飞行力学知识点
飞行力学知识点

1.最大飞行速度:飞机在某高度上以特定的重量和一定的发动机工作状态进行等速水平直线飞行所能达到的最大速度称为飞机在该高度上的最大平飞速度,各个高度上的最大平飞速度中的最大值,称为飞机的最大平飞速度。
2.最小平飞速度:指飞机在一定高度上能作定直平飞的最小速度3.实用静升限:飞机以特定的重量和给定的发动机工作状态做等速直线平飞时,还具有最大上升率为5(m/s)或0.5(m/s)的飞行高度。
4.理论静升限:飞机以特定的质量和给定的发动机工作状态能够保持等速直线平飞的飞行高度,也就是上升率等于零的飞行高度5.飞机的航程:飞机携带的有效载荷在标准大气及无风情况下,沿预定航线飞行,耗尽其可用燃油所经过的水平距离(包括上升和下滑的水平距离)。
6.飞机的航时:飞机携带的有效载荷在标准大气及无风条件下按照预定航线飞行,耗尽其可用燃油所能持续的飞行时间。
7.飞机的过载:作用在飞机上的气动力和发动机推力的合力与飞机重力之比,称为过载。
8.上升率:飞机以特定的重量和给定的发动机工作状态进行等速直线上升时在单位时间内上升的高度,也称上升垂直速度。
9.定常运动:运动参数不随时间而改变的运动。
10.飞机的平飞需用推力:飞机在某一高度以一定的速度进行等速直线平飞所需要的发动机推力11.铰链力矩:作用在舵面上的气动力对舵面转轴的力矩,称为铰链力矩12.最短上升时间:以最大上升率保持最快上升速度上升到预定高度所需要的时间13.小时耗油率:飞机飞行一小时发动机所消耗的燃油质量14.公里耗油率:飞机飞行一公里发动机所消耗的燃油质量15.飞机的最大活动半径:飞机由机场出发,飞到目标上空完成一定任务后,再飞回原机场所能达到的最远距离。
16.飞机的焦点:当迎角变化时,气动力对该点的力矩始终保持不变,这样的特殊点称为机翼的焦点17.尾旋:当飞机迎角超过临界迎角时,飞机同时绕三个机体轴旋转并沿小半径的螺旋轨迹急剧下降的运动18.升降舵平衡曲线:在满足力矩平衡(Mz=0)条件下,升降舵偏角与飞机升力系数之间的关系19.极曲线:反应飞行器阻力系数与升力系数之间的关系的曲线20.机体坐标系:平行于机身轴线或机翼的平均气动原点,位于飞机的质心;Oxb轴在飞机的对称面内,弦线指向前;Ozb轴也在对称面内,垂直于Oxb轴,指向下;Oyb轴垂直于对称面,指向右。
飞行力学复习

6、飞机的续航性能
基本性能
多高、多快
续航性能
多远、多久
定常直线飞行 准定常直线飞行
➢主要指标
航程L、航时T、活动半径R
➢按任务的两类续航性能计算问题
❖给定飞行状态,确定续航性能 ❖选择飞行状态和发动机工作状态,使得续航性能最佳
➢技术航程/航时,实用航程/航时
典型巡航飞行剖面
Lss
Lxh
Lxih
Tss
性。由M
z
(mz
)或M
C z
y
(
mzC
y
)的符号决定
(2)、纵向静稳定性与飞机重心和焦点之间的关系
mcy z
xG
xF
mcy z
0
xG
xF
纵向静稳定
mcy z
0
xG
xF
纵向静不稳定
mzcy=0 xG=xF 纵向中立静稳定
Cy
(3)静稳定裕度
Cy1
K n xF xG
(4)纵向平衡
Cy0 O
沉浮模态 长周期模态
特征 周期长,频率低,衰减慢的振荡运动; Δ α、ωz基本不变:该模态幅值小; 质心运动参数Δ V主要表现出沉浮模态特点;
原因
质量m,恢复力 YV V ,G 与阻尼 (PV QV )V 等
大
小
小
恢复慢,衰减慢(甚至发散)的振荡运动
典型参数
(7)纵向动态飞行品质要求
概述
飞行品质要求或规范是确保飞行安全和顺利完成预定 任务必须满足的要求,也是各类飞机的设计和使用过 程中必须满足的要求。
正常操纵响应(以定直平飞为基准)
• 油门—— 推油门加速,收油门减速; • 纵杆—— 推杆低头,拉杆抬头; • 横杆—— 左压杆左滚,右压杆右滚; • 脚蹬—— 左蹬舵左偏航,右蹬舵右偏航。
飞行原理知识点精讲

飞行原理基础知识大气状态参数1.大气密度ρ是指单位体积内的空气质量,用ρ表示。
