ADS仿真作业用LC元件设计L型的阻抗匹配网络

合集下载

ADS仿真作业用LC元件设计L型的阻抗匹配网络

ADS仿真作业用LC元件设计L型的阻抗匹配网络

用LC元件设计L型的阻抗匹配网络一设计要求:用分立LC设计一个L型阻抗匹配网络,使阻抗为乙=25-j*15 Ohm的信号源与阻抗为Z L=100-j*25 Ohm的负载匹配,频率为50Mhz(L节匹配网络)二阻抗匹配的原理用两个电抗元件设计L型的匹配网络,应该是匹配网络设计中最简单的一种,但仅适用于较小的频率和电路尺寸的范围,即L型的匹配网络有其局限性在RF理论中,微波电路和系统的设计(包括天线,雷达等),不管是无源电路还是有源电路,都必须考虑他们的阻抗匹配(impeda nee matchi ng )问题。

阻抗匹配网络是设计微波电路和系统时采用最多的电路元件。

其根本原因是微波电路传输的是电磁波,不匹配会引起严重的反射,致使严重损耗。

所以在设计时,设计一个好的阻抗匹配网络是非常重要的。

阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。

对于不同特性的电路,匹配条件是不一样的。

在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

根据最大功率传输定理,要获得信号源端到负载端的最大传输功率,需要满足信号源阻抗与负载阻抗互为共轭的条件,即R S iX R L iX L。

若电路为纯电阻电路则X S = X L = 0,即R s =R L。

而此定理表现在高频电路上,则是表示无反射波,即反射系数为0.值得注意的是,要得到最佳效率的能量传输并不需要负载匹配,此条件只是避免能量从负载端到信号源端形成反射的必要条件。

当RL=Rs时可获得最大输出功率,此时为阻抗匹配状态。

无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小.阻抗匹配是无线电技术中常见的一种工作状态,它反映了输人电路与输出电路之间的功率传输关系。

当电路实现阻抗匹配时,将获得最大的功率传输。

反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。

分立LC阻抗匹配网络的ads仿真

分立LC阻抗匹配网络的ads仿真

分立LC阻抗匹配摘要:阻抗匹配的概念是射频电路设计中最为基本的概念,贯穿射频电路设计始终。

阻抗匹配就意味着源传递给负载最大的RF功率,换句话说就是要实现最大的功率传输,必须使负载阻抗与源阻抗匹配。

然而,他们的功能并不仅仅为了减小功率损耗而设计的,他们还具有其他功能,如减小噪声干扰、提高功率容量和提高频率响应的线性度等。

通常认为,匹配网络的用途就是实现阻抗变换,就是将给定的阻抗值变换成其他更合适的阻抗值。

关键字:射频;阻抗匹配;阻抗圆图;ADSAbstract: The concept of impedance matching in RF circuit design the most basic concepts, through the RF circuit design has always been. Impedance matching means that the source is passed to the load maximum RF power, in other words, to achieve maximum power transfer, the need to load impedance and source impedance matching. However, their function is not only designed to reduce power consumption, they also have other functions, such as reduced noise, increased power capacity and improve frequency response linearity. Is generally belie ved that the use of matching networks is to achieve impedance transformation is given impedance value into other more appropriate impedance value.Keywords: RF; impedance matching; impedance circle diagram; ADS一、设计要求:用分立LC设计一个L型阻抗匹配网络,使Zs =25-j*15 Ohm信号源与ZL=100-j*25 Ohm的负载匹配,频率为50Mhz。

ADS仿真作业用LC元件设计L型阻抗匹配网络

ADS仿真作业用LC元件设计L型阻抗匹配网络

用LC元件设计L型的阻抗匹配网络一设计要求:用分立LC设计一个L型阻抗匹配网络,使阻抗为Z=25-j*15 Ohm的信号源s与阻抗为Z=100-j*25 Ohm的负载匹配,频率为50Mhz。

