2019-2020重庆珊瑚中学数学中考试卷附答案

合集下载

2019-2020重庆珊瑚中学数学中考试卷附答案

2019-2020重庆珊瑚中学数学中考试卷附答案

2019-2020 重庆珊瑚中学数学中考试卷附答案一、选择题1.如图,在平面直角坐标中,正方形 ABCD 与正方形 BEFG 是以原点 O 为位似中心的位 似图形,且相似比为 1,点 A ,B ,E 在x 轴上,若正方形 BEFG 的边长为 12,则 C 点坐3标为( )A .(6,4)B . (6,2)C .( 4,4)D .( 8,4)2.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥3.地球与月球的平均距离为 384 000km ,将 384 000 这个数用科学记数法表示为( ) A .3.84 ×130 B . 3.84 × 140 C . 3.84 × 150 D .3.84 × 164.如图,将 ?ABCD 沿对角线 AC 折叠,使点 B 落在 B ′处,若∠ 1=∠2=44°,则∠ B 为H ,连接 BH 并延长交 CD 于点 F ,连接 DE 交 BF 于点 O ,下列结论:①∠ AED=∠CED ; ②OE=OD ;③ BH=HF ;④ BC ﹣CF=2HE ;⑤ AB=HF ,其中正确的有( )124° C .114 ° D .AB =4,AC =1,则 cosB 的值为(C . 15 151B .46.如图,在矩形 ABCD 中,AD= 2 AB ,∠ BAD 的平分线交 BC A . 154D . ) 4 1717E ,DH ⊥AE 于点A. 25°B.75°C.65°D.55°8.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+4 3 与 x 轴、y 轴分别交于 A 、B,∠ OAB=30°,点 P在 x轴上,⊙ P与 l 相切,当 P 在线段 OA 上运动时,使得⊙ P 成为整圆的点 P个数是()A .6 B. 8矩形 ABCD 与 CEFG ,如图放置,点的中点 H,连接 GH.若C.10B,C,E 共线,点C,CD=CE=1 ,则 GH= (D.12D,G 共线,连接 AF,取A.2 个B.3 个C.4 个D.5 个7.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1 上,两直角边分别与直线 l、 l 相交形成锐角∠ 1、∠2且∠1=25°,则∠ 2 的度数为AF2B.310.某校男子足球队的年龄分布如图所示,C.22则根据图中信息可知这些队员年龄的平均数,A.15.5,15.5 B.15.5, 15 C.15,15.5 D.15,1511.“绿水青山就是金山银山”.某工程队承接了 60 万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了 25%,结果提前30 天完成了这一任13.如图,直线l x轴于点P ,且与反比例函数y1 k1(x 0)及 y2 k2(x 0)x x的图象分别交于A、B两点,连接OA、OB,已知OAB的面积为 4,则k﹣1 k2 _____14.如图:已知 AB=10,点 C、D在线段 AB上且 AC=DB=2; P是线段 CD上的动点,分别以 AP、PB为边在线段 AB 的同侧作等边△AEP和等边△PFB,连结 EF,设 EF的中点为 G;当点 P从点 C运动到点 D 时,则点 G移动路径的长是.务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是(A.C.60606030(1 25%)x(1 25%) 60 30B.D.60(1 25%)x6030x60 60 (1xxx列由阴影构成的图形既是轴对称图形,又是中心对称25%)x30B.1215.如图:在 △ABC 中, AB=13 , BC=12 ,点 D ,E 分别是 AB ,BC 的中点,连接 DE ,2x 2 c 0 有两个相等的实数根,则 1c 的值 a2 四个数中,随机抽取两个数相乘,积为大于﹣ 4 小于 2 的概率是xy620.二元一次方程组的解为 ___ .2x y 7三、解答题21. 如图 1,△ABC 内接于⊙ O ,∠ BAC 的平分线交⊙ O 于点 D ,交 BC 于点 E ( BE> EC ),且 BD=2 3 .过点 D 作 DF ∥BC ,交 AB 的延长线于点 F . (1)求证: DF 为⊙ O 的切线;(2)若∠ BAC=60°,DE= 7 ,求图中阴影部分的面积;AB 4(3)若, DF+BF=8,如图 2,求 BF 的长.m , 6)和(﹣ 2, 3),则 m 的值为18.已知关于 x 的一元二次方程 ax 等于 ____ . 19.从﹣ 2,﹣ 1,1,17. 已知反比例函数的图象经过点(弦 BC ∥ AO ,若∠AC 322.如图,在四边形ABCD中,AB PDC ,AB AD ,对角线AC ,BD交于点O,AC平分BAD ,过点C作CE AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD 是菱形;(2)若AB 5,BD 2,求OE的长.23.如图, AB 为⊙ O的直径, C为⊙ O上一点,∠ ABC 的平分线交⊙ O于点D,DE⊥BC 于点 E .(1)试判断 DE 与⊙ O的位置关系,并说明理由;(2)过点 D 作 DF⊥AB 于点 F,若 BE=3 3 , DF=3 ,求图中阴影部分的面积.24.今年 5 月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A, B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:频数(人数)等级成绩( s)A 90<s≤100 4B 80<s≤90 xC 70<s≤80 16D s≤70 6根据以上信息,解答以下问题: (1)表中的 x= ; (2)扇形统计图中 m= ,n=,C 等级对应的扇形的圆心角为 度;(3)该校准备从上述获得 A 等级的四名学生中选取两人做为学校“五好小公民”志愿者, 已知这四人中有两名男生(用 a 1,a 2 表示)和两名女生(用 b 1,b 2 表示),请用列表或画 树状图的方法求恰好选取的是 a 1 和 b 1的概率.25. 计算:参考答案】 *** 试卷处理标记,请不要删除、选择题 1.A 解析: A 【解析】 【分析】直接利用位似图形的性质结合相似比得出 AD 的长,进而得出 △OAD ∽△ OBG ,进而得出 AO 的长,即可得出答案. 