由于地心引力的作用,ρ随高度H的增加而减小。
2.大气温度T是指大气层内空气的冷热程度,用T表示。
微观上来讲,温度体现了空气分子运动剧烈程度。
K=C+273.15。
3.大气压力P规定在海平面温度为15°C时的大气压力即为一个标准大气压,表示为760mmHg或1.013×105Pa。
随高度增加而减小。
4.粘性μ当流体内两相邻流层的流速不同时,两个流层接触面上便产生相互粘滞和互相牵扯的力,这种特性就叫粘性。
流体的动力粘性系数μ,液体>气体,随温度的升高,气体μ升高,液体μ降低。
5.可压缩性E是指一定量的空气在压力变化时,其体积发生变化的特性。
可压缩性用体积弹性模量E 来衡量。
E值越大,流体越难被压缩。
空气的E值很小,约为水的两万分之一,因此空气具有压缩性,而水则视为不可压缩流体。
飞机低速飞行(Ma<0.3)时,视为不可压缩流体;高速飞行(Ma≥0.3)时,则必须考虑空气的可压缩性。
6.声速c是指声波在介质中传播的速度,单位为m/s。
在海平面标准状态下,在空气中的声速只有341m/s。
7.马赫数Ma和雷诺数ReMa=v/c,是无量纲参数,作为空气受到压缩程度的指标。
Re是一种可以用来表征流体流动情况(层流、湍流)的无量纲参数。
国际标准大气对流层0-11km,平流层(同温层)11-50km。
国际标准大气具有以下的规定:1.大气是静止的、洁净的,且相对湿度为零。
2.空气被视为完全气体,即其物理参数(密度、温度和压力)的关系服从完全气体的状态方程p =ρRT。
3.海平面作为计算高度的起点,即H=0处。
密度ρ=1.225kg/m3,温度T=288.15K(15°C),压强p=101325Pa,声速c=341m/s。
低速飞行中的空气动力特性理想流体,不考虑流体粘性的影响。
不可压流体,不考虑流体密度的变化,Ma<0.3。
飞行力学知识点

飞行力学知识点一、协议关键信息1、飞行力学的基本概念和原理定义:____________________________研究范围:____________________________重要性:____________________________ 2、飞行器的受力分析重力:____________________________升力:____________________________阻力:____________________________推力:____________________________3、飞行性能参数速度:____________________________高度:____________________________航程:____________________________续航时间:____________________________4、飞行器的稳定性和操纵性稳定性的类型:____________________________操纵性的要素:____________________________稳定性与操纵性的关系:____________________________5、飞行轨迹和导航常见的飞行轨迹:____________________________导航方法:____________________________导航系统的组成:____________________________二、飞行力学的基本概念和原理11 飞行力学的定义飞行力学是研究飞行器在空中运动规律的学科,它综合了力学、数学、物理学和工程学等多学科的知识,旨在揭示飞行器在不同飞行条件下的受力、运动状态和性能特征。
111 研究范围飞行力学的研究范围涵盖了飞行器的起飞、爬升、巡航、下降、着陆等各个飞行阶段,以及飞行器在不同气象条件、飞行高度和速度下的运动特性。
112 重要性飞行力学对于飞行器的设计、性能评估、飞行控制和飞行安全具有至关重要的意义。
飞行力学知识点

飞行力学知识点飞行力学,听起来是不是有点高大上?别急,咱们一起来瞅瞅这其中的门道。
