算法分析与设计 矩阵连乘问题
矩阵连乘问题的算法

矩阵连乘问题的算法
一、矩阵连乘问题
矩阵连乘问题是指在矩阵计算中,给定n个矩阵,求这n个矩阵的连乘积的最优解问题。
矩阵连乘问题既可以用于组合优化,也可以用于信息处理系统中查找最优路径的搜索算法。
它是最基本的组合优化问题。
二、矩阵连乘问题的算法
1. 动态规划法:动态规划法是求解矩阵连乘问题的常用算法。
它采用递归方法,将原问题分解为若干个子问题,然后求出各子问题的最优解,最后组合出原问题的最优解。
2. 贪心算法:贪心算法是一种经典的最优化算法,也可以用于求解矩阵连乘问题,即通过某种启发式规则,在每一步中都使最优决策,最终得到最优解。
3. 分支定界法:分支定界法是一种由搜索算法和界定法相结合而成的最优化算法,也可以用于求解矩阵连乘问题。
该算法按照树状的层次结构,向下搜索一个在每一步骤都使得当前最优的路径,然后上溯形成最优解。
4. 模拟退火算法:模拟退火算法是一种搜索算法,它可以用于求解矩阵连乘问题。
它采用一种模拟物理过程的原理,通过不断地改变解的状态,以求出相对最优解。
- 1 -。
矩阵链乘法问题

矩阵链乘法问题引言矩阵链乘法问题是计算机科学中的一个重要问题,它涉及到矩阵的乘法操作。
在很多实际的应用中,我们需要对多个矩阵进行乘法运算,这时候就需要考虑乘法的顺序。
矩阵的乘法运算是一个复杂的计算过程,不同的乘法顺序可能会导致不同的计算量和时间复杂度。
因此,矩阵链乘法问题就是要找到一种最优的乘法顺序,使得计算的总时间最短。
动态规划解法矩阵链乘法问题可以使用动态规划的方法来解决。
动态规划是一种将复杂问题分解成若干个子问题进行求解的方法。
在矩阵链乘法问题中,我们可以定义一个二维数组dp来存储最优的乘法顺序和对应的最小计算量。
状态定义我们可以将整个矩阵链划分成子问题,其中dp[i][j]表示从第i个矩阵乘到第j个矩阵所需要的最小计算量。
那么当i=j时,dp[i][j]=0,因为矩阵自己和自己相乘的计算量为0。
当i<j时,dp[i][j]的值需要通过求解子问题来获得。
状态转移方程对于dp[i][j],我们可以选择一个中间位置的括号将矩阵链划分成两部分,然后分别计算这两部分的最小计算量。
假设括号在第k个位置,那么可以得到如下的状态转移方程:dp[i][j] = min{dp[i][k] + dp[k+1][j] + p[i]*p[k+1]*p[j+1]}其中p是矩阵链的维度,假设矩阵链的维度为n,那么p的长度为n+1,p[i]表示第i个矩阵的行数,同时也是第i+1个矩阵的列数。
算法实现根据上述的状态转移方程,我们可以编写算法来解决矩阵链乘法问题。
1.初始化二维数组dp,将所有元素初始化为0。
2.对于链长len从2到n,依次计算dp[i][j]的值。
3.对于每一对(i, j),利用状态转移方程计算dp[i][j]的最小值。
4.最后,dp[1][n]即为所求的最小计算量。
算法分析对于给定的矩阵链,动态规划算法的时间复杂度为O(n^3),其中n是矩阵链的长度。
这是因为对于每一个子问题,都需要计算一次状态转移方程,总共有n^2个子问题,而每个子问题的计算量为O(n)。
算法设计与分析——矩阵连乘问题(动态规划)

算法设计与分析——矩阵连乘问题(动态规划)⼀、问题描述引出问题之前我们先来复习⼀下矩阵乘积的标准算法。
int ra,ca;//矩阵A的⾏数和列数int rb,cb;//矩阵B的⾏数和列数void matrixMultiply(){for(int i=0;i<ra;i++){for(int j=0;j<cb;j++){int sun=0;for(int k=0;k<=ca;k++){sum+=a[i][k]*b[k][j];}c[i][j]=sum;}}}给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。
如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采⽤(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,⽽采⽤A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。