【详解】1∵正方形 ABCD 与正 方形 BEFG 是以原点 O 为位似中心的位似图形,且相似比为 ,3∴AD 1 ∴ BG 3 ,∵BG =12, ∴AD = BC = 4, ∵AD ∥BG ,∴△ OAD ∽△ OBG ,∴OA 1OB 3 ∴ 0A 1 4 OA 3解得: OA =2, ∴OB =6,2(m ﹣1)2﹣ ( 2m+1 ) (1﹣ )1) 2) m ﹣1)∴C 点坐标为:( 6, 4),故选 A .【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出2.A 解析: AAO 的长是解题关键.【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选 A.考点:由三视图判定几何体 . 3.C 解析: C【解析】试题分析: 384 000=3.84 ×150.故选 C.考点:科学记数法—表示较大的数.4.C解析: C【解析】【分析】1根据平行四边形性质和折叠性质得∠ BAC=∠ ACD=∠B′AC= ∠1,再根据三角形内角和定2理可得 .【详解】∵四边形 ABCD 是平行四边形,∴AB∥CD,∴∠ ACD=∠BAC,由折叠的性质得:∠ BAC=∠ B′AC,1∴∠ BAC=∠ ACD=∠B′AC= ∠1=22°2∴∠ B=180°-∠ 2-∠BAC=180°-44°-22°=114°;故选 C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠ BAC 的度数是解决问题的关键.5.A解析: A【解析】∵在 Rt△ABC 中 ,∠C=90°,AB=4, AC=1,∴BC=4212 = 15 ,则 cosB= BC=15,AB 4故选 A6.C解析: C【解析】【分析】【详解】试题分析:∵在矩形 ABCD 中, AE 平分∠ BAD ,∴∠ BAE= ∠DAE=45° ,∴△ ABE 是等腰直角三角形,∴AE= 2 AB ,∵AD= 2 AB ,∴AE=AD ,又∠ ABE= ∠AHD=9°0∴△ ABE ≌△ AHD ( AAS ),∴BE=DH ,∴AB=BE=AH=HD ,1∴∠ ADE= ∠AED= (180°﹣ 45°)=67.5°,2∴∠ CED=18°0 ﹣45°﹣ 67.5 °=67.5 °,∴∠ AED= ∠CED ,故①正确;1∵∠ AHB= (180°﹣45°)=67.5°,∠ OHE= ∠ AHB (对顶角相等),2∴∠ OHE= ∠ AED ,∴OE=OH ,∵∠ OHD=9°0 ﹣ 67.5 °=22.5 °,∠ ODH=67.5° ﹣45°=22.5°,∴∠ OHD= ∠ODH ,∴OH=OD ,∴OE=OD=OH ,故②正确;∵∠ EBH=90° ﹣ 67.5 °=22.5 °,∴∠ EBH= ∠OHD ,又 BE=DH ,∠ AEB= ∠ HDF=45°∴△ BEH ≌△ HDF ( ASA ),∴BH=HF ,HE=DF ,故③正确;由上述①、②、③可得 CD=BE 、 DF=EH=CE ,CF=CD-DF ,∴BC-CF= (CD+HE )-(CD-HE)=2HE,所以④正确;∵AB=AH ,∠ BAE=45° ,∴△ ABH 不是等边三角形,∴AB≠BH ,∴即 AB≠HF ,故⑤错误;综上所述,结论正确的是①②③④共 4 个.故选 C.【点睛】考点: 1、矩形的性质; 2、全等三角形的判定与性质; 3、角平分线的性质; 4、等腰三角形的判定与性质7.C解析: C【解析】【分析】依据∠ 1= 25°,∠ BAC =90°,即可得到∠ 3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠ 1=25°,∠ BAC =90°,∴∠ 3=180°-90°-25 °=65°,∵l1∥l2,【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.8.A解析: A【解析】试题解析:∵直线 l: y=kx+4 3 与 x 轴、y 轴分别交于 A、B,∴B(0,43 ),∴OB=4 3 ,在 RT△AOB中,∠ OAB=3°0 ,∴OA= 3 OB= 3×43 =12,∵⊙P与 l 相切,设切点为 M,连接 PM,则 PM⊥AB,2设 P( x,0),∴PA=12-x,11 ∴⊙ P 的半径 PM= PA=6- x,22 ∵ x 为整数, PM 为整数,∴x 可以取 0,2,4,6,8,10,6 个数,∴使得⊙ P成为整圆的点 P 个数是 6.故选 A.考点: 1.切线的性质; 2.一次函数图象上点的坐标特征.9.C 解析: C 【解析】1分析:延长 GH 交 AD 于点 P,先证△APH ≌△ FGH得 AP=GF=1 , GH=PH= PG,再利用2 勾股定理求得 PG= 2 ,从而得出答案.详解:如图,延长 GH 交 AD 于点 P,∵四边形 ABCD 和四边形 CEFG 都是矩形,∴∠ ADC= ∠ADG= ∠ CGF=9°0 ,AD=BC=2 、 GF=CE=1 ,∴AD ∥ GF,∴∠ GFH= ∠PAH,又∵H 是 AF 的中点,∴AH=FH ,在△APH 和△FGH 中,PAH GFH AH FH AHP FHG∴△ APH ≌△ FGH (ASA ),1∴AP=GF=1 , GH=PH= PG , ∴ ,2 PG , ∴PD=AD ﹣AP=1 , ∵CG=2 、 CD=1 , ∴DG=1 ,则 GH= 1 PG= 1 × PD 2 DG 2 = 2 ,2 2 2故选: C .点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性 质、勾股定理等知识点.10.D解析: D 【解析】 【分析】 【详解】根据图中信息可知这些队员年龄的平均数为:13 2 14 6 15 8 16 3 17 2 18 1268321该足球队共有队员 2+6+8+3+2+1=22 人,则第 11名和第 12 名的平均年龄即为年龄的中位数,即中位数为 15岁, 故选 D .11.C解析: C【解析】平方米,点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是依题意得: 故选 C . 