非线性微分方程解的稳定性

合集下载

微分方程中的稳定性与周期解

微分方程中的稳定性与周期解

微分方程中的稳定性与周期解微分方程是数学中的重要概念,用于描述许多自然界和科学问题中的变化与变化率。

在微分方程的解空间中,稳定性与周期解是两个关键概念。

本文将讨论微分方程中的稳定性与周期解,并探讨它们在不同类型微分方程中的应用。

一、稳定性稳定性是指微分方程解中的一个重要特性,它描述了系统在扰动(如初始条件的微小变化)下的行为。

稳定性分为两种类型:有界稳定和渐近稳定。

1. 有界稳定有界稳定是指当系统受到扰动时,解的变化被限制在一个有界的范围内。

换句话说,无论初始条件如何变化,解都在一定范围内波动。

这种稳定性在许多实际问题中非常重要,例如电路中的振荡器系统。

2. 渐近稳定渐近稳定是指当系统受到扰动时,解最终趋于一个稳定的平衡状态。

也就是说,随着时间的推移,解会逐渐接近一个固定的值。

这种稳定性可以帮助我们理解许多自然现象,如天体力学中的行星轨道。

二、周期解周期解是指在一定时间间隔内重复出现的解。

周期解在许多周期性现象中都有应用,例如振动系统和生物节律等。

对于一个周期解,我们需要确定它的周期和振幅。

1. 周期周期是指解重复出现的时间间隔。

在微分方程中,我们可以通过分析解的特征来确定周期。

例如,对于振动系统的微分方程,周期解对应于解的正弦或余弦波动。

2. 振幅振幅是指解在周期内变化的幅度。

在微分方程中,振幅可以通过解的极大值与极小值之间的差值来确定。

振动系统中的振幅通常与初始条件有关。

三、应用稳定性与周期解在许多科学和工程领域中都有重要的应用。

下面将介绍在不同类型微分方程中的具体应用。

1. 非线性方程非线性方程的解通常较为复杂,稳定性和周期解的分析对于理解系统行为非常重要。

例如,Lotka-Volterra方程是用于描述捕食和被捕食物种之间关系的非线性方程,通过分析方程的周期解,我们可以预测种群数量的周期性波动。

2. 线性方程线性方程的解相对较简单,但稳定性分析仍然重要。

例如,热传导方程是描述热量传输的线性方程,在稳定性分析中,我们可以确定热传导系统是否会达到热平衡状态。

非线性微分方程及稳定性

非线性微分方程及稳定性

定理 (1) 若矩阵A的全部特征值都具有负实部,则系统 (6.12)的零解是渐近稳定的;
(2) 若矩阵A的全部特征值中至少有一个具有正实部,则系统 (6.12)的零解是不稳定的.
定理(Hurwitz准则) 实系数 n 次代数方程
的所有根具有负实部(包括负实根)的充分必要条件是:
定理 若特征方程
没有零根或零实部的根,则非
就有
则称系统(6.3)的零解
是渐近稳定的; 区域
称为
吸引域;如果吸引域是全空间,则称
是全局渐近
稳定的
. (3) 若


使

则称
是不稳定的。
6.3 相平面
现在讨论二阶微分方程组
(6.5)
它的解
(6.6)
如果把时间t当做参数,仅考虑x,y为坐标的(欧氏)空间, 此空间成为方程组(6.5)的相平面(若方程组是高阶的,则称为 相空间)。在相平面(相空间)中方程组的曲线称为轨线。对一般 的方程组(6.5)在相平面上一个点可能有不止一条轨线经过。但 如果方程组(6.5)是驻定方程组,即其右端函数不显含时间t的情 形,此时(6.5)式变成:
为研究(6.1)的特解
邻近的解的性态,通常先利用
变换: 把方程(6.1)化为:
(6.28) (6.3)
其中 此时显然有:
(6.4)
6.2 稳定性的基本概念
定义6.1 设
是系统(6.3)适合初值条件
的解
(1) 若
使得只要
对一切
恒有
则称系统(6.3)的零解
是稳定的。
(2) 若 1)
是稳定的;
2)
使得只要
)趋近于它时,称此极限圈为
稳定的。如果轨线是负向(即