加括号的⽅式对计算量有很⼤的影响,于是⾃然地提出矩阵连乘的最优计算次序问题,即对于给定的相继n个矩阵,如何确定矩阵连乘的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
⼆、问题分析矩阵连乘也是Catalan数的⼀个常⽤的例⼦,关于时间复杂度的推算需要参考离散数学关于Catalan的内容。
下⾯考虑使⽤动态规划法解矩阵连乘积的最优计算次序问题。
1、分析最优解的结构问题的最优⼦结构性质是该问题可以⽤动态规划求解的显著特征!!!2、建⽴递归关系3、计算最优值public static void matrixChain(int n) {for (int i = 1; i <= n; i++) {m[i][i] = 0;}for (int r = 2; r <= n; r++) {//i与j的差值for (int i = 1; i <= n - r + 1; i++) {int j = i + r - 1;m[i][j] = m[i + 1][j] + p[i - 1] * p[i] * p[j];s[i][j] = i;for (int k = i + 1; k < j; k++) {int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];if (t < m[i][j]) {m[i][j] = t;s[i][j] = k;}}}}}4、构造最优解public static void traceback(int i, int j) {if (i == j) {System.out.printf("A%d", i); // 输出是第⼏个数据return;}System.out.printf("(");traceback(i, s[i][j]);// 递归下⼀个数据System.out.printf(" x ");traceback(s[i][j] + 1, j);System.out.printf(")");}三、总结。
算法分析与设计课程中矩阵连乘问题的教学探讨

算法分析与设计课程中矩阵连乘问题的教学探讨作者:刘文强周波桑海涛顾泽元韩娜来源:《教育教学论坛》2016年第18期摘要:文章介绍了算法分析与设计课程中矩阵连乘问题的动态规划算法,利用该算法解决了两道经典竞赛题目,即能量项链问题和石子合并问题。
对于能量项链问题,其求解思想是将其转换为一个环形矩阵连乘问题,然后求解这个环形矩阵连乘积所需的最大乘法次数。
对于石子合并问题,分析出它与矩阵连乘问题的相似性,从而借鉴矩阵连乘问题的求解方法实现求解。
通过这两个问题的求解,有助于学生举一反三,启发学生思维,以学致用,提高问题求解能力。
关键词:矩阵连乘问题;能量项链问题;石子合并问题中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)18-0206-03在算法分析与设计课程中,矩阵连乘问题[1-2]是一个可用动态规划方法求解的经典最优化问题,利用该问题可以有效地求解许多实际问题。
该问题描述为:给定n个矩阵A1,A2,…,An,其中矩阵Ai(1≤i≤n)的维数为pi×pi+1,即矩阵A1的维数为p1×p2,矩阵A2的维数为p2×p3,依此类推,矩阵An的维数为pn×pn+1。
考虑这n个矩阵的连乘积A1A2…An,由于矩阵乘法满足结合律,所以求解这个矩阵连乘积时可以有许多不同的计算次序,每种计算次序都有一个计算量,这里所说的计算量是指按照某种计算次序来计算一个矩阵连乘积时所需的乘法次数。
那么矩阵连乘问题就是要确定一个矩阵连乘积的一种最优计算次序,使得按照这种最优计算次序来计算一个矩阵连乘积时,所需要的乘法次数最少。
一、矩阵连乘问题的动态规划算法用记号A[i:j]来表示矩阵连乘积AiAi+1…Aj-1Aj。
定义一个二维数组m来保存求解一个矩阵连乘积时所需的最少乘法次数,数组元素m[i][j]保存的是求解矩阵连乘积A[i:j]时所需的最少乘法次数。
根据最优子结构性质,容易建立m[i][j]所满足的递推关系式如下。