先说说啥是飞行力学吧。
想象一下,飞机在天空中翱翔,它怎么能飞得稳、飞得快、飞得准,这里面可都是有讲究的。
飞行力学就是研究这些规律的学问。
就拿飞机的起飞来说吧,有一次我坐飞机出差,正好坐在靠窗的位置。
飞机在跑道上加速的时候,我能明显感觉到那种推背感,就像有人在后面狠狠推了你一把。
这时候,飞行力学的知识就派上用场啦!飞机要达到一定的速度,机翼产生足够的升力,才能顺利离开地面。
而这个速度和机翼的形状、飞机的重量都有关系。
再比如说飞机在空中转弯。
有一次我在看航空纪录片的时候,看到飞行员操作飞机转弯,那动作可帅了。
但其实这里面蕴含着飞行力学的原理。
飞机转弯可不是简单地转动方向盘,而是要通过调整机翼的姿态、发动机的推力等多个因素来实现。
如果转得太急,飞机可能会失去平衡;转得太慢,又可能达不到预期的航线。
还有飞机的飞行高度和速度的控制。
我记得有一次坐飞机遇到了气流,飞机颠簸得厉害。
这时候飞行员就得根据飞行力学的知识,调整飞机的速度和高度,来避开不稳定的气流区域。
要是不了解这些知识,那可就危险啦!说到这,你可能会问,那飞行力学到底都研究些啥呢?它包括飞机的受力分析,像重力、升力、阻力、推力这些,得搞清楚它们是怎么相互作用影响飞机飞行的。
还有飞机的运动方程,这就像是给飞机的飞行行为定了一套规则。
比如说,飞机在爬升的时候,重力是向下拉的,升力得足够大才能克服重力让飞机往上升。
这时候,发动机的推力也得跟上,不然升力不够,飞机就爬不上去了。
飞行力学还得考虑空气动力学的影响。
空气可不是老老实实呆着不动的,它会产生各种气流和压力变化。
飞机的外形设计就得考虑怎么减少阻力,怎么增加升力。
就像有的飞机翅膀尖尖的,有的飞机尾巴形状很特别,这可都不是随便设计的,都是为了让飞机在飞行中更顺畅。
而且啊,飞行力学可不只是理论上的东西,在实际的飞行中,飞行员得时时刻刻根据这些知识来操作飞机。
《飞行力学》课程期末考试重要概念及知识点

《飞行力学》课程期末考试重要概念及知识点《飞行力学》课程期末考试重要概念及知识点1. 平飞需用推力计算方法;2. 平飞所需推力随飞行速度的变化规律;3. 最大平飞速度及最小平飞速度;4. 定常平飞速度范围——飞行包线;5. 表速;6. 上升率, 最大上升率, 快升速度,上升航迹倾角, 最大上升航迹倾角, 最陡上升速度, 最短上升时间,静升限, 下降速度, 下降角和下降距离;7. 航程, 航时, 可用燃油量, 小时耗油量, 公里耗油量, 久航速度与远航速度;8. 推重比, 跃升和俯冲, 能量法, 进入和该出跃升的速度限制, 最大跃升高度, 动升限, 能量高度, 过载, 载荷因数, 限制载荷因数, 极限载荷因数;9. 转弯, 盘旋, 盘旋半径, 盘旋时的过载, 盘旋速度和推力, 盘旋一周所需时间,盘旋的限制条件, 盘旋的旋转角速度;10. 滑跑距离,起飞距离,起飞时间,离地速度, 着陆距离,滑跑距离,着陆时间,接地速度;11. 纵向平衡问题, 静稳定性问题, 静操纵性问题, 纵向力矩的产生部件, 纵向稳定性判据, 焦点, 杆力, 杆力的影响因素, 调整片的作用, 飞机重心位置前后限;12. 横向平衡, 飞机上主要滚转力矩, 方向平衡, 主要偏转力矩, 侧向静稳定性判据, 横向力矩, 机翼的横向滚转力矩, 横向操纵性;13. 地面坐标系, 机体坐标系, 气流坐标系, 稳定坐标轴系, 航迹坐标轴系, 姿态角,航迹角, 气流角, 5个轴系之间的关系, 坐标系转换矩阵, 基元旋转;14. 动力学方程, 运动学方程, 航迹坐标系中的平动动力学方程, 机体坐标系中的平动动力学方程, 机体坐标系中质心的转动动力学方程;15. 小扰动线性化方法的概念,动稳定性和动操纵性概念,线性微分方程的研究方法,特征方程和特征根,特征根和特征向量的计算方法,模态参数的计算方法(半衰期和倍幅时,周期和频率,半衰时或倍增时内振荡次数),二阶系统性能参数计算(振荡角频率和阻尼比);。
第一章飞行力学基础(1)

飞行力学在航空航天领域重要性
航空航天器设计基础
