九年级数学上册《概率》教学反思

合集下载

概率教学的反思

概率教学的反思

概率教学的反思
概率教学的反思
概率教学的反思
概率是教材中新增的一部分知识,通过教学自己感悟很多,下面就谈一下自己的几点认识:
(1)这部分知识应该让学生在试验中获取知识,但自己在教学中放手给学生试验的时间太少了,没有关注学生的实践活动。

(2)老师见过的题型有限,遇到一个新的题型,利用现有的知识讲解,学生老师感到模糊和别扭;把握不好教难题目的教学,在难易程度的把握上,调节不好,对这一块的中考动向理解不透,特别是刚刚接触新课程的老师,甚至还有一部分老师以前根本没有接触过这些新课程,边学边教,效果不好;在题目中不能很好的与日常生活相联系,不能在教学中很好的培养及渗透学生收集信息,处理信息,分析信息的能力,对知识的链接方面,太单一,只强调了简单的计算,忽视了能力的培养。

(3)对随机观念,学生虽具有一定的生活经验,但长期数学教学使其以养成了确定性的习惯。

而缺乏主动实践探索的意识。

为此,需要加强活动教学,让学生在探究任务中产生学习兴趣,在真实数据的分析中形成数学的思考,讨论、辨析中加深对知识(尤其是一些易错的概念)的本质理解,同时也可发展学生的随机观念和学生的合作交流的能力。

(4)加强概率教学与代数、几何以及统计知识的联系。

(5)这部分知识比较简单,但它不是对教材泛泛的补充,为此教师应该引起足够的重视,进一步的挖掘教材,作好前后知识的链接。

用列举法求概率教学反思

用列举法求概率教学反思

用列举法求概率教学反思考虑到本节课的特点,我是把它上成数学活动课,加进了游戏和一些的活动,好让学生学得轻松有趣。

在发展新课改的今天,这节课如何表达新课改的精神,就成为了我考虑的重点。

反思这节课,我觉得有三个方面获得成功:1、从实例出发,引出课堂重点知识,表达了数学来源于生活,并用于生活的特点,真正是让学生在不知不觉中掌握知识。

教师实在扮演好 组织者、引导者、合作者 角色,有利于调节课堂气氛,有利与学生掌握所学知识。

2、能从不同的角度去引导学生考虑每一个问题,目的是为了培养学生的数学素质。

3、侧重于解决学生所提出的疑问,故意识去保护自尊,让学生敢于质疑的胆量和精神。

4、这节课的重点是会用列举法、列表法或者树形图法求给定事件的概率;难点是理解求给定事件概率的两个前提条件。

通过学生讨论、自主探索,利用小组合作的学习方式,在自主探索中发现概念的形成过程。

对本节课有一个忽略的地方,只重在分析,导致学生养成不标准的解题习惯。

还有一个失误就是没有顾及到所有的学生,因材施教,为了让这节课顺利的发展,在有的问题上我就忽略了一些学生的想法,和理解程度,所以在一些问题上他们还没有彻底弄明白或者没有充分发挥自己的想象力就过去了。

同时在一些知识的引导部份说的也不太到位。

在肯定学生方面,由于时间的关系,没有来得及的评价,少鼓励学生。

这些在我以后课堂上要注意,争取后面上的每节课都能调动学生学习的积极性,让每个学生都能彻底掌握知识和方法。

深有感触:课堂是一门很深的艺术,惟独更好,没有最好。

反思二:用列举法求概率教学反思这节课将进一步探索求一给定事件的概率的详细方法。

重点是会用列举法、列表法或者树形图法求一给定事件的概率;难点是理解求一给定事件概率的两个前提条件。

本节课通过学生讨论、自主探索,利用小组合作的学习方式,在自主探索中发现概念的形成过程。

本节课我设计了不少生活中的实例来调动学生的学习激情,使学生主动地去获取知识。

其中学生在计算的过程中存在的最大艰难时不能正确列举出所有等可能情况,不能灵敏运用这几种方法求一给定事件的概率。

初中数学《概率》教学的反思(1)