微分方程的稳定性与全局解的存在性

微分方程的稳定性与全局解的存在性

微分方程的稳定性与全局解的存在性微分方程是数学中的重要概念,广泛应用于物理学、工程学、经济学等领域。

对于微分方程的研究,稳定性与全局解的存在性是两个重要的问题。

本文将针对微分方程的稳定性与全局解的存在性展开讨论,并探讨它们在应用中的意义。

一、稳定性分析稳定性是指微分方程解的行为在微小扰动下是否保持不变。

对于一阶线性微分方程,稳定性可通过特征值的符号来判断。

具体而言,若特征值的实部均小于零,则系统稳定;若存在大于零的实部特征值,则系统不稳定。

对于高阶非线性微分方程,稳定性的分析相对复杂。

一种常用方法是通过线性化系统来研究非线性系统的稳定性。

线性化系统是在非线性系统的稳定点附近对非线性系统进行线性逼近得到的系统。

通过分析线性化系统的特征值,可以判断非线性系统的局部稳定性。

二、全局解的存在性全局解是指微分方程在整个定义域上存在且唯一的解。

对于一阶线性微分方程,全局解的存在性一般能得到保证。

而对于非线性微分方程,全局解的存在性则需要满足一定的条件。

全局解的存在性与定理有关。

例如,一个常用的定理是皮卡-里普丝定理(Picard-Lindelöf Theorem),该定理保证了一阶常微分方程在给定条件下存在唯一的全局解。

另外,拉格朗日平均值定理(MeanValue Theorem)也是分析全局解存在性的有用工具。

除了定理,数值方法也可以用来求解微分方程的全局解。

例如,常用的欧拉方法、龙格-库塔方法等数值方法能够逼近微分方程的全局解。

这些数值方法在实际应用中具有重要意义,特别是对于复杂的非线性微分方程。

三、稳定性与全局解的应用意义微分方程的稳定性和全局解的存在性在科学与工程中具有广泛的应用价值。

以下列举几个具体的应用领域:1. 物理学:微分方程广泛应用于物理学中的运动学、电磁学、热力学等领域。

通过稳定性分析和全局解的存在性可以确定物理系统的稳定性和行为。

2. 工程学:微分方程被应用于工程学中的控制系统、信号处理、电路等领域。

微分方程中的稳定解与周期解

微分方程中的稳定解与周期解

微分方程中的稳定解与周期解微积分中的微分方程是描述自然界中各种变化规律的重要工具。

在微分方程的解中,稳定解和周期解是两种常见而重要的解析形式。

本文将探讨微分方程中的稳定解与周期解的性质和特点。

1. 稳定解稳定解是指在微分方程中的解随时间的推移而趋于一个固定的值。

具体而言,对于一阶常微分方程dy/dt=f(t,y),如果对于任意的初始条件(y0,t0),解y(t)在t趋于无穷时都趋于一个固定的极限值y∞,则称该解为稳定解。

