高等代数 第6章线性空间 6.2 基底、坐标与维数

合集下载

高等代数课件(北大版)第六章 线性空间§6.2

高等代数课件(北大版)第六章 线性空间§6.2
与 的和,记为 ;在P与V的元素之间还
定义了一种运算,叫做数量乘法:即
V ,k P ,
在V中都存在唯一的一个元素δ与它们对应,称δ为
k 与 的数量乘积,记为 k . 如果加法和数量乘
法还满足下述规则,则称V为数域P上的线性空间:
数学与计算科学学院 2012-9-22§6.2 线性空间的定义与简单性质
数学与计算科学学院 2012-9-22§6.2 线性空间的定义与简单性质
f ( x ), g ( x ), h ( x ) P [ x ], k,l P
一、线性空间的定义
设V是一个非空集合,P是一个数域,在集合V中 定义了一种代数运算,叫做加法:即对 , V , 在V中都存在唯一的一个元素 与它们对应,称 为
数学与计算科学学院 2012-9-22§6.2 线性空间的定义与简单性质
二、线性空间的简单性质
1、零元素是唯一的.
证明:假设线性空间V有两个零元素01、02,则有 01=01+02=02.
2、 V ,的负元素是唯一的,记为- .
证明:假设 有两个负元素 β 、γ ,则有
0, 0
数学与计算科学学院 2012-9-22§6.2 线性空间的定义与简单性质
例1 例2
引例1, 2中的 Pn, P[x] 均为数域 P上的线性空间. 数域 P上的次数小于 n 的多项式的全体,再添
上零多项式作成的集合,按多项式的加法和数量乘
法构成数域 P上的一个线性空间,常用 P[x]n表示.
P [ x ]n { f ( x ) a n 1 x
k a a
k
判断 R+是否构成实数域 R上的线性空间 .

高等代数北大版线性空间

高等代数北大版线性空间

引 入 我们懂得,在数域P上旳n维线性空间V中取定一组基后,
V中每一种向量 有唯一拟定旳坐标 (a1,a2 , ,an ), 向量旳
坐标是P上旳n元数组,所以属于Pn.
这么一来,取定了V旳一组基 1, 2 , , n , 对于V中每一种 向量 ,令 在这组基下旳坐标 (a1,a2 , ,an ) 与 相应,就 得到V到Pn旳一种单射 : V P n , (a1,a2 , ,an )
2)证明:复数域C看成R上旳线性空间与W同构,
并写出一种同构映射.
2023/12/29§6.8 线性空间旳
及线性有关性,而且同构映射把子空间映成子空间.
2023/12/29§6.8 线性空间旳
3、两个同构映射旳乘积还是同构映射.
证:设 :V V , :V V 为线性空间旳同构
映射,则乘积 是 V到V 旳1-1相应. 任取 , V , k P, 有
第六章 线性空间
§1 集合·映射
§5 线性子空间
§2 线性空间旳定义 §6 子空间旳交与和
与简朴性质
§7 子空间旳直和
§3 维数·基与坐标
§8 线性空间旳同构
§4 基变换与坐标变换 小结与习题
2023/12/29
§6.8 线性空间旳同构
一、同构映射旳定义 二、同构旳有关结论
2023/12/29§6.8 线性空间旳
中分别取 k 0与k 1, 即得
0 0,
2)这是同构映射定义中条件ii)与iii)结合旳成果.
3)因为由 k11 k22 krr 0 可得 k1 (1 ) k2 (2 ) kr (r ) 0
反过来,由 k1 (1 ) k2 (2 ) kr (r ) 0 可得 (k11 k22 krr ) 0.

高等代数.第六章.线性空间.课堂笔记

高等代数.第六章.线性空间.课堂笔记
线性相关
α1 , α2 , … , α������ 线性无关 *.������ = ������ ⇐ { ������1 , ������2 , … , ������������ 线性无关 向量组等价 (4)向量组α1 , α2 , … , α������ 线性无关,α1 , α2 , … , α������ , ������线性相关,则������可由α1 , α2 , … , α������ 线性表出. 二、线性空间的维数、基与坐标: 1.维数: 定义 5 ①如果在线性空间������ 中有n个线性无关的向量,但任意n + 1个向量线性相关,定义������ 是一 个n维线性空间,记������������ ������(V) = ������. ②无限维线性空间; ③零空间维数为 0. 2.基与坐标: 定义 6 ①基:线性空间������ ,������������ ������(V) = ������,n个线性无关的向量组������1 , ������2 , … , ������������ 称为������ 的一组基; ②坐标:设������1 , ������2 , … , ������������ 称为������ 的一组基,α ∈ V, 若α = ������1 ������1 + ������2 ������2 + ⋯ + ������������ ������������ ,������1 , ������2 , … , ������������ ∈ ������,则数组������1 , ������2 , … , ������������ 就称为α在 基������1 , ������2 , … , ������������ 下的坐标,记为:(������1 , ������2 , … , ������������ ).