606030 60 1 25%x ,即x 1 25% x60x30. =15 岁,分析:设实际工作时每天绿化的面积为合提前 30 天完成任务,即可得出关于 x 万平方米,根据工作时间 = 工作总量 ÷工作效率结 x 的分式方程.x 万平方米,则原来每天绿化的面积为x25%解决问题的关键.12.B 解析: B 【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是中心对称图形,不是轴对称图形,故该选项不符合题意,B、是中心对称图形,也是轴对称图形,故该选项符合题意,C、不是中心对称图形,是轴对称图形,故该选项不符合题意,D、是中心对称图形,不是轴对称图形,故该选项不符合题意.故选 B .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比解析:【解析】【分析】11根据反比例函数k的几何意义可知:AOP 的面积为k1,BOP 的面积为k2,然后22 两个三角形面积作差即可求出结果.【详解】11解:根据反比例函数k的几何意义可知:AOP 的面积为k1,BOP 的面积为k2,221 1 1 1∴ AOB的面积为k1k2,∴ k1k2 4 ,∴ k1 k2 8.21222122 1 2故答案为 8.【点睛】本题考查反比例函数k的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型.14.3【解析】【分析】分别延长AEBF交于点H 易证四边形EPFH为平行四边形得出G为PH中点则G的运行轨迹为三角形HCD的中位线MN再求出CD的长运用中位线的性质求出MN的长度即可【详解】如图分别延长 A 解析: 3【解析】【分析】分别延长 AE、BF 交于点 H,易证四边形 EPFH为平行四边形,得出 G为 PH 中点,则 G 的运行轨迹为三角形 HCD 的中位线 MN .再求出 CD 的长,运用中位线的性质求出 MN 的长度即可.【详解】如图,分别延长 AE、BF 交于点 H.∵∠ A= ∠FPB=60°,∴AH ∥ PF,∵∠ B=∠ EPA=60°,∴BH ∥PE,∴四边形 EPFH 为平行四边形,∴EF 与 HP 互相平分.∵G 为 EF 的中点,∴G 也正好为 PH 中点,即在 P的运动过程中, G 始终为 PH的中点,所以 G 的运行轨迹为三角形 HCD 的中位线 MN .∵CD=10-2-2=6 ,∴MN=3 ,即 G 的移动路径长为 3.点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5A∥CDE根据勾股定理的逆定理得到∠ ACB=9°0 根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵ DE分别是 A解析: 18【解析】【分析】根据三角形中位线定理得到 AC=2DE=5 ,AC ∥DE,根据勾股定理的逆定理得到∠ACB=90° ,根据线段垂直平分线的性质得到 DC=BD ,根据三角形的周长公式计算即可.【详解】∵D,E分别是 AB,BC 的中点,∴AC=2DE=5 ,AC ∥DE,AC2+BC2=52+122=169,AB 2=132=169,∴AC 2+BC2=AB2,∴∠ ACB=90° ,∵AC ∥DE,∴∠ DEB=90° ,又∵ E是 BC 的中点,∴直线 DE 是线段 BC 的垂直平分线,∴DC=BD ,∴△ ACD 的周长 =AC+AD+CD=AC+AD+BD=AC+AB=18 ,故答案为 18.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.【解析】根据切线的性质可得出OB⊥AB从而求出∠ BOA的度数利用弦BC∥AO及OB=OC可得出∠ BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴ OB⊥AB(切线的性质)又∵∠A=30°∴∠B解析:2 .【解析】根据切线的性质可得出 OB⊥ AB,从而求出∠ BOA的度数,利用弦 BC∥AO,及 OB=OC可得出∠ BOC的度数,代入弧长公式即可得出∵直线 AB是⊙O 的切线,∴ OB⊥ AB(切线的性质).又∵∠ A=30°,∴∠ BOA=6°0 (直角三角形两锐角互余).∵弦 BC∥AO,∴∠ CBO=∠BOA=6°0 (两直线平行,内错角相等).又∵ OB=OC,∴△ OBC是等边三角形(等边三角形的判定).∴∠ BOC=6°0(等边三角形的每个内角等于 60°).又∵⊙ O的半径为 6cm,∴劣弧B?C的长 =60 6=2 (cm).180 17.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6 然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1 故答案为:-1 解析: -1 【解析】k试题分析:根据待定系数法可由( - 2, 3)代入 y= k,可得 k=-6,然后可得反比例函数的x 解析式为 y=- 6,代入点( m,6)可得 m=-1.x 故答案为: -1.18.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△ =4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于 x 的一元二次方程 ax2+2x+2 ﹣c= 0有两个相等的实数根”,结合根的判别式公式,得到关于 a 和 c 的等式,整理后即可得到的答案.【详解】解:根据题意得:△= 4﹣4a( 2﹣c)= 0,整理得: 4ac﹣ 8a=﹣4, 4a( c﹣ 2)=﹣ 4,∵方程 ax2+2x+2 ﹣ c= 0 是一元二次方程,∴a≠0,1等式两边同时除以 4a 得:c 2 ,a1则c 2 ,a故答案为: 2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.19.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4 小于 2 的结果数根据概率公式计算可得【详解】列表如下:-2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -1解析:12【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于 2 的结果数,根据概率公式计算可得.【详解】列表如下:由表可知,共有 12种等可能结果,其中积为大于 -4 小于 2的有 6 种结果,∴积为大于 -4小于 2的概率为 6 = 1,12 21故答案为 .2【点睛】 此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结 果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点 为:概率 = 所求情况数与总情况数之比.