初中数学《概率》教学的反思(1)

初中数学《概率》教学的反思《课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,统计教学、这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理和交流。

”这就要求数学教学从内容到方法要更贴近学生,尽可能顺应学生活泼好动的天性,要不断地触发他们的兴趣点,从而促使他们积极主动地参与学习的过程。

教学中可以根据学生的实际情况,注意课题的操作行和可行性,根据课题学习的教学目标,选择其它的主题进行课题学习。

但就目前的教学情况,远远没达到以上所要求的,究其原因有二:1、怕充分给予学生自主,就完不成教学任务;2、教学中教师不知如何给予学生自主,怎样的教学才称得上学生的自主学习。

下面我就谈一下学习国培《初中数学中概率与统计学习的难点及解决策略》课的前后自己在教授初三数学《概率》一课时的几点体会和培养学生自主学习的方法。

在上一届教学时,虽然还是认真备课,钻研教材,把握重点内容。

在上课的过程中,重抓基础,要求学生能在学习理论的同时,认识统计和概率的本质,其教学过程,尽管讲解都很详细,教学层次也清晰,但还是教学方法老化没有摆脱老师牵着学生学的旧教学观,学生在课堂中没有自我意识,处于被动的接受状态,要在教学中唤醒学生的自我意识,必须在备课时,备学生。

教师备课时所想的应是学生如何会学会,而不是教师如何教。

在教学中应运用多种策略,给予学生自主学习的机会,提高学生自主学习的能力。

通过学习俞京宁老师的《初中数学中概率与统计学习的难点及解决策略》后,我知道了:要求学生理解“等可能”是古典概率非常重要的一个特征,它是古典概率思想产生的前提。

正是因为“等可能”,所以才会有了“比率”。

因此,“等可能性”和“比率”是古典定义教学中的两个落脚点。

而学生在处理较为复杂的概率问题中,有时会忽视古典概率的使用条件:等可能。

“等可能”是无法确切证明的,往往是一种感觉,但是这种感觉是有其实际背景的,例如,掷一枚硬币,“呈正面”“呈反面”是等可能的,因为它质地均匀;而掷一枚图钉,“钉帽着地”“顶针着地”不是等可能的,因为图钉本身给我们的感觉就是帽重钉轻。