稳定解的一个典型例子是指数衰减现象。

考虑一阶常微分方程dy/dt=-ky,其中k>0为常数。

可以求得该微分方程的解析解为y(t)=y0e^(-kt),其中y0为初始条件。

当t趋于无穷时,指数项e^(-kt)趋近于0,因此y(t)趋于极限值0,这就是一个稳定解。

稳定解的图像通常表现为一条渐近于某个水平线或曲线的曲线。

在控制系统、生态学和经济学等领域中,稳定解常常用来描述系统在长时间内的行为趋势。

2. 周期解周期解是指在微分方程中的解在经过一定时间之后回到初始状态的解。

换句话说,周期解是解在时间轴上以一定周期重复出现的解。

周期解的一个简单例子是谐振子的运动。

考虑一个简谐振动系统,其运动方程可用二阶常微分方程描述。

解析解表达式为x(t)=Acos(ωt+φ),其中A为振幅,ω为角频率,φ为相位。

由于余弦函数是周期性的,因此x(t)在一定时间间隔内会回到初始位置,这就是一个周期解。

周期解的图像呈现出规则的周期性重复特征。

在物理学、电路和天体力学等领域中,周期解经常出现在周期性运动和周期性现象的描述中。

3. 稳定解与周期解的关系稳定解和周期解是微分方程中两种不同类型的解析形式。

它们在数学性质和物理意义上有着显著的区别。

首先,在数学性质上,稳定解通常是解析解,可以通过数学方法精确求解。

而周期解通常是通过数值方法或近似方法求解,因为周期解往往无法用一般的函数表达式表示。

其次,在物理意义上,稳定解描述的是系统的稳定性,即系统趋于平衡或固定状态的趋势。

关于有限时滞非线性微分方程零解的稳定性的两个结论

关于有限时滞非线性微分方程零解的稳定性的两个结论

R 关于 t ∈R 一致满足李普希兹条件, + 李普希兹常数满足一定的条件 , 便可得到系统 (. ) 04 的零解的 稳定性可由系统 (. )的零解的稳定性来决定 , 03 将李雅普诺夫的传统的定理 A中的零解的渐进稳定性 这一结论推广到有限时滞非线性微分方程 , 也相应地推广 了定理 B和定理 c 获得了新的结论。 ,
维普资讯
洛 阳师范学院学报 20 0 7年微 分 方 程 零 解 的 稳定性 的两个 结 论
倪 华 , 林发 兴
( . 苏大学理学院 , 1江 江苏镇江 2 2 1 ; . 10 3 2 福州大学数学 与计算机 科学学院 , 福建福州 3 0 ) 5(  ̄2
考虑 常系数 非线性微 分方程 :

A t ) x+ ,
(.) 0 1
其 中 A是一个 n阶 的常数 矩阵 , t t连续 , 函数 f 对 。 而 , )对 t 和 在 区域 G t t, 上 连续 , : 。 sM 对
满足李普希兹条件 , 并且还满足 f )-o f f , 0 ( 。 )和

l 8・
洛阳师范学院学报 20 0 7年第 2期
其中A £ 是定义在 尺 上的 n× 关于 t () + n 的连续矩阵函数 , 是常数, t 是对 ∈R 关于 t r 0 2 , ) ∈
R+的一 致连续 向量 函数 , 且还满 足 t )三 0 t∈R+ 并 , 0 ( )。 本文 主要 考虑 系 统 (.)的 零 解 的稳 定 性 , 减 弱 了定 理 A、 04 并 B和 C 中 当 一 0时 厂t‘)= (, p o l l) (1 1 这一 条件 , 在系统 (. )满足投 影为 , 03 的指 数 型二分性 的前提条件 下 , 只要求 t , )对 ∈

非线性微分方程组解的稳定性

非线性微分方程组解的稳定性

非线性微分方程组解的稳定性
谢大来
【期刊名称】《纯粹数学与应用数学》
【年(卷),期】1992(008)002
【总页数】8页(P117-124)
【作者】谢大来
【作者单位】西北大学
【正文语种】中文
【中图分类】O175.14
【相关文献】
1.一类非线性微分方程组解的稳定性 [J], 李天林
2.一类非线性微分方程组解的稳定性判定方法 [J], 倪郁东;辛云冰
3.n阶非线性微分方程组零解的稳定性 [J], 秦宏立;阎卫平
4.一类非线性常微分方程组的零解稳定性的判别准则 [J], 戴林勋
5.一类非线性微分方程组零解的稳定性准则 [J], 刘磊
因版权原因,仅展示原文概要,查看原文内容请购买。

非线性微分方程解的稳定性.ppt

非线性微分方程解的稳定性.ppt

四、李雅普诺夫第二方法
讨论如何应用函数来确定非线性微分方程组的稳定性态
问题,为简单起见,我们只考虑非线性自治微分方程组
其中
dx f (x) dt
(7)
x1
x
x2
xn
f1(x1, x2 ,
f
(x)
f2 (x1,
x2 ,
fn (x1, x2 ,
, xn )
xn
)
xn
)
假设f (0) 0 且 f (x) 在某域G : x A ( A为正常数)内连续的偏导 数,因而方程组(7)的由初始条件x(t0 ) x0 所确定的解在原 点的某个邻域内存在且唯一。显然 x 0 是其特解。
时是定负的。
定理3 如果对微分方程组(7)可以找到一个定正函V数(x) ,其通过(7)
的全导数dV 为常负函数或恒等于零,则方程组(7)的零解为稳定
dt
的。如果有定正函V数(x) ,其通过(7)的全导数dV 为定负的,则方 dt
程组(7)的零解为渐近稳定的。
定理4 (零解稳定判别定理) 对系统
dx F (x), x Rn dt
• 3.线性问题是非线性问题的基础,在一定条件 • 下,非线性问题在局部可以转化为线性问题 • 来讨论。非线性问题的大范围分析仍然是一 • 个难题。
19世纪末20世纪初
Poincare(法国) 创立微分方程定性理论 Liapunov(俄国) 创立微分方程稳定性理论
Logistic方程 Logistic方程
的。
五、结论
本文简述了非线性系统,根据非线性稳定性定理对方 程解的稳定性作了分析,非线性系统主要采用李雅普诺夫 第二方法进行稳定性判断。李雅普诺夫第一方法是将非线 性方程线性化,然后根据线性化后的方程的稳定性就可以 知道原非线性方程在定点邻域内的稳定性。李雅普诺夫第 二方法是构造李雅普诺夫函数不求解方程,用类似能量函 数直接做出判断。