高等代数考研复习[线性空间]

高等代数考研复习[线性空间]

1.2 常用线性空间
n P (1)n维向量空间: {(a1, a2,
, an ) | ai , P}
Pn 空间的基 1, 2 , , n 其中 i (0
n dim P n. 空间维数 P
1
i
0)
n
nm P (2)矩阵空间: Anm | A (aij ), aij P.
3 1 1 3 3 0 1 1 F1 , F2 , F3 , F4 . 1 1 1 1 2 1 0 2
(1)求由 F1, F2 , F3 , F4到 E11, E12 , E21, E22 的过渡矩阵.
1 线性空间概念、基维数与坐标
1.1
线性空间的定义: 设V是一个非空集合,P是一个数域.在V的元 素之间定义了两种运算:加法与数乘,并且 两种运算满足8条性质.则称集合V是数域P上 的线性空间. 简单地说:带有线性运算的集合,同时运算 满足8条性质的集合称为线性空间. 线性空间中的元素称为向量,线性空间也称 为向量空间.
y1 y 2 A . yn
(1 , 2 ,
y1 y , n ) 2 , yn
那么,
x1 x 2 xn
题型分析:1)确定空间的基与维数
nn V { A | A A , A P }, 求V的基与维数. 例1 设
过渡矩阵都是可逆的!并且由 1, 2 , , n 到
1 坐标变换:设 1, 2 , , n 与 1, 2 , , n 都是
n维空间V的基,对V中任一向量,有
x1 x , n ) 2 ( 1 , 2 , xn

高等代数第6章线性空间

高等代数第6章线性空间
1集合映射映射2线性空间的定义与简单性质线性空间的定义与简单性质3维数基与坐标基与坐标4基变换与坐标变换基变换与坐标变换5线性子空间线性子空间6子空间的交与和子空间的交与和7子空间的直和子空间的直和8线性空间的同构第第6章章线性空间1集合映射一集合?集合的定义
第6章 §1 §2 §3 §4 §5 §6 §7 §8
线性空 间
集合· 映射 线性空间的定义与简单性质 维数· 基与坐标 基变换与坐标变换 线性子空间 子空间的交与和 子空间的直和 线性空间的同构
§1
集合· 映射
一、集合
集合的定义:作为整体看的一堆东西。通
常用大写英文字母A,B,C,…表示。 组成集合的东西叫元素,用小写英文字 母a,b,c,…表示
Rn: 为n维实向量空间 R3: 是3维实向量空间,即通常的几何空间.
例3 Pmn: 数域P上m×n矩阵全体组成的集合 对于矩阵的加法和数与矩阵的乘法构成P上 线性空间. 例4 C0(a, b): 闭区间 [a, b] 上所有连续函数全 体组成的集合对于函数的加法和数与函数的 乘法,即 (f + g)(x) = f(x) + g(x) (kf)(x) = kf(x) 构成实数域R上的线性空间.
例2
P[x]是无限维线性空间.
例3
线性空间Pn[x]中,1, x, x2, …, xn-1 是一组基,且dim Pn[x] = n. f(x)= a0+a1x ++an-1 xn-1 在这组基下的坐标是(a0, a1,, an-1) 可以证明1, (x-a), (x-a)2,…, (x-a)n-1也是 一组基。 用Taylor公式展开