矩阵连乘算法

福州大学数学与计算机科学学院《计算机算法设计与分析》上机实验报告(2)i<=k<j,则:m[i][j]=m[i][k]+m[k+1][j]+pi-1pkpj。
由于在计算是并不知道断开点k的位置,所以k还未定。
不过k的位置只有j-i个可能。
因此,k是这j-i个位置使计算量达到最小的那个位置。
综上,有递推关系如下:若将对应m[i][j]的断开位置k记为s[i][j],在计算出最优值m[i][j]后,可递归地由s[i][j]构造出相应的最优解。
s[i][j]中的数表明,计算矩阵链A[i:j]的最佳方式应在矩阵Ak和Ak+1之间断开,即最优的加括号方式应为(A[i:k])(A[k+1:j)。
从s[1][n]记录的信息可知计算A[1:n]的最优加括号方式为(A[1:s[1][n]])(A[s[1][n]+1:n]),进一步递推,A[1:s[1][n]]的最优加括号方式为(A[1:s[1][s[1][n]]])(A[s[1][s[1][n]]+1:s[1][s[1][n]]] )。
同理可以确定A[s[1][n]+1:n]的最优加括号方式在s[s[1][n]+1][n]处断开...照此递推下去,最终可以确定A[1:n]的最优完全加括号方式,及构造出问题的一个最优解。
3、动态规划迭代算法设计:用动态规划迭代方式解决此问题,可依据其递归式自底向上的方式进行计算。
在计算过程中,保存已解决的子问题的答案。
每个子问题只计算一次,而在后面需要时只需简单检查一下,从而避免了大量的重复计算,最终得到多项式时间的算法。
4、算法代码:1.//3d1-2 矩阵连乘动态规划迭代实现2.//A1 30*35 A2 35*15 A3 15*5 A4 5*10 A5 10*20 A6 20*253.//p[0-6]={30,35,15,5,10,20,25}4.#include "stdafx.h"5.#include <iostream>ing namespace std;7.8.const int L = 7;9.10.int MatrixChain(int n,int **m,int **s,int *p);11.void Traceback(int i,int j,int **s);//构造最优解12.13.int main()14.{15.int p[L]={30,35,15,5,10,20,25};16.17.int **s = new int *[L];18.int **m = new int *[L];19.for(int i=0;i<L;i++)20. {21. s[i] = new int[L];22. m[i] = new int[L];23. }24.25. cout<<"矩阵的最少计算次数为:"<<MatrixChain(6,m,s,p)<<endl;26. cout<<"矩阵最优计算次序为:"<<endl;27. Traceback(1,6,s);28.return 0;29.}30.31.int MatrixChain(int n,int **m,int **s,int *p)32.{33.for(int i=1; i<=n; i++)34. {35. m[i][i] = 0;36. }37.for(int r=2; r<=n; r++) //r为当前计算的链长(子问题规模)38. {39.for(int i=1; i<=n-r+1; i++)//n-r+1为最后一个r链的前边界40. {41.int j = i+r-1;//计算前边界为r,链长为r的链的后边界42.43. m[i][j] = m[i+1][j] + p[i-1]*p[i]*p[j];//将链ij划分为A(i) * ( A[i+1:j] )44.45. s[i][j] = i;46.47.for(int k=i+1; k<j; k++)48. {49.//将链ij划分为( A[i:k] )* (A[k+1:j])50.int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];51.if(t<m[i][j])52. {53. m[i][j] = t;54. s[i][j] = k;55. }56. }57. }58. }59.return m[1][L-1];60.