
Jo
1 mR2 2
2020/6/20
A
CB
l
A’ O
rB’ R
θ
C’

四.实验方法和步骤
(一)均质圆盘转动惯量测定
1.打开电源,进入用户界面,输入用户名(1)和密码 (1),点击“转动惯量实验”,进入测试界面
2020/6/20
等效圆柱体:m==40g J
Jo
21md2 2 2
ms2 2
2020/6/20
0
T等1 T非 T等2
T
相关文档
最新文档