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得 ③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解 法本题属于基础题比较简单【解析】【分析】 由加减消元法或代入消元法都可求解. 【详解】x y 6 ① 2x y 7 ② ②﹣①得 x 1 ③ 将③代入①得 y 5x1 y5x1故答案为:y5【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21. ( 1)证明见解析( 2)9 3 ﹣2π;( 3) 3 【解析】 【分析】(1)连结 OD ,如图 1,由已知得到∠ BAD= ∠CAD ,得到 B ?D C ?D ,再由垂径定理得 OD ⊥BC ,由于 BC ∥EF ,则 OD ⊥DF ,于是可得结论;(2)连结 OB ,OD 交 BC 于 P ,作 BH ⊥DF 于 H ,如图 1,先证明 △OBD 为等边三角形得 到∠ ODB=6°0 ,OB=BD= 2 3,得到∠ BDF= ∠DBP=30°,在 Rt △DBP 中得到 PD= 3,解析:x1y5CD=BD= 2 3 , PB=3,在Rt △DEP 中利用勾股定理可算出 PE=2,由于 OP ⊥BC ,则 BP=CP=3 ,得到 CE=1,由△BDE ∽△ ACE ,得到 AE 的长,再证明 △ABE ∽△ AFD ,可得 DF=12 ,最后利 用S 阴影部分 =S △BDF ﹣ S 弓形 BD =S△BDF ﹣( S 扇形 BOD﹣ S△BOD )进行计算;AB 4(3)连结 CD ,如图 2,由可设 AB=4x , AC=3x ,设 BF=y ,AC 3CD=BD= 2 3 ,由△BFD ∽△ CDA ,得到 xy=4 ,再由 △FDB ∽△ FAD , 则 16﹣4y=4,然后解方程即可得到 BF=3 . 由?BD C ?D得到得到 16﹣ 4y=xy ,∴∠ BAD= ∠CAD , ∴B?D C ?D ,∴ OD ⊥ BC ,∵BC ∥ EF ,∴ OD ⊥DF , ∴DF 为⊙O 的切线;(2)连结 OB ,连结 OD 交BC 于 P ,作 BH ⊥DF 于 H ,如图 1, ∵∠ BAC=60° , AD 平分∠ BAC ,∴∠ BAD=30° ,∴∠ BOD=2 ∠BAD=60° , ∴△ OBD 为等边三角形,∴∠ ODB=6°0 ,OB=BD= 23 , ∴∠BDF=30° , 在 Rt △DBP 中, PD= 12 BD=3 ,PB= 3 PD=3 ,在 Rt △DEP 中, ∵ PD= 3 ,DE= 7 ,∴ PE= ( 7) 2 ( 3)2=2,∵OP ⊥BC ,∴ BP=CP=3 ,∴ CE=3﹣2=1,易证得 △BDE ∽△ ACE ,∴ AE : BE=CE :DE ,即 AE : 5=1: 7 ,∴ AE= 5 7,∵ BE ∥7DF ,∴△ ABE ∽△ AFD ,∴ BEDF AE AD ,5 即 D 5F 577 ,解得 DF=12 ,12 51在 Rt △BDH 中, BH= BD=2= 1 60 (2 3)23,∴ S 阴影部分 =S △BDF ﹣ S 弓形 BD =S△BDF ﹣( S 扇形 BOD ﹣ S△BOD ) (2 3)2 = 9 3 2 ;3)连结 CD ,如图 2,ABAC4可设 AB=4x , AC=3x ,设 BF=y ,∵?BD C ?D,∴∵∠ F=∠ ABC= ∠ADC ,∵∠ FDB= ∠ DBC= ∠DACBD BF 2 3∴△B FD ∽△ CDA , 2 3,∴xy=4,考点: 1.圆的综合题; 2.相似三角形的判定与性质; 3.切线的判定与性质; 4.综合 题; 5.压轴题. 22. (1)证明见解析;( 2)2. 【解析】分析:( 1)根据一组对边相等的平行四边形是菱形进行判定即可 . (2)根据菱形的性质和勾股定理求出 线等于斜边的一半即可求解 . 详解:( 1)证明:∵ AB ∥ CD ,CAB ACD AC 平分 BAD CAB CAD, CAD ACDAD CDAD AB ∴ AB CD又∵ AB ∥ CD ,∴四边形 ABCD 是平行四边形 又∵ AB AD ∴ Y ABCD 是菱形(2)解:∵四边形 ABCD 是菱形,对角线 AC 、 BD 交于点 O .∵∠ FDB= ∠ DBC= ∠DAC= ∠FAD ,而∠ DFB= ∠AFD , ∴△ FDB ∽△ FAD , DF BF ,即 8 y yAF DF y 4x 8 y整理得 16﹣ 4y=xy ,∴ 16﹣4y=4,解得 y=3,即 BF 的长为 3.OAAB 2OB 2 2 .根据直角三角形斜边的中 ∴ AC BD . OA OC1 AC , OB OD 1 BD , 221∴ OB BD 1 .2在RtVAOB 中,AOB 90∴OA AB2OB22 .∵ CE AB ,AEC 90在RtVAEC中,AEC 90 .O为AC中点.1∴ OE AC OA 2 .2 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.23.( 1)DE 与⊙ O相切,理由见解析;( 2)阴影部分的面积为 2π﹣ 3 3.2 【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=9°0 ,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接 DO,∵DO=B,O∴∠ ODB∠= OBD,∵∠ ABC的平分线交⊙O 于点 D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠ DEB=∠EDO=9°0 ,∴DE与⊙O相切;(2)∵∠ ABC的平分线交⊙O 于点 D,DE⊥BE,DF⊥AB,∴DE=DF=,3∵BE=3 3 ,∴BD= 32+(3 3)2 =6,∵sin ∠DBF= 3 = 1,62∴∠DBA=30°,∴∠ DOF=6°0 ,∴sin60 °= DF 3 3,DO DO 2∴DO=2 3 ,则 FO= 3 ,故图中阴影部分的面积为:60 (2 3) 1 3 3 2 3 3.360 2 2 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.124.