第十一讲 非线性微分方程定性 与稳定性理论(1)

第十一讲 非线性微分方程定性         与稳定性理论(1)
t → +∞
{
}
定义3: 定义3: 若 ∃ε 0 > 0 对 ∀δ > 0 ,∃ x 0尽管 x0 ≤ δ , 但由初始条件 x (t0 ) = x0 确定的解 x (t ) ,总存在某 个时刻 t1 > t0 使得
x (t1 ) ≥ ε 0
则称(3)式的零解 x = 0是不稳定的。 是不稳定的。 则称(
(a)
A > 0, B > 0
t
0
ε
y′ > 0
(b )
A < 0, B < 0
二、相平面
本节主要讨论二阶线性方程
dx dt = ax + by dy = cx + dy dt
的奇点及其分类
a b ≠0 c d
一般二阶微分方程组的相关概念和性质
dx = X (t; x , y ) dt dy = Y (t; x , y ) dt
0
则称(3)式的零解 x = 0 是稳定的。 是稳定的。 则称( 若(3)式的零解稳定,且 ∃δ0 >0 使得当 x0 ≤ δ 0时, 式的零解稳定, 由 x (t0 ) = x0 确定的解 x ( t )有 则称零解 x = 0 是渐近稳定的. 是渐近稳定的.
t → +∞
lim x ( t ) = 0
x = y − ϕ (t ) ɺ ɺ ɺ ⇒ x = y − ϕ (t ) = g (t ; y ) − g (t ;ϕ (t )) =g (t ; x + ϕ (t )) − g (t ;ϕ (t )) ≡: f (t ; x )
ɺ x = f (t ; x )
f (t ;0) = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 y
A
B By
dy
Adt
ln y ln A By At c
容易得到满足初值条件的特解为
y
A
B
A y0
B
e
At
微分方程解的稳定性严格定义:
考虑微分方程组
y&1 g1(t; y1, y2 ,L , yn )
y&2 L
L
g2 L
(t; L
y1, L
y2 ,L LL
, L
对一切 t t成0 立,则称微分方程
dx f (t, x)
(3)
dt
的解是稳定的,否则是不稳定的。
定义1 如果对任意给定的 0,存在 ( ) 0( 一 般与 和t0 有关),使得当任一 x0
满足 x0 时,方程组(3)满足初始条件x(t0) x0 的 x(t)解,均有 x(t) 对
• 3.线性问题是非线性问题的基础,在一定条件 • 下,非线性问题在局部可以转化为线性问题 • 来讨论。非线性问题的大范围分析仍然是一 • 个难题。
19世纪末20世纪初
Poincare(法国) 创立微分方程定性理论 Liapunov(俄国) 创立微分方程稳定性理论
Logistic方程 Logistic方程
四、李雅普诺夫第二方法
讨论如何应用函数来确定非线性微分方程组的稳定性态
问题,为简单起见,我们只考虑非线性自治微分方程组
其中
dx f (x) dt
(7)
x1
x
x2
L
xn
f1(x1, x2 ,L , xn )
f (x)
f2 (x1, x2 ,L
xn
)
M
fn (x1, x2 ,L
xn
)
假设f (0) 0 且 f (x) 在某域G : x A ( A为正常数)内连续的偏导 数,因而方程组(7)的由初始条件x(t0 ) x0 所确定的解在原 点的某个邻域内存在且唯一。显然 x 0 是其特解。
定义4 假设V (x)为在域 x H内定义的一个实连续函数,V (0) 0 如果在此域内恒有 V (x) 0,则称函数 V 为常正的。如果对一 切 x 0 都有V (x) 0,则称函数 V 为定正的。如果函数是 V 定正(或常正)的,则称为 V 定负(或常负)。
yn L
)
y&n gn (t; y1, y2 ,L , yn )
或其向量形式
yv& gv(t; yv)
(1)
其中