(L节匹配网络)L二阻抗匹配的原理用两个电抗元件设计L型的匹配网络,应该是匹配网络设计中最简单的一种,但仅适用于较小的频率和电路尺寸的范围,即L型的匹配网络有其局限性在RF理论中,微波电路和系统的设计(包括天线,雷达等),不管是无源电路还是有源电路,都必须考虑他们的阻抗匹配(impedance matching)问题。

阻抗匹配网络是设计微波电路和系统时采用最多的电路元件。

其根本原因是微波电路传输的是电磁波,不匹配会引起严重的反射,致使严重损耗。

所以在设计时,设计一个好的阻抗匹配网络是非常重要的。

阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。

对于不同特性的电路,匹配条件是不一样的。

在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

根据最大功率传输定理,要获得信号源端到负载端的最大传输功率,需要满足信号源阻抗与R?iX?R?iXX?X?0,负载阻抗互为共轭的条件,。

若电路为纯电阻电路则即LLSLSS R?R。

而此定理表现在高频电路上,则是表示无反射波,即反射系数为0.即LS值得注意的是,要得到最佳效率的能量传输并不需要负载匹配,此条件只是避免能量从负载端到信号源端形成反射的必要条件。

当RL=Rs 时可获得最大输出功率,此时为阻抗匹配状态。

无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小. 阻抗匹配是无线电技术中常见的一种工作状态,它反映了输人电路与输出电路之间的功率传输关系。

当电路实现阻抗匹配时,将获得最大的功率传输。

反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。

ADS G、GA、GT的关系。

ADS	G、GA、GT的关系。

1、 推导Гin 、Гout ,理清
G 、G A 、G T 的关系。

①推导Гin 、Г
out :
12
对于二端口网络如上图所示,a 和b 分别表示入射和反射波的电压值,S ij 表示由j 端口进入的波从i 端口出来的反射系数。

所以有:
所以: Гout =
②G 、G A 、G T 的关系:
P A :信号源的最大功率,即资用功率P A VS ;P IN :二端网络的输入功率; P OUT :二端网络的最大输出功率P A VN ; P L 负载所获得的功率。

所以功率增益G = P L / P IN
资用功率增益G A = P OUT / P A
转换功率增益G T = P L / P A
1、匹配900MHz
工作频率
Z L =120+j50Ω到Z S =50Ω。

首先给出ADS 的设计结构图(左边为源,右边为负载,频率为900MHz ):
接下来给出匹配过程(使用分立LC 阻抗匹配网络,且自动完成匹配): b 1=S 11a 1+S 12a 2
b 2=S 21a 1+S 22a 2
12
1112
11
in b a S S a a Γ==+2
1
2221
22
b a S S a a =+
匹配结果为L=11.92nH,C=2.22pF,结构如下:
仿真结果如下:
从仿真得到的smith原图和S参数都可以很好的说明匹配效果非常好。

从上面的仿真结果来看,在0.9GHz,即工作频率为900MHz时,有一个谐振点,其增益大小为-26.445dB,其工作频段为0.8GHz-1.0GHz。

ADS仿真作业用LC元件设计L型的阻抗匹配网络

ADS仿真作业用LC元件设计L型的阻抗匹配网络

用LC 元件设计L 型的阻抗匹配网络一 设计要求:用分立LC 设计一个L 型阻抗匹配网络,使阻抗为Z s =25-j*15 Ohm 的信号源与阻抗为Z L =100-j*25 Ohm 的负载匹配,频率为50Mhz 。

(L 节匹配网络) 二 阻抗匹配的原理用两个电抗元件设计L 型的匹配网络,应该是匹配网络设计中最简单的一种, 但仅适用于较小的频率和电路尺寸的范围,即L 型的匹配网络有其局限性 在RF 理论中,微波电路和系统的设计(包括天线,雷达等),不管是无源电路还是有源电路,都必须考虑他们的阻抗匹配(impedance matching )问题。