飞行力学是航空航天器设计的基础理论,对 于指导航空航天器的总体设计、性能分析和 优化具有重要意义。
飞行安全与稳定性保障
飞行力学研究飞行器的稳定性和操纵性,对 于保障飞行安全、提高飞行器性能具有重要 作用。
推动航空航天技术发展
飞行力学的研究不断推动着航空航天技术的 发展,为新型飞行器的研制和现有飞行器的 改进提供理论支撑。
第一章飞行力学基础
汇报人:XX
目录
• 飞行力学概述 • 大气环境与飞行性能 • 飞行器受力分析与平衡 • 飞行器运动方程与轨迹预测 • 飞行器操纵性与稳定性分析 • 飞行试验与仿真技术
01
飞行力学概述
飞行力学定义与研究对象
飞行力学定义
飞行力学是研究飞行器在空气中 的运动规律及其与周围环境相互 作用的一门科学。
降低试验成本
通过虚拟仿真技术对飞行器进行充分的测试 和验证,可以提高实际飞行试验的安全性。
推动技术创新
虚拟仿真技术可以模拟复杂环境和极端条件 下的飞行情况,为技术创新提供有力支持。
感谢您的观看
THANKS
指飞行器在受到小扰动 后,能够自动恢复到原 平衡状态的能力。静稳 定性好的飞行器,扰动 消失后能够迅速恢复到 原状态。
指飞行器在受到大扰动 后,能够自动恢复到原 平衡状态的能力。动稳 定性好的飞行器,在扰 动过程中能够保持稳定 的飞行姿态和轨迹。
指飞行器在受到扰动后 ,既不自动恢复到原平 衡状态,也不继续偏离 原平衡状态的能力。中 立稳定性介于静稳定性 和动稳定性之间。
轨迹预测模型构建及优化
动力学模型
建立飞行器的动力学模型,包括 气动力、推力、重力和控制力等
北航飞行力学知识点总结

北航飞行力学知识点总结
飞行力学是研究飞行器在空中运动时所受力和运动规律的学科。
作为航空航天
工程的基础,飞行力学涉及到多个重要的知识点。
下面是对北航飞行力学知识点的总结:
1. 空气动力学:空气动力学研究飞行器在空气流动中所受到的气动力。
重要的
概念包括升力、阻力、推力和侧力。
其中,升力是支撑飞行器在空中飞行的力,阻力是对飞行器运动的阻碍力,推力是提供飞行器前进动力的力,侧力是使飞行器侧向移动的力。
2. 运动学:运动学研究飞行器在空中的运动轨迹和速度。
重要的概念包括速度、加速度、位移和轨迹。
通过运动学分析,可以确定飞行器的位置和速度的变化。
3. 飞行力学平衡:飞行力学平衡是指飞行器在垂直和水平方向上所受到的力平衡。
在水平方向上,重力和阻力平衡。
在垂直方向上,升力和重力平衡。
4. 飞行器的稳定性和操纵性:稳定性是指飞行器自身在飞行中保持平衡和稳定
的能力。
操纵性是指飞行器在飞行过程中对操纵杆或操纵面的指令做出的响应能力。
稳定性和操纵性是设计和控制飞行器的关键要素。
5. 飞行器的气动设计:气动设计是指通过改变飞行器的外形和气动特性来改善
飞行器的性能。
通过优化飞行器的气动外形和控制面的设计,可以减小阻力、增大升力和提高飞行器的稳定性。
总之,北航飞行力学涵盖了空气动力学、运动学、飞行力学平衡、飞行器的稳
定性和操纵性以及气动设计等多个重要知识点。
掌握这些知识可以帮助我们更好地理解和设计飞行器,为航空航天工程的发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《飞行动力学》掌握知识点第一章掌握知识点如下:1)现代飞机提高最大升力系数采取的措施包括边条翼气动布局或近耦鸭式布局。
2)飞行器阻力可分为摩擦阻力、压差阻力、诱导阻力、干扰阻力和激波阻力等。
3)试描述涡喷发动机的三种特性:转速(油门)特性,速度特性,高度特性并绘出变化曲线。
(P7)答:涡轮喷气发动机的性能指标推力T和耗油率f C等均随飞行状态、发动机工作状态而改变。
下面要简单介绍这些变化规律,即发动机的特性曲线,以供研究飞行性能时使用。
1)转速(油门特性)在给定调节规律下,高度和转速一定时,发动机推力和耗油率随转速的变化关系,称为转速特性。
图1.10为某涡轮喷气发动机T和f C随转速n的变化曲线。
由于一定转速对应一定油门位置,故转速特性又称油门特性或节流特性。