yv y1 y2 L yn T
gv g1 g2 L gn T
注: 对n阶方程
z(n) g(t; z, z ',L , z(n1) )
(2)
可取变换 y1 z, y2 z,L , yn z(n1)
一切 t t0 成立,则称方程组(3)的零解 x 0 为稳定的。
定义2 如果方程组(3)的零解 x 0稳定,且存在这样的 0 0 ,使当 x0 0时,
满足初始条件x(t0) x0
的解x(t) 均有lim x(t) 0 ,则称零解 x 0 t
为渐近稳定的。
定义3 如果 x 0 渐近稳定,且存在域 D0 ,当且仅当 x0 D0 时满足初始条件x(t0 ) x0
的。
三、按线性近似决定微分方程的稳定性
考虑n维常系数线性方程组 dx Ax
(4)
dy
其中为n阶常数矩阵。
它的任意解均可表现为形如:
li
cit em it
m0
的线性组合,这里i 为方程组的系数矩阵A 的特征方程
det(A E)
(5)
的根,为零或正整数,由根的初级因子的次数决定。
定理1 若特征方程(5)的根均具有负实部,则方程组(4)的零解是渐近 稳定的.若特征方程具有正实部的根,则方程组(4)的零解是不稳定的.若 特征方程(5)没有正实部的根,但有零根或具零实部的根,则方程组(4) 的零解可能是稳定的也可能是不稳定的。这要看零根或具有零实部的根其 重数是否等于1。
两个常数解(平衡解):
ห้องสมุดไป่ตู้
dy Ay By2 dt
dy Ay By2, dt
y(0) y0
A y1(t) 0, y2 (t) B
问题:该方程的其它解与这两个平衡解有何关系?具体地说,初值在两个平 衡解附近的解的长期行为怎样?这就是解的稳定性问题。
现在假设 y 0, A , 那么 B
dy dt y(A By)
化为(1)式的特殊形式
y&1 y2 Ly&2LLy3
y&n1
yn
y&n g (t; y1, y2 ,L , yn )
问题:(1)式的解存在唯一吗?解能延拓吗?解对初值、参数有连续依赖性和 可微性吗?
当向量值函数gv(t; yv) 满足下面的Lipschitz条件时,上述问题 的回答是肯定的。这一点从前面的基本定理可以推得。
考虑非线性方程组 其中,R(0) 0 且满足条件
dX AX R( X ) dt
R(X ) 0
X
(6) (当 x 0时)
显然是方程组(6)的解,亦是方程组的奇点。
定理2 若特征方程(5)没有零根或零实部的根,则非线性微分方程组(6) 的零解的稳定性态与其线性近似的方程组(4)的零解的稳定性态一致,这就 是说,当特征方程(5)的根均具有负实部时,方程组(6)的零解是渐近稳定 的,而当特征方程具有正实部根时,其零解是不稳定的。
本论文内容提要
• 一、非线性方程的基本概念 • 二、李雅普诺夫函数的稳定性 • 三、按线性近似决定微分方程的稳定性 • 四、李雅普诺夫第二方法 • 五、结论
一、非线性微分方程的基本概念
• 1.自然界绝大部分现象是非线性现象,非线 • 性现象是一种非常复杂的现象。
• 2.绝大部分微分方程不能用初等积分法来解。
的解x(t)
均有
lim x(t) 0
t
,则称域
D 0 为(渐近)稳定域或吸引域。若稳定域为全空
间,即0 ,则称零解 x 0 为全局渐近稳定的或简称全局稳定的。
当零解 x 0 不是稳定时,称它为不稳定的。即是说:如果对某个给定的 0 不管 0 怎样小,总有一个x0 满足 x0 ,使得由初始条件 x(t0) x0 ,所确定的 解 x(t) ,至少存在某个 t1 t0 使得 x(t1) 则称方程组(3)的零解x 0 为不稳定
gv(t; yv%) gv(t; yv) L yv% yv
L 称为利普希茨常数,范数定义为
yv
n
yi 2
i 1
二、李雅普诺夫函数的稳定性
如果对于任意给定的 0, 和 t0都存在 (,t0 ) 0,只要使得 x0 - x1
就有
x(t,t0 , x0 ) -(t,t0 , x1)
相关文档
最新文档