(1)零空间0没有基, 规定其维数为0,

高等代数第六章线性空间小结太原理工大学

高等代数第六章线性空间小结太原理工大学

返回
上页 下页
本章的重点是线性空间的概念,子空间的和, 基与维数;
难点是线性空间定义的抽象性,线性相关和子 空间的直和.
本章的基本题型主要有:线性空间,子空间的 判定或证明,线性相关与无关的判定或证明,基与 维数的确定,过渡矩阵和坐标的求法,直和及同构 的判内容及其内在联系可用下图来说明: 线性空间
④ dim(W)=∑dim(Vi) .
返回
上页 下页
3. 同构映射的基本性质:
(1) 线性空间的同构映射保持零元,负元,线性组 合,线性相关性;
(2) 同构映射把子空间映成子空间; (3) 线性空间的同构关系具有反身性,对称性和传 递性;
(4) 数域P上两个有限维线性空间同构<=>它们有相 同的维数,因而,数域P上的每一个n维线性空间都 与n元数组所成的线性空间Pn同构.
线性空间 小结
线性空间是线性代数的中心内容,是几何空 间的抽象和推广,线性空间的概念具体展示了代 数理论的抽象性和应用的广泛性.
一、线性空间 1. 线性空间的概念 2. 线性空间的性质 (1) 线性空间的零元,每个元素的负元都是唯一的;
(2) (–1)α=-α,kα=0<=>k=0,或α=0
返回
上页 下页
返回
上页 下页
(3) 若在线性空间 V 中有 n 个线性无关的向量
α1,α2,…,αn,且V 中任意向量都可由它线性表示, 则V是n维的,而α1,α2,…,αn就是V的一个基.
(4) 设α1,α2,…,αn和β1,β2,…,βn是n维线性空间V的两 个基,A是由基α1,α2,…,αn到基β1,β2,…,βn的过渡矩 阵,(x1,x2,…,xn)和(y1,y2,…,yn)分别是向量α在这两 个基下的坐标,则A是可逆的,且坐标关系为.

最新扬州大学高等代数课件(北大三版)--第六章-线性空间说课讲解精品课件

最新扬州大学高等代数课件(北大三版)--第六章-线性空间说课讲解精品课件

6
性空间.
线 性
(3) R, kC k 不一定属于 R (例如: 1, k 1 i , 有
空 间
k 1iR 成立)

R 非 C 上的线性空间.
第七页,共83页。
高 例5 (1)数域P上一元(yī yuán)多项式环P[x];

(2)P[x]n={f(x)|əf<n} ∪{0}.

数 证明: (1) P[x]对多项式的加法,数乘运算封闭,且 8 条算律成立
→ P[x]构成 P 上的线性空间. (2) 显然成立.
由特殊到一般,由具体到抽象,把具体的代数对象用公理化方法
6
统一在一个数学模型下,是数学研究的一种基本思想方法.
线 性 空 间
第八页,共83页。
高 二. 基本(jīběn)性质
等 代 8条算律 ― 基本法律依据(公理),以2个 数 运算、8条算律为基础推导(tuīdǎo)其它基本
记成 {1,2, ,n} ;
6
是 P117 向量线性相关概念在一般线性空间中的推广.
线 性
定义 3 {1,2 , ,r }与{ 1, 2 , , s }等价
空 { 1,2 , ,r } { 1, 2 , , s }且{ 1, 2 , , s } {1,2 ,

记为 {1,2 , ,r } 等价 { 1, 2 , , s }.
线 性
间,Mn×1 = {(a1, a2, , an )/ ai P,i 1,2, ,n}为 P 上 n 元列空

间,统一记为 Pn .

第五页,共83页。
高 例3

C[a,b]={f:[a,b]上连续(liánxù)实 函数}:

高等数学第6章课件§3 维数·基与坐标

高等数学第6章课件§3  维数·基与坐标
(1)单个向量 α 线性相关
⇔ α = 0. 单个向量 α 线性无关 ⇔ α ≠ 0
α1 ,α 2 ,⋯,α r 向量组 线性相关
⇔ α 1 ,α 2 ,⋯ ,α r 中有一个向量可经其余向量线性表出.
§6.3 维数 基 坐标
α1 ,α 2 ,⋯,α r (2)若向量组 线性无关,且可被
α 在基 ε1, ε 2 ,⋯, ε n a1 , a2 ,⋯, an 则数组 ,就称为
下的坐标,记为 ( a1 , a2 ,⋯ , an ).
§6.3 维数 基 坐标
⎛ a1 ⎞ ⎜a ⎟ 2 有时也形式地记作 α = (ε 1 , ε 2 ,⋯ , ε n ) ⎜ ⎟ ⎜ ⋮ ⎟ ⎜ ⎟ ⎝ an ⎠
α1 ,α 2 ,⋯ ,α r 线性表出,且表法是唯一的.
§6.3 维数 基 坐标
二、线性空间的维数、基与坐标
1、无限维线性空间
若线性空间 V 中可以找到任意多个线性无关的向量, 则称 V 是无限维线性空间 . 例1 所有实系数多项式所成的线性空间 R[x] 是 无限维的. 因为,对任意的正整数 n,都有 n 个线性无关的 向量 1,x,x2,…,xn-1
可经向量组 为等价的. (3) α1 ,α 2 ,⋯, α r ∈ V ,若存在不全为零的数
α 1 ,α 2 ,⋯ ,α r 线性表出 ;
若两向量组可以互相线性表出,则称这两个向量组
k1 , k2 ,⋯, kr ∈ P ,使得
k1α1 + k2α 2 + ⋯ + krα r = 0
α1,α 2 ,⋯, α r 线性相关的; 则称向量组 为
§6.3 维数 基 坐标
α1 ,α 2 ,⋯ ,α r不是线性相关的,即 (4)如果向量组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任一不超过4次的多项式 p a 4 x 4 a 3 x 3 a 2 x 2 a1 x a 0 可表示为 p a 0 p1 a 1 p 2 a 2 p 3 a 3 p 4 a 4 p 5
因此 p 在这个基下的坐标为 ( a 0 , a 1, a 2 , a 3 , a 4 )
T
若取另一基q1 1, q 2 1 x , q 3 2 x 2 , q 4 x 3 , q5 x4 , 则 1 p (a 0 a 1 )q1 a 1 q 2 a 2 q 3 a 3 q 4 a 4 q 5 2 因此 p 在这个基下的坐标为
1 ( a 0 a 1, a 1, a 2 , a 3 , a 4 ) 2 注意 线性空间 V的任一元素在不同的基下所对的 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的.
T
例2 所有二阶实矩阵组成的集合 V ,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性 空间.对于 V 中的矩阵

1 E 11 0 0 E 21 1
0 0 1 , E 12 , 0 0 0 0 0 0 , E 22 0 0 1
而矩阵A在这组基下的坐标是 (a 11, a 12, a 21, a 22) .
T
例3 在线性空间R, 2 ( x a ), 3 ( x a ) , , n ( x a )
则由泰勒公式知
2
n 1
f ' ' (a ) 2 f ( x ) f (a ) f ' (a )( x a ) ( x a) 2! ( n 1) (a ) f n 1 ( x a) ( n 1)! 因此 f ( x )在基 1 , 2 , 3 , , n 下的坐标是
( 2) V中任一元素总可由 1 , 2 ,, n线性 表示, 那末, 1 , 2 ,, n 就称为线性空间V 的一个
基, n 称为线性空间V 的维数.
维数为n的线性空间称为 n 维线性空间 , 记作Vn .
当一个线性空间 V 中存在任意多个线性无关 的向量时,就称 V 是无限维的.
f ''(a ) (a ) f ( f (a ), f '(a ), , , ) . 2! ( n 1)!
( n 1) T
若 1 , 2 ,, n为Vn的一个基, 则Vn可表示为
Vn x1 1 x2 2 xn n x1 , x2 ,, xn R
二、给定基下的坐标
定义2 设 1 , 2 , , n是线性空间Vn的一个基 , 对
于任一元素 Vn , 总有且仅有一组有序 数x1 , x 2 , , x n , 使
一、线性空间的基与维数
已知:在 R 中,线性无关的向量组最多由 n 个向量组成,而任意 n 1个向量都是线性相关的.
n
问题:线性空间的一个重要特征——在线性空 间 V 中,最多能有多少线性无关的向量?
定义1 满足:
在线性空间 V 中,如果存在 n 个元素 1 , 2 ,, n
(1) 1 , 2 ,, n线性无关;
即 E 11 , E 12 , E 21 , E 22线性无关.
对于任意二阶实矩阵 a 11 a 12 A V , a 21 a 22
有 A a 11 E 11 a 12 E 12 a 21 E 21 a 22 E 22
因此 E 11 , E 12 , E 21 , E 22为V的一组基.
x1 1 x2 2 xn n ,
有序数组x1 , x2 , , xn 称为元素在 1 , 2 , , n 这个 基下的坐标 , 并记作
T x1 , x2 ,, xn .
例1 在线性空间P[ x ]4中, p1 1, p 2 x , p 3 x 2 , p 4 x 3 , p 5 x 4 就是它的一个基 .
k1 k 2 , k 1 E 11 k 2 E 12 k 3 E 21 k 4 E 22 k3 k4
因此 0 0 , k 1 E 11 k 2 E 12 k 3 E 21 k 4 E 22 O 0 0
k 1 k 2 k 3 k 3 0,
相关文档
最新文档