}61.62.void Traceback(int i,int j,int **s)63.{64.if(i==j) return;65. Traceback(i,s[i][j],s);66. Traceback(s[i][j]+1,j,s);67. cout<<"Multiply A"<<i<<","<<s[i][j];68. cout<<" and A"<<(s[i][j]+1)<<","<<j<<endl;69.}上述迭代算法的运行过程如下图所示:当R=2时,先迭代计算出: m[1:2]=m[1:1]+m[2:2}+p[0]*p[1]*p[2];m[2:3]=m[2:2]+m[3:3]+p[1]*p[2]*p[3];。
矩阵连乘问题实验报告

一、实验目的通过本次实验,加深对动态规划算法的理解和应用,掌握解决矩阵连乘问题的方法,提高算法分析和设计能力。
二、实验原理矩阵连乘问题是指给定n个矩阵,每个矩阵都与它的前一个矩阵可乘,求计算这些矩阵连乘积的最优计算次序,以使计算过程中所需的数乘次数最少。
由于矩阵乘法满足结合律,因此可以通过加括号的方式确定不同的计算次序。
三、实验步骤1. 问题描述:给定n个矩阵A1, A2, ..., An,其中Ai与Ai-1是可乘的。
求计算矩阵连乘积A1A2...An的最优计算次序,使得计算过程中所需的数乘次数最少。
2. 输入数据:矩阵个数n,每个矩阵的规模。
3. 输出结果:计算矩阵连乘积的最优计算次序和最少数乘次数。
4. 算法设计:- 定义一个二维数组m[i][j],其中m[i][j]表示计算矩阵AiAi-1...Aj的最少数乘次数。
- 初始化m[i][i] = 0,因为单个矩阵无需计算。
- 对于每个子问题A[i:j],计算m[i][j]的最小值:- 遍历k从i到j-1,将问题分解为A[i:k]和Ak+1:j,计算m[i][k]和m[k+1][j]的和,并加上k个矩阵的维度乘积。
- 取上述和的最小值作为m[i][j]的值。
5. 递归关系:- 当i = j时,m[i][j] = 0。
- 当i < j时,m[i][j] = min(m[i][k] + m[k+1][j] + p[i-1]p[k]p[j]),其中k从i到j-1,p[i-1]表示矩阵Ai-1的行数,p[j]表示矩阵Aj的列数。
6. 自底向上计算:- 从m[1][1]开始,按照递归关系计算m[1][2],m[1][3],...,m[1][n]。
- 然后计算m[2][3],m[2][4],...,m[2][n],以此类推,直到计算m[1][n]。
7. 输出最优计算次序:- 从m[1][n]开始,根据递归关系和子问题的最优解,逐步确定每个子问题的最优计算次序,直到得到整个问题的最优计算次序。
矩阵连乘实验报告总结

一、实验背景与目的矩阵连乘问题是一个经典的算法问题,它涉及给定一系列矩阵,确定这些矩阵的最佳乘积顺序,以最小化乘法操作的次数。
本实验旨在通过动态规划算法解决矩阵连乘问题,加深对动态规划方法的理解,并提高算法分析与设计的能力。
二、实验内容与步骤1. 问题描述与理解:- 给定n个矩阵A1, A2, ..., An,其中任意两个相邻矩阵都是可乘的。
- 目标是确定计算这些矩阵连乘积的最佳顺序,以最小化所需的乘法次数。
2. 算法分析:- 使用动态规划方法,通过将问题分解为子问题并存储子问题的解来求解。
- 设定m[i, j]表示矩阵Ai到Aj的最佳乘积顺序的乘法次数。
3. 动态规划过程:- 初始化m[i, i] = 0,因为单个矩阵不需要乘法。
- 对于长度为k的矩阵序列,通过遍历所有可能的分割点,计算m[i, j]的最小值。
- 具体步骤包括:- 对于每个可能的k(1 ≤ k ≤ n-1),- 对于每个起始矩阵i(1 ≤ i ≤ n-k),- 计算m[i, i+k-1]和m[i+k, j],- 更新m[i, j]为m[i, i+k-1] + m[i+k, j] + p[i-1] p[i] p[i+k]。
4. 代码实现:- 使用C或Java等编程语言实现动态规划算法。