阻抗匹配网络是设计微波电路和系统时采用最多的电路元件。

其根本原因是微波电路传输的是电磁波,不匹配会引起严重的反射,致使严重损耗。

所以在设计时,设计一个好的阻抗匹配网络是非常重要的。

阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。

对于不同特性的电路,匹配条件是不一样的。

在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

根据最大功率传输定理,要获得信号源端到负载端的最大传输功率,需要满足信号源阻抗与负载阻抗互为共轭的条件,即L L S S iX R iX R +=+。

若电路为纯电阻电路则0==L S X X ,即L S R R =。

而此定理表现在高频电路上,则是表示无反射波,即反射系数为0.值得注意的是,要得到最佳效率的能量传输并不需要负载匹配,此条件只是避免能量从负载端到信号源端形成反射的必要条件。

当RL=Rs 时可获得最大输出功率,此时为阻抗匹配状态。

无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小. 阻抗匹配是无线电技术中常见的一种工作状态,它反映了输人电路与输出电路之间的功率传输关系。

当电路实现阻抗匹配时,将获得最大的功率传输。

L型匹配网络

L型匹配网络

L型匹配⽹络
先串后并的Smith圆图分析
先并后串的Smith圆图分析
可以看出,上⾯两种结构都有两种匹配⽅法,也就是下⾯列举的四种L型matching network。

特点:低成本(只有两个元件)、低Q值(阶数不多,频率选择性⾃然不好)
L型匹配⽹络共有四种。

先并后串,适合Zload < Zin;先串后并,适合Zload > Zin
第⼀种
这种⽹络适⽤于: Zload < Zin
选择适当的L和C,使得L和C在电路的⼯作频段谐振。

谐振时,L的感抗和C的容抗相同。

并联谐振,阻抗最⼤。

这种⽹络适⽤于: Zload > Zin
串联谐振,谐振时阻抗最⼩。

这种⽹络适⽤于: Zload < Zin
并联谐振,谐振时,阻抗最⼤。

这种⽹络适⽤于: Zload > Zin
串联谐振,谐振时,阻抗最⼩。

ADS天线匹配仿真设计

ADS天线匹配仿真设计

ADS天线匹配仿真设计1打开ADS并新建一个工程文件点击Create A New Project,将弹出下面的对话框:这里要注意两点:1、Project Technology Files一定要选择正确的单位,一般选择millimeter2、文件路径请不要带有中文和空格,在default\后面输入工程(Project)的名称。

这里我们将要建立的工程命名为“AntennaMatching”,点击OK建立工程。

2建立、保存电路图文件工程建立后会自动弹出电路图(Schematic)文件,如图所示:注意:此时电路图文件还未保存。

在进行设计之前,建议先保存电路图文件。

若电路图文件未自动弹出,可以新建一个,具体方法如图:点击之后会新建一个未命名的电路图文件,先命名并保存为Matching1.(在ADS中,所有的电路图文件后缀名是.dsn)3创建一个一端口电路的仿真为了生成一个合适的s1p文件(后面用来放入仿真或测试得到的天线无源参数),这里先进行一个任意的一端口电路仿真,并生成.s1p文件。

注意:这个方法只针对无法直接得到.s1p的情况。

若电磁仿真软件和矢网能够生成一端口s1p文件,则可跳过此步。

另外,该方法对两端口网络的其中任何一个端口都是同样适用的。

选择Tlines-Ideal中的TLIN元件(理想传输线,会和实际传输线有所差别)并将其拖拽放置到电路图中。

双击可以改变这段理想传输线的参数:这里我们可以用默认的参数即可。

为了得到这个一端口网络的S参数,我们要加入S参数仿真控制器和端口:在左上角下拉菜单中选择“Simulation-S_Param”选择其中的S P和Term两个元件,拖拽加入电路图文件中,并将T erm接地:连接完成后电路图如图所示:此时需要设置S参数仿真的频率,请按照实际测试的频率范围设置,比如这里设置700MHz到2.3GHz,选取201个仿真点。