2)速度特性在给定调节规律下,高度和转速一定时,发动机推力和耗油率随飞行速度或Ma的变化关系,称为速度特性。
图1.11为某涡轮喷气发动机T和f C随Ma变化曲线。
3)高度特性在发动机转速和飞行速度一定时,发动机推力和耗油率随飞行高度的变化关系,称为高度特性。
图1.12为某涡轮喷气发动机的T和f C随H的变化曲线。
第二章掌握知识点如下:1)飞机飞行性能包括平飞性能、上升性能、续航性能和起落性能。
2)飞机定直平飞的最小速度受到哪些因素的限制?(P40)答:最小平飞速度m in V 是指飞机在某一高度上能作定直平飞的最小速度。
1)受最大升力系数m ax L C 限制的理想最小平飞速度S C W V L ρmax min 2=;2)受允许升力系数a L C .限制的最小允许使用平飞速度S C W V a L a ρ.2=;3)受抖动升力系数sh L C .限制的抖动最小平飞速度SC W V sh L sh ρ.2=; 4)受最大平尾偏角m ax .δL C 限制的最小平飞速度SC W V L ρδδmax max .min 2)(=;5)发动机可用推力a T 。
一般情况下,高空飞行由于a T 的下降,m in V 往往受到a T 的限制;在低空飞行时,m in V 由最大允许升力系数a L C .来确定。
3)为提高飞机的续航性能,飞机设计中可采取哪些措施?(P64)答:设计中力求提高升阻比,增加可用燃油量,选用耗油率低,经济性好的发动机,选择最省油状态上升和最佳巡航状态巡航。
第三章掌握知识点如下:1)了解飞机机动性的基本概念。
(P92)答:飞机的机动性是指飞机在一定时间内改变飞行速度、飞行高度、和飞行方向的能力,相应地称为速度机动性、高度机动性和方向机动性。
按航迹的特点来分,飞机的机动飞行通常分为铅垂平面内、水平平面内和空间的机动飞行。
在空战中,优良的机动性有利于获取空战优势,所以飞机的机动性是飞机的重要战术技术指标。
2)了解飞机敏捷性的基本概念和目前用来评价敏捷性的指标。
(P92、P125)答:飞机的敏捷性是指飞机在空中迅速精确的改变机动飞行状态的能力。
选用状态变化和时间两个属性来衡量飞机敏捷性。
它表明为达到某预期状态所需要的时间、单位时间内状态变化的多少和机动能力改变量的大小。
因此敏捷性按时间尺度和飞机运动形式来分比较合理。
敏捷性按照时间尺度分为瞬态敏捷性,功能敏捷性和敏捷性潜力;按照飞机运动形式分为轴向敏捷性,纵向敏捷性和滚转敏捷性。
第四章掌握知识点如下:1)了解“方案飞行”和“飞行方案”的基本概念。
(P136)答:方案飞行:导弹按照预定的飞行程序(方案)所作的飞行。
指导弹某一运动变量按给定的规律变化。
方案弹道:指导弹按照预定程序飞行时重心在空间运动的轨迹。
飞行方案:指设计弹道时所选定的某些运动参数随时间的变化规律。
第五章掌握知识点如下:1)掌握导引规律运动学分析的基本假设条件。
(P143)答:为了能独立地和最简单地研究导引规律的运动学特性,作了如下假设:1)控制系统的工作是理想的;2)导弹的速度是已知的时间函数,不受导引规律的影响;3)把导弹和目标的运动都看成是可控制的质点运动。
目标的运动规律是已知的,而导弹的运动则要服从于某些理想约束关系。
2)了解相对弹道、绝对弹道的基本概念。
(P148)答:相对弹道:导弹重心相对于活动目标的运动轨迹。
绝对弹道:导弹重心相对于地面某个固定目标的运动轨迹。
3)了解平行接近法的基本概念,以及其优缺点。
(P148、P150)答:平行接近法是指导弹在攻击目标的过程中目标视线始终平行移动,即目标视线角始终不变。
平行接近法最主要的优点在于弹道比较平直,而其严重的缺点在于控制系统比较复杂。
4)掌握选择导引方法时需要考虑的因素。
(P168)答:在选择导引规律是,需要从导弹的飞行性能,作战空域,技术实施,导引精度,制导设备,战术使用等方面进行综合考虑。
5)了解攻击区的基本概念,以及限制攻击区的条件。