(1)14;(2)10、40、144;(3)恰好选取的是 a1和 b1的概率为.6【解析】【分析】( 1)根据 D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出 x 的值;(2)用 A、 C人数分别除以总人数求得 A 、 C的百分比即可得 m、n 的值,再用360°乘以 C等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和 b1的情况,再利用概率公式即可求得答案.【详解】( 1)∵被调查的学生总人数为 6÷15%=40 人,∴x=40 ﹣( 4+16+6 )=14 ,故答案为 14;4 16(2)∵ m%= ×100%=10% , n%= ×10%=40% ,40 40∴m=10 、 n=40 ,C 等级对应的扇形的圆心角为 360 °×40%=144°,故答案为 10、 40、144;(3)列表如下:由表可知共有 12 种等可能结果,其中恰好选取的是 a1和 b1 的有 2 种结果,21∴恰好选取的是 a1 和 b1 的概率为.12 6【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.25.( 1)﹣3m+3;(2)【解析】【分析】(1)先根据完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)先计算括号内分式的减法,将除法转化为乘法,再约分即可得.【详解】(1)原式= 2( m2﹣ 2m+1)﹣( 2m2﹣2m+m﹣1)=2m2﹣4m+2 ﹣ 2m 2+2m ﹣ m+1=﹣ 3m+3 ;【点睛】本题主要考查分式和整式的混合运算,熟练掌握分式与整式的混合运算顺序和运算法则是解题关键.=2)原式=(。

2019年重庆市中考数学试卷及答案

2019年重庆市中考数学试卷及答案

2019年重庆市中考数学试卷及答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比﹣1小的数是()A.2 B.1 C.0 D.﹣22.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.54.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形6.(4分)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.B.C.D.8.(4分)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1 9.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A (2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.4010.(4分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米11.(4分)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.612.(4分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣3)0+()﹣1=.14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2﹣y(2x+y)(2)(a+)÷20.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b众数c100方差52 50.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函y=x﹣3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣3|+b≤x﹣3的解集.24.(10分)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.25.(10分)如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=CM+2CE.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(8分)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.2019年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比﹣1小的数是()A.2 B.1 C.0 D.﹣2【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:∵﹣2<﹣1<0<2,∴比﹣1小的数是﹣2,故选:D.【点评】本题考查了有理数的大小比较,注意:正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小.2.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.5【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.【解答】解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.【点评】此题主要考查了相似三角形的性质,正确得出对应边之间关系是解题关键.4.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°【分析】由切线的性质得出∠BAC=90°,求出∠ABC=40°,由等腰三角形的性质得出∠ODB=∠ABC=40°,再由三角形的外角性质即可得出结果.【解答】解:∵AC是⊙O的切线,∴AB⊥AC,∴∠BAC=90°,∵∠C=50°,∴∠ABC=40°,∵OD=OB,∴∠ODB=∠ABC=40°,∴∠AOD=∠ODB+∠ABC=80°;故选:C.【点评】本题考查了切线的性质,等腰三角形的性质、直角三角形两锐角互余、三角形的外角性质,熟练运用切线的性质是本题的关键.5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【分析】根据矩形的判定方法判断即可.【解答】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题熟练掌握矩形的判定方法是解题的关键.6.