双击S-Parameters仿真控制器进行设置:设置完成后点击F7,或者下面的图标开始仿真:仿真完成之后,在菜单中选择Tools>Data File Tool,弹出下列对话框:如图所示设置参数,将仿真的文件写入到一个名叫Antenna1.s1p 的文件中,点击Write to File可产生此文件。

阻抗匹配ADS设计

阻抗匹配ADS设计

燕山大学课程设计说明书题目:80Mhz分立LC阻抗匹配网络的设计学院(系):理学院年级专业: 11级电子信息科学与技术学号: ************ 学生姓名:**指导教师:杜会静徐天赋教师职称:副教授副教授燕山大学课程设计说明书燕山大学课程设计(论文)任务书院(系):理学院基层教学单位:电子信息科学与技术说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份年月日燕山大学课程设计评审意见表80Mhz分立LC阻抗匹配网络的设计摘要:在射频电路设计中,阻抗匹配是很重要的一环。

阻抗匹配的目的就是使负载阻抗与源阻抗共轭匹配,从而获得最大的功率传输,并使馈线上功率损耗最小。

实现以上匹配的通常做法是在源和负载之间插入一个无源网络,这种网络通常被称为匹配网络。

实现匹配网络时,Simth圆图是应用最广泛的匹配电路设计工具之一,它直观的描述了匹配设计的全过程。

在频率不是很高的应用场合,可以使用分立电感电容器件进行不同阻抗之间的匹配。

如果频率不高,分立器件的寄生参数对整体性能的影响可以忽略。

关键词:射频分立LC 阻抗匹配匹配网络AbstractThe impedance matching is important one annulus in rf circuit design.The purpose of impedance matching is to make the load impedance and the conjugate source impedance matching, so as to achieve maximum power transfer, and minimize the power loss on the feeder. Achieve the above the common way of matching is inserted between the source and load a passive network, this network is often referred to as matching network. To achieve the matching network, the Simth chart is applied to one of the most widely used matching circuit design tools, its intuitive description of the whole process of matching design. In is not very high frequency applications, you can use the discrete inductance capacitor between different impedance matching. If the frequency is not high, discrete device parasitic parameters influence on the overall performance can be ignored.Keywords:RF discrete impedance matching network of LC一、引言:分立LC 阻抗匹配的概念是射频电路设计中最为基本的概念之一,贯穿射频电路设计始终。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用LC 元件设计L 型的阻抗匹配网络
一 设计要求:
用分立LC 设计一个L 型阻抗匹配网络,使阻抗为Z s =25-j*15 Ohm 的信号源与阻抗为Z L =100-j*25 Ohm 的负载匹配,频率为50Mhz 。

(L 节匹配网络) 二 阻抗匹配的原理
用两个电抗元件设计L 型的匹配网络,应该是匹配网络设计中最简单的一种, 但仅适用于较小的频率和电路尺寸的范围,即L 型的匹配网络有其局限性 在RF 理论中,微波电路和系统的设计(包括天线,雷达等),不管是无源电路还是有源电路,都必须考虑他们的阻抗匹配(impedance matching )问题。

阻抗匹配网络是设计微波电路和系统时采用最多的电路元件。

其根本原因是微波电路传输的是电磁波,不匹配会引起严重的反射,致使严重损耗。

所以在设计时,设计一个好的阻抗匹配网络是非常重要的。

阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。

对于不同特性的电路,匹配条件是不一样的。

在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

根据最大功率传输定理,要获得信号源端到负载端的最大传输功率,需要满足信号源阻抗与负载阻抗互为共轭的条件,即L L S
S iX R iX
R +=+。

若电路为纯电阻电路则0==L S X X ,
即L S R R =。

而此定理表现在高频电路上,则是表示无反射波,即反射系数为0.值得注意的是,要得到最佳效率的能量传输并不需要负载匹配,此条件只是避免能量从负载端到信号源端形成反射的必要条件。

当RL=Rs 时可获得最大输出功率,此时为阻抗匹配状态。

无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小. 阻抗匹配是无线电技术中常见的一种工作状态,它反映了输人电路与输出电路之间的功率传输关系。