《概率》教学反思

《概率》教学反思

《概率》教学反思
《概率》的教学反思
《概率》是九年制义务教育新课程标准九年级第二十五章的内容。

首先出示一道在两个AB不透明的袋子里摸有颜色的球,通过摸球游戏,复习不可能事件、必然事件、随机事件的相关概念,根据问题进一步确定随机事件的概率计算方法。

用摸取彩球、下雨的可能性、抽取扑克牌这几个活动,及时巩固随机事件的概念,师生共同归纳试验的特征(等可能事件):结果只有有限几个;各种结果的可能性相同。

例题讲解过程中,教师引导学生首先确定是否为等可能事件,再板演概率计算过程。

学以致用,巩固练习环节中,学生从抽扑克牌、选择走路口、摸小球、抽奖品几类随机事件中,感悟等可能事件与熟练概率计算方法。

初中数学九年级上册《概率初步复习课》教学反思

初中数学九年级上册《概率初步复习课》教学反思

《概率初步复习课》教学反思
本节课为九年级上册最后一章内容,与生活联系紧密,如买彩票、抽签问题。

本章主要内容就是随机事件定义、概率定义,及计算简单事件概率的方法(列举法)。

从近五年河南中考来看,概率属于中考的必考内容,在试卷中所占比重约为2.5%,一般在填空题中出现,选择题或解答题也会涉及。

一般会和统计方面的知识相结合出现。

作为一节复习课,我首先让学生自行复习归纳总结本章的基本概念及重点内容,然后设置配套练习,练习题内容由简到难,最后到中考题的练习。

教学方式以学生小组合作为主,老师引导为辅。

通过本节课的复习,学生能力有了较大的提升。

当然,本节课还存在很多不足之处,我总结如下:
1、过于关注中考题型的考查训练,忽视了本节课的趣味性,应当适当设计一些配套游戏,激发学生的学习兴趣;
2、本章节内容相对简单,但仍有部分学生基础较差,理解不够透彻,对这些学生的关注和指导较少;
3、教学语言不够精炼,以后注意表述要准确精炼。

本学段的概率内容属于初级水平,但对学生来说应该是充满趣味性和吸引力的,教学时,我们要尽量选择典型的、学生感兴趣的和富有时代气息的现实问题作为例子,使学生体会随机思想,培养概率思维,同时使学生感受概率与实际生活的密切联系,从而调动学生学习统计概率知识的积极性。

2024年人教版九年级数学上册教案及教学反思第25章25.1.2 概 率

2024年人教版九年级数学上册教案及教学反思第25章25.1.2 概  率

25.1 随机事件与概率25.1.2 概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1 抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被表示每一个数字被抽到的可能性大抽取的可能性大小相等,所以我们可以用15小.出示课件7:活动2 掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点表示每一种点数出现的可能性大小.数出现的可能性大小相等.我们用16教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1.5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1.6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1.2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1.5出示课件14,15:教师归纳:一般地,如果一个试验有n个可能的结果,并且它们发生的可能性都相等.事件A包含其中的m个结果,那么事件A发生的概率为:().m=p An事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.出示课件16:例1 任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21;=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=.63教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=1;6(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=1;2(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=1.3出示课件19:例2 袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)=2.3巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ;P(摸到黄球)= .学生独立思考后口答:19;13;59.出示课件21:例3 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.(1)指向红色有3种等可能的结果,P(指向红色)=37;(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=57;(3)不指向红色有4种等可能的结果,P(不指向红色)=4.7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.3解:A 区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A 区域的任一方格,遇到地雷的概率是38; B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772; 由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P (小红胜)=9π4π59π9-=, P (小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为38.你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.1 6解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.1 4;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P (中奖号码数字相同)=110. 7.解:⑴P (数字3)=17; ⑵P (数字1)=27; ⑶P (数字为奇数)=47.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流 .(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m P A n(0≤P (A )≤1) 九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。

人教版初三数学上册《概率与统计专题复习》教学反思

人教版初三数学上册《概率与统计专题复习》教学反思

人教版初三数学上册《概率与统计专题复习》教学反思统计与概率专题复习教学反思主要培养严谨的审题能力。

近几年从学生的答卷中,暴露出了有相当部分的学生没有认真审题,或者是不能从题目中准确获取信息;书写表达的完整性及规范性。

近几年从学生的答卷中,暴露出了有相当部分的学生数学语言表达不规范导致扣分;计算的准确度。

注意多训练学生易错的地方;图画能力。

学生在根据所给条件画出图形的能力较弱,建议教学过程中多训练学生这方面的图画能力,特别是在几何教学中,要让学生多动手画图。

概率统计都是一些每年都常考的考点,主要有:必然事件、不可能事件、随机事件、随机事件发生可能性大小、概率的意义、记法和计算、平均数、加权平均数的概念和计算、中位数、众数、方差、标准差、通过列表或树状图的方法求随机事件的概率及应用等,常出现在以选择、填空和解答题(19-22),考察理解频数分布直方图的能力、利用统计图获取信息的能力利和用列举法求概率,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,在实际教学中,我们发现相当一部分学生存在着数学解题能力缺失,解题时存在这些方面的问题:基础知识不牢固,不能融会贯通;审题不细,产生定势思维。