(4分)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】先根据二次根式的乘法进行计算,再进行估算.【解答】解:(2+6)×,=2+6,=2+,=2+,∵4<5,∴6<2+<7,故选:C.【点评】本题考查了二次根式的乘法和无理数的估算,熟练掌握二次根式的计算法则是关键.7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.B.C.D.【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(4分)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1【分析】根据题意一一计算即可判断.【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.【点评】本题考查代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.9.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A (2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.40【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4).利用矩形的性质得出E为BD中点,∠DAB=90°.根据线段中点坐标公式得出E(x,4).由勾股定理得出AD2+AB2=BD2,列出方程22+42+(x﹣2)2+42=x2,求出x,得到E点坐标,代入y=,利用待定系数法求出k.【解答】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得x=10,∴E(5,4).∵反比例函数y=(k>0,x>0)的图象经过点E,∴k=5×4=20.故选:B.【点评】本题考查了矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E点坐标是解题的关键.10.(4分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米【分析】如图,根据已知条件得到=1:2.4=,设CF=5k,AF=12k,根据勾股定理得到AC==13k=26,求得AF=10,CF=24,得到EF=6+24=30,根据三角函数的定义即可得到结论.【解答】解:如图,∵=1:2.4=,∴设CF=5k,AF=12k,∴AC==13k=26,∴k=2,∴AF=10,CF=24,∵AE=6,∴EF=6+24=30,∵∠DEF=48°,∴tan48°===1.11,∴DF=33.3,∴CD=33.3﹣10=23.3,答:古树CD的高度约为23.3米,故选:C.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11.(4分)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.6【分析】先解关于x的一元一次不等式组,再根据其解集是x≤a,得a小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a的值,再求和即可.【解答】解:由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程﹣=1得2y﹣a+y﹣4=y﹣1∴y=,∵有非负整数解,∴≥0,∴a≥﹣3,且a=﹣3,a=﹣1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选:B.【点评】本题综合考查了含参一元一次不等式,含参分式方程得问题,需要考虑的因素较多,属于易错题.12.(4分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=DM =,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣3)0+()﹣1= 3 .【分析】根据零指数幂和负整数指数幂计算可得.【解答】解:原式=1+2=3,故答案为:3.【点评】本题主要考查零指数幂和负整数指数幂,解题的关键是掌握a﹣p=(a≠0,p为正整数)及a0=1(a≠0).14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 2.56×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于25600000有8位,所以可以确定n=8﹣1=7.【解答】解:25600000=2.56×107.故答案为:2.56×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.【分析】先画树状图展示所有30种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有30种等可能的结果数,其中两次都摸到红球的结果数为6,所以两次都摸到红球的概率为=.故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为2﹣π.(结果保留π)【分析】根据菱形的性质得到AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.【点评】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是6000 米.【分析】根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.【解答】解:由题意可得,甲的速度为:4000÷(12﹣2﹣2)=500米/分,乙的速度为:=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12﹣2)﹣500×2+500×4=6000(米),故答案为:6000.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是3:20 .