- 编写辅助函数来计算矩阵的乘法次数。
三、实验结果与分析1. 实验结果:- 通过实验,成功实现了矩阵连乘问题的动态规划算法。
- 得到了计算给定矩阵序列连乘积所需的最小乘法次数。
2. 结果分析:- 动态规划方法有效地解决了矩阵连乘问题,避免了穷举法的指数级时间复杂度。
- 通过分析子问题的解,我们可以找到整个问题的最优解。
四、实验总结与反思1. 实验收获:- 加深了对动态规划方法的理解,特别是如何通过子问题的解来构建整个问题的解。
- 学会了如何将实际问题转化为动态规划问题,并使用代码实现算法。
2. 反思与展望:- 实验过程中遇到了一些挑战,如理解子问题的定义和计算最优子结构的策略。
矩阵链乘法(动态规划)

矩阵链乘法(动态规划)
⼀题意描述:
给定由n个要相乘的矩阵构成的序列(链)<A1,A2,A3,····A n>。
由于矩阵满⾜结合律(加括号⽅式表⽰结合⽅式),不同的计算⽅式导致的求出最终计算结果的代价相异,有的花的时间很少,有的⽅式所花时间很多,那么下⾯的任务就是求出算出结果所需要的最少时间及⼀个最优解。
⼆思路分析:
设p(n)表⽰⼀串n个矩阵可能的加全部括号⽅案数。
当n=1时,只有⼀个矩阵,此时p(1)=1。
当n>=2时,⼀个加全部括号的矩阵乘积等于两个加全部括号的⼦矩阵乘积的乘积,⽽且这两个⼦乘积之间的分裂可能发⽣在第k个和第k+1个矩阵之间,其中k=1,2,····,n-1;因此可以求得递归式:
1.找局部最优解:把问题:转化成两个最优⼦问题:及
2.构造递归解:
⾸先定义m[i,j]为解决⼦问题A[i....j]的最⼩计算次数,那么解决整个问题A[1,n]所花的最⼩时间为m[1,n]。
那么递归⽅程可以写成如下形式:
为了跟踪如何构造⼀个最优解我们可以定义s[i,j]为这样的⼀个k值,在该处分裂乘积后可得⼀个最优解。
3.构造函数进⾏求解
输出最优路径的函数⾃⼰编写,经过调⽤数组s[i][j]即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
完全加括号的矩阵连乘积
完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的;
(2)矩阵连乘积 A 是完全加括号的,则 A 可 表示为2个完全加括号的矩阵连乘积 B和 C 的乘积并加括号,即 A (BC)
每一种完全加括号对应于一个矩阵连乘积得计算次序, 而矩阵连乘积的计算次序与其计算量有密切的关系。
qr 矩阵,则乘积C=AB是 pr 矩阵,总共需要 pqr
次数乘得到。 这样可以计算每一种完全加括号方式的计算量,如
设有四个矩阵 A, B, C, D ,它们的维数分别是: A 5010 B 1040 C 4030 D 305
总共有五中完全加括号的方式
(A((BC)D)) ( A(B(CD))) ((AB)(CD))
穷举法:列举出所有可能的计算次序,并计算出每一种计 算次序相应需要的数乘次数,从中找出一种数乘次数最少的 计算次序。
算法复杂度分析: 对于n个矩阵的连乘积,设其不同的计算次序为P(n)。 由于每种加括号方式都可以分解为两个子矩阵的加括号问题: (A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:
对于1≤i≤j≤n不同的有序对(i,j)对应于不同的子问题。 因此,不同子问题的个数最多只有
n 2
n
(n
2
)
由此可见,在递归计算时,许多子问题被重复计算多
次。这也是该问题可用动态规划算法求解的又一显著
特征。
用动态规划算法解此问题,可依据其递归式以自底向 上的方式进行计算。在计算过程中,保存已解决的子 问题答案。每个子问题只计算一次,而在后面需要时 只要简单查一下,从而避免大量的重复计算,最终得 到多项式时间的算法
for( int i=0;i<ra;i++) for(int j=0;j<cb;j++) { int sum=a[i][0]*b[0][j]; for(int k=1;k<ca;k++) sum=sum+a[i][k]*b[k][j];
c[i][j]=sum; } }
8