看到题目的表象就开始运用已有经验进行解题,这就是一种思维惯性的现象,有时教法单一也会让学生产生依赖心理,例如教师过于注重解题方法的传授,而不让学生去主动地尝试学习、尝试解题,忽略了对学生的“扶放教学”,使大批学生面对新的问题不敢去大胆尝试,依赖于听教师的正确答案;畏难情绪较严重, 要让学生成功地解决数学问题,需要学生具备良好的解决数学问题的能力,而在教师的教学中不难发现,很多学生面对数学问题都具有畏难情绪。

通过本节课的教学专题复习重点加强如下几点:教学内容适当才能使得课堂不紧张学生吃透知识点,做到精讲精练;给学生的时间多一些,把课堂还给学生,特别是毕业班学生;训练考点为主计算不要过于复杂;根据课堂教学环境和资源的生成,不断调整互动策略与学生互动等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册《概率》教学反思
九年级数学上册《概率》教学反思
一、教材分析
在本章中,学生将在“猜测--实验并收集实验数据--分析实验结果”的活动过程中,进一步了解不确定现象的特点,了解必然事件、不可能事件和不确定事件发生的可能性大小。

通过具体情境体会概率的意义,体会概率是描述不确定现象的数学模型,并能对简单事件进行概率计算。

感受数学源于生活,发展“用数学”的意识和能力。

日常生活中有许多有关概率知识的事件,在教学中,我将这些事件贯穿到整个教学过程中,使教学过程不再单一、枯燥。

学生通过动手操作体验收获,提高了学习的积极性和主动性。

二、学法探究
1、理解概率的意义:
体会概率的意义不仅是本节、本章的重点,也是学好本章的关键,一方面可以使学生体会到概率和其他学科一样,也是科学方法,能够有效地解决现实世界的众多问题;另一方面也使学生认识到概率的思维方式与确定性思维方式的差异,学生只有具备了这种随机观念,才能从容地应对变化和不确定性。

我首先呈现一个转盘游戏,通过实验与分析,使学生体会必然事件,不可能事件和不确定事件发生的可能性。

然后,通过掷硬币的游
戏,让学生了解事件发生的等可能性及游戏规则的公平性,并在大量做实验的过程中初步了解概率的意义。

2、经历“猜测结果--进行实验--分析实验结果”的过程,建立正确的.概率直觉。

学习概率,必须亲自经历对随机现象的探索过程,亲自动手收集实验数据,分析实验结果,体会不确定现象的特点和概率论的基本思想,并将所得结果与自己的猜测进行比较,真正树立正确的概率直觉。

我设计了“摸球”游戏:箱中装入数量相等的红、绿两色球,学生亲自做游戏并收集数据,每一小组收集的数据都带有随机性,但大量实验后,两种情况出现的频率都稳定在同一个数值上。

因此,这两种情况发生的可能性是一样的,学生真正投入到产生和发展概率思想的全过程。

三、计算简单事件发生的概率
要求学生能够计算一些简单事件发生的概率,从而实现对可能性从定性化到定量化的研究。

学生理解概率计算方法有些困难,我们可通过一系列活动如:玩扑克牌(找A,找方块,找偶数等),引导学生列举出所有发生的可能性,得到概率的计算公式:
四、“对简单事件发生的可能性作出预测”的教学
通过具体情境体会概率的意义,体会概率对人们作出合理的决策的重要性。

教学中我设计了如下例子:巴西队与阿根廷队今晚的足球赛,请你预测一下这两支球队赢的可能性分别是有多大?这是一个现
实的问题,足球比赛的输赢:双方人员的技术是一个很大的决定性因素,这就要求学生收集比赛中两支球队的相关信息,然后对数据进行整理分析,估计出各支球队胜负的概率,最后,作出判断。

总之,教学中,老师要充分利用生活资源,要让学生主动参与到教学中,体验到成功的喜悦,从而激发学生对数学更浓厚的兴趣。

相关文档
最新文档