【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x,黄连已种植面积依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【解答】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x,黄连已种植面积依题意可得,由①得x=③,将③代入②,z=y,∴贝母的面积与该村种植这三种中药材的总面积之比=,故答案为3:20.【点评】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2﹣y(2x+y)(2)(a+)÷【分析】(1)根据完全平方公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)(x+y)2﹣y(2x+y)=x2+2xy+y2﹣2xy﹣y2=x2;(2)(a+)÷====.【点评】本题考查分式的混合运算、完全平方公式、单项式乘多项式,解答本题的关键是明确它们各自的计算方法.20.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.【点评】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b众数c100方差52 50.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【解答】解:(1)a=(1﹣20%﹣10%﹣)×100=40,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平方数,∴b==94;∵在七年级10名学生的竞赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×=468人,答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点评】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【分析】(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”;(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.【解答】解:(1)2019不是“纯数”,2020是“纯数”,理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不。

重庆市珊瑚中学2019级九年级下学期数学考学考试卷(解析版)

重庆市珊瑚中学2019级九年级下学期数学考学考试卷(解析版)

重庆市珊瑚中学2019级九年级下学期数学考学考试卷(解析版)一、选择题:(每小题4分,共48分)1.下面有理数比较大小,正确的是()A.0<﹣2B.﹣5<3C.﹣2<﹣3D.1<﹣42.篆字保存着古代象形文字的明显特点,下列几个篆字中,是中心对称图形的是()A.B.C.D.3.如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.4.2018年我市粮食总产量为69520000000斤,69520000000科学记数法表示为()A.6.952×106B.6.952×109C.6.952×1010D.695.2×1085.下列命题是真命题的是()A.四边都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形6.如图,△ABC与△DEF形状完全相同,且AB=3.6,BC=6,AC=8,EF=2,则DE的长度为()A.1.2B.1.8C.3D.7.27.黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间8.如图,射线BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°9.如图所示运算程序中,若开始输入的x值为48,第一次输出的结果为24,第二次输入的结果为12.……则第2018次输出的结果是()A.1B.6C.3D.410.中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1:2.4的斜坡上.宾馆AB高为129米.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前有一座雕像C(雕像的高度忽略不计),已知雕像C距离海岸线D的距离CD 为260米,与宾馆AB的水平距离为36米,远处海面上一艘即将靠岸的轮船E的俯角为27°.则轮船E距离海岸线D的距离ED的长为()米(参考数据:tan27°≈0.5,sin27°≈0.45)A.262B.212C.244D.27611.如图,反比例函数y=(k>0)的图象与矩形AOBC的边AC,BC分别相交于点E,F,点C的坐标为(4,3)将△CEF沿EF翻折,C点恰好落在OB上的点D处,则k的值为()A.B.6C.3D.12.使得关于x的不等式组有且只有4个整数解,且关于x的一元二次方程(a﹣5)x2+4x+1=0有实数根的所有整数a的值之和为()A.35B.30C.26D.21二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.计算|﹣|+2﹣1﹣3tan45°=.14.如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是.15.过(﹣1,0)、(3,0)、(1,2)三点的抛物线的解析式是.16.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.17.一辆快车从甲地出发到乙地,一辆慢车从乙地出发到甲地,两车同时出发,匀速行驶,慢车到甲地后停止行驶,快车到乙地后休息半小时,然后以另一速度返回甲地,两车之间的距离y(千米)与快车行驶的时间x(小时)之间的函数关系如图所示,当慢车到达甲地时,快车与乙地的距离为千米.18.某班有若干人参加一次智力竞赛,共a、b、c三题,每题或者得满分或者得0分.其中题a、题b、题c满分分别为20分、30分、40分.竞赛结果,每个学生至少答对了一题,三题全答对的有1人,只答对其中两道题的有15人,答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为25,答对题b的人数与答对题c的人数之和为20,则这个班参赛同学的平均成绩是分.三、解答题:(本大题2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括轴助线),请将解答过程书写在答题卡中对应的置上19.