通过矩阵乘积标准算法可知:若矩阵A是 pq 矩阵,B是
第3章 动态规划
本章主要知识点:
3.1 矩阵连乘问题 3.2 动态规划算法的基本要素 3.3 最长公共子序列 3.4 0-1背包问题
1
算法总体思想
• 动态规划算法与分治法类似,其基本思想也是将待求 解问题分解成若干个子问题
T(n)
=n
T(n/2)
T(n/2)
T(n/2)
T(n/2)
2
算法总体思想
3
算法总体思想
• 如果能够保存已解决的子问题的答案,而在需要时 再找出已求得的答案,就可以避免大量重复计算, 从而得到多项式时间算法。
4
动态规划基本步骤
• 找出最优解的性质,并刻划其结构特征。 • 递归地定义最优值。 • 以自底向上的方式计算出最优值。 • 根据计算最优值时得到的信息,构造最优
解。
• 但是经分解得到的子问题往往不是互相独立的。不同 子问题的数目常常只有多项式量级。在用分治法求解 时,有些子问题被重复计算了许多次。
T(n)
=n
n/2
n/2
n/2
n/2
T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4
• 矩阵连乘计算次序问题的最优解包含着其子问 题的最优解。这种性质称为最优子结构性质。 问题的最优子结构性质是该问题可用动态规划 算法求解的显著特征。
12
2. 建立递归关系
设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j], 则原问题的最优值为m[1,n]
当i=j时,A[i:j]=Ai,因此,m[i,i]=0,i=1,2,…,n 当i<j时,
m[i, j] m[i, k ] m[k 1, j] pi1 pk p j
这里 Ai 的维数为 pi1 pi
可以递归地定义m[i,j]为:
m[i,
j]
mikin j{m[i, k ]
0 m[k 1,
j]
pi1 pk
pj}
i j i j
k 的位置只有 j i 种可能
13
3. 计算最优值
5
3.1 矩阵连乘问题
给定n个矩阵 {A1, A2 ,,...,其An中} 与 是可Ai乘的A,i1
。
考察这i n个1,2矩,...阵,n 的1连乘积
A1A2... An
由于矩阵乘法满足结合律,所以计算矩阵的连乘可以 有许多不同的计算次序。这种计算次序可以用加括号 的方式来确定。
若一个矩阵连乘积的计算次序完全确定,也就是说该 连乘积已完全加括号,则可以依此次序反复调用2个矩 阵相乘的标准算法计算出矩阵连乘积
加括号方式为 ( Ai Ai1... Ak )( Ak1Ak2... Aj )
计算量:A[i:k]的计算量加上A[k+1:j]的计算量,再加上 A[i:k]和A[k+1:j]相乘的计算量
11
1. 分析最优解的结构
• 特征:计算A[i:j]的最优次序所包含的计算矩阵 子链 A[i:k]和A[k+1:j]的次序也是最优的。
(((AB)C)D) ((A(BC))D)
16000, 10500, 36000, 87500, 34500
9
3.1 矩阵连乘问题
给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的, i=1,2 ,…,n-1。如何确定计算矩阵连乘积的计算次序,使得依 此次序计算矩阵连乘积需要的数乘次数最少。
下面是计算两个矩阵乘积的标准算法:
7
完全加括号的矩阵连乘积
public static void matrixMultiply(double a[][], double b[][], double c[][], int ra, int ca, int rb, int cb)
{ if(ca!=rb) throw new IllegalArgumentException(“矩阵不可乘”);
P(nP)是(n)随n的kn11增P长(k)呈1P(指n 数k增) 长nn 。11 P(n) (4n / n3/2)
10
3.1 矩阵连乘问题
穷举法 动态规划
将矩阵连乘积 Ai Ai1...简A记j 为A[i:j] ,这里i≤j
考察计算A[i:j]的最优计算次序。设这个计算次序在矩阵 Ak和Ak+1之间将矩阵链断开,i≤k<j,则其相应完全