当电路实现阻抗匹配时,将获得最大的功率传输。

反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。

阻抗匹配常见于各级放大电路之间、放大器与负载之间、测量仪器与被测电路之间、天线与接收机或发信机与天线之间,等等。

为了使信号和能量有效地传输,必须使电路工作在阻抗匹配状态,即信号源或功率源的内阻等于电路的输人阻抗,电路的输出阻抗等于负载的阻抗。

在一般的输人、输出电路中常含有电阻、电容和电感元件,由它们所组成的电路称为电抗电路,其中只含有电阻的电路称为纯电阻电路。

L 型匹配网络通常不用于高频电路中,以及如果在窄带射频中选用了L 型匹配网络,也应该注意他的匹配禁区,在这个禁区中,无法在任意负载阻抗中和源阻抗之间实现预期的匹配,即应选择恰当的L 型匹配网络以避开其匹配禁区。

三 设计过程
1新建ADS 工程,新建原理图,在元件面板列表中选择“simulation S--param ”在原理图中
放两个Term和一个S-Parameters控件,双击Term端口,弹出设置对话框,分别把Term1设置成Z=25-j*15Ohm,Term2设置成Z=100-j*25Ohm,双击S-Parameters控件,弹出设置对话框,分别把Start设置成1MHz,Stop设置成100MHz,Step-size设置成1MHz。

2在元件面板列表中选择“Smith Chart Matching”,单击“”图标,
在原理图中添加“DA_SmithChartMatching”控件。

得到
3双击DA_SmithChartMatch控件,设置控件相关参数如下,关键的设置有Fp=50MHz,SourceType=Complex Impedance,SourceEnable=True,源阻抗Zg=(25-j*15)Ohm,
SourceImpType=Source Impedance,LoadType=Complex Impedance,LoadEnable=True,负载阻抗Zl=(100-j*25)Ohm,其它参数采用默认值。

然后依次点击“apply”和“ok”键。

4,连接电路,如图
5在原理图设计窗口,执行菜单命令tools->Smith Chart,弹出“Smart Component”对话框。

选择“Update SmartComponent from Smith Chart Utility”,单击“OK”
6设置Freq=0.05GHz,Z0=50Ohm。

单击“DefineSource/load Network terminations”按钮,
将弹出“Network Terminations”对话框,设置源和负载阻抗如下图所示,然后依次单击“Apply”和“OK”
7 源(小圆标记)和负载(方形标记)在Smith圆图上位置如下图所示。

8,采用LC分立器件匹配过程,点击“auto 2-element match”,得到下图
9首先选择第一种情况,即点击,得到
10单击“Build ADS Circuit”按钮,即可生成相应的电路
选中DA_SmithChartMatch控件,单击图标,可以查看匹配电路
此时从图上可得到精确的c和L的值
11单击“”图标,返回后原电路,单击“”图标,进行仿真,并且要求其显示S(1,1)
和S(2,1)曲线
重复8-11步骤,可以得到另外一种L型匹配电路
(1)可得到相应的smith chart
(2)相应的匹配网络电路
(3)S11和S21的曲线
结论:
1:第一种情况,经过仿真之后,从第一种匹配网络得到的S(1,1)和S(2,1)的曲线可以看出,在频率达到50MHZ的时候,在加入L型匹配网络之后的电路中,其没有反射,即能被全部传输,达到最大传输功率,此时简单的L型匹配网络达到了很好的匹配效果。

但随高于60MHZ 之后,其效果匹配效果变差。

2:第二种情况,经过加入匹配网络之后,从得到的S(1,1)和S(2,1)的曲线可以看出,在小于40MHZ的时候,其效果很差,随着频率的增加,在50MHZ的时候,几乎达到达到理想的匹配,即没有反射波。

但再随着频率的增加,效果稍微变差。

但总体效果还是不错的
总之,两种情况都能在中心频率上达到理想的匹配。

相关文档
最新文档