(P169~172)答:实际上要使导弹能命中目标,其发射点条件也是不能任意的,只有在相对于目标的某一特定区域内发射导弹才可能命中目标这一特定区域称为理论发射区,又称攻击区。
限制因素:导引头截获目标的距离限制,最大能源工作时间限制,最大最小相对速度限制,引信解除保险所需时间的限制,导弹可用过载a n 的限制,导引头最大跟踪角速度的限制,导引头最大离轴角的限制等。
第六章掌握知识点如下:1)影响飞行器运动特性的因素包括机体的弹性变形、飞行器上的旋转部件、重量随时间的变化、地球的曲率和自转、大气的运动等。
2)推导飞行器动力学中用到的主要简化假设。
(P174)答:1)假设地球为平面大地,忽略地球的曲率和自转;2)飞行器为刚体,不考虑机体弹性变形和旋转部件的影响;3)大气为静止的标准大气,不考虑风的影响等。
第七章掌握知识点如下:1)机翼的焦点的概念及其特性。
(P207)答:焦点是飞机各操纵面产生的力的延长线交汇点,又称气动中心。
迎角变化时,气动力对焦点的力矩始终保持不变,故焦点可以看作是迎角变化所产生的升力增量作用点。
绕焦点的纵向力矩为零升力矩;随着马赫数改变,焦点位置会发生变化。
2)襟翼的操纵是一种增升装置,主要用来增加升力以改善飞机的起落性能。
3)定常直线飞行时舵面纵向静操纵指标为0<∂∂L e C δ,0>∂∂Ve δ。
4)掌握定常拉升运动的基本概念。
(P224)答:定常拉升运动是指飞行器在垂直平面内以等速V,等α和等q 作曲线运动,即是垂直平面内的圆周运动,如图7.15所示。
显然这种运动客观上是不存在的,只有在升力L 和重力W 共线条件下才能实现。
5)常见的气动补偿形式有:移轴补偿、突角补偿和内补偿。
6)喷气发动机引射作用的基本概念。
(P239)答:喷气发动机的尾喷流是一股高温高速燃气,不允许直接流过其他气动部件,以免烧坏结构。
但由于喷流气体分子粘性和扩散作用,向后流动时边界会扩大,由此吸引周围部分空气,形成所谓引射作用。
7)助力器操纵系统主要由液压助力器、载荷机构、调整片效应机构和力臂调节器等部分组成。
第八章掌握知识点如下:1)横侧向操纵结构常见的有副翼、方向舵和推力矢量等。
2)由副翼偏转引起的横向力矩称为滚转操纵力矩,方向舵偏转和喷管左右偏转引起的偏航力矩称为偏航操纵力矩。
3)滚转引起的偏航交感力矩主要由机翼和垂尾引起。
4)掌握飞机的“蹬舵反倾斜”现象。
(P274)答:飞行品质规范中规定蹬右舵,飞机向右滚转,蹬左舵飞机向左滚转。
如果蹬舵后的效果与应有的滚转方向相反,便出现蹬舵反倾转现象。
5)动力装置工作时的影响,主要考虑螺旋桨或涡轮喷气发动机压气机和涡轮的反作用扭矩、螺旋桨滑流及涡轮喷气发动机尾喷流的引射作用等。
第九章掌握知识点如下:1)飞机典型的纵向运动模态包括短周期模态和长周期模态。
2)飞机纵向静操纵性指标包括舵偏角平衡曲线梯度、驾驶杆力梯度、每g舵偏角、每g驾驶杆力等。
3)飞机纵向动操纵性指标包括超调量、振荡情况和达到新的稳定状态所需的时间等。
第十章掌握知识点如下:1)飞机横航向扰动运动一般具有三个模态:滚转收敛模态、螺旋模态和荷兰滚模态。
2)随飞行速度及动压的增加,荷兰滚转频率将增加。
3)随飞行高度增加,荷兰滚频率和阻尼比将下降。
4)根据控制要求,航线的自动飞行控制可分为两类:运动航线的稳定和航线的控制。
第十一章掌握知识点如下:1)常见的三种失速现象:纵向偏离、机头侧偏和机翼摇晃。
2)自转是飞机进入尾旋的根本原因。
3)进入尾旋后,向适当的方向侧滑,是改出尾旋的一项关键性措施。
4)改出尾旋通常采用的两种操纵方法:反蹬舵和顺压杆。
5)飞机的机动性取决于两个基本指标:最大过载和单位剩余功率。
6)提高飞机机动性最常用的两种方法:放宽静稳定性技术和机动载荷控制技术。
7)纵向直接力控制系统可以实现新的三种纵向运动模式:直接升力模式、航迹不变的俯仰姿态变化和俯仰姿态不变的垂直平移。
8)侧向直接力控制系统可以实现新的三种侧向运动模式:无侧滑和滚转的侧向运动、航迹不变的偏航姿态变化和姿态不变的侧向平移。