(10分)先化简,再求值:÷(a﹣2﹣)+,其中a2﹣2a﹣6=0 20.(10分)如图,已知点D、E、B、C分别是直线m、n上的点,且m∥n,延长BD、CE 交于点A,DF平分∠ADE,若∠A=40°,∠ACB=80°.求:∠DFE的度数.四、解答题:(本大5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步跟,画出必要的图形,请将解答过程书写在答题卡中对应的位置上21.(10分)某学校为了控制冬季传染病的传播,对各教室进行消毒.为了得到时间t(单位:m)与教室里空气中药物含量y(单位:mL/m3)之间的关系,测得以下数据:(1)根据上表,请在以时间t为横坐标,空气中药物含量y为纵坐标建立的直角坐标系内描出上述各点,并用平滑曲线把这些点一次连接;(2)请根据直角坐标系内各点的变化趋势,确定y与t的函数模型以及函数表达式.(3)根据药物性质可知,当教室空气中含量小于3mL/m3大于mL/m3时,消毒效果最好.最好的消毒效果时间能持续多久?22.(10分)初2019届体育备课组为了了解初三学生目前体考项目的成绩,现随机抽取若干名学生体育半期考试成绩,来对他们的跳远成绩、实心球成绩、跳绳成绩和总成绩进行统计分析(其中总分满分50分,跳绳满分20分,跳远和实心球满分均为15分),并制作了如下条形统计图、扇形统计图和表格,跳绳、跳远、实心球成绩统计表跳绳(人)请根据上表完成下列题目:(1)统计表中a=;b=;c=;(2)请分别求出抽取样本中的跳绳成绩的平均数跳远成绩的中位数,实心球成绩的众数;(3)根据第(2)问中的数据分析,你认为后期体育课应该怎么样做才能更好提高成绩,请提出建议.23.(10分)四川省安岳县盛产柠檬和柚子两种水果,今年,某公司计划用两种型号的汽车运输柠檬和柚子到外地销售,运输中要求每辆汽车都要满载满运,且只能装运一种水果.若用3辆汽车装载柠檬、2辆汽车装载柚子可共装载33吨,若用2辆汽车装载柠檬、。

2019重庆市中考数学试卷(含答案和详细解析)

2019重庆市中考数学试卷(含答案和详细解析)

2019重庆市中考数学试卷(含答案和详细解析)重庆市中考数学试卷(A 卷)一、选择题(本大题共12小题,每小题4分共48分)5.(4分)(2019•重庆)2019年1月1日零点,北京、上海、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这6.(4分)(2019•重庆)关于x 的方程=1的解是() 647.(4分)(2019•重庆)2019年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、8.(4分)(2019•重庆)如图,直线AB ∥CD ,直线EF 分别交直线AB 、CD 于点E 、F ,过点F 作FG ⊥FE ,交直线AB 于点G ,若∠1=42°,则∠2的大小是()9.(4分)(2019•重庆)如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是()10.(4分)(2019•重庆)2019年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,11.(4分)(2019•重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()12.(4分)(2019•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A 、B ,它们的横坐标分别为﹣1,﹣3,直线AB 与x 轴交于点C ,则△AOC 的面积为()二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2019•重庆)方程组的解是14.(4分)(2019•重庆)据有关部分统计,截止到2019年5月1日,重庆市私家小轿车达到563000辆,将563000这个数用科学记数法表示为 _________ .15.(4分)(2019•重庆)如图,菱形ABCD 中,∠A=60°,BD=7,则菱形ABCD 的周长为16.(4分)(2019•重庆)如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 _________ .(结果保留π)17.(4分)(2019•重庆)从﹣1,1,2这三个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y=2x+a的图象与x 轴、y 轴围成的三角形的面积为,且使关于x 的不等式组有解的概率为 _________ .18.(4分)(2019•重庆)如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且DE=2CE,过点C 作CF ⊥BE ,垂足为F ,连接OF ,则OF 的长为 _________ .三、解答题(本大题共2小题,每小题7分,共14分)19.(7分)(2019•重庆)计算:20.(7分)(2019•重庆)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=,求sinC 的值.+(﹣3)﹣2019×|﹣4|+20.四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)(2019•重庆)先化简,再求值:÷(﹣)+,其中x 的值为方程2x=5x ﹣1的解.22.(10分)(2019•重庆)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有 _________ 家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.(10分)(2019•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a >0).则每户平均集资的资金在150元的基础上减少了a%,求a 的值.24.(10分)(2019•重庆)如图,△ABC 中,∠BAC=90°,AB=AC,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E .在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC .(1)求证:BE=CF;(2)在AB 上取一点M ,使BM=2DE,连接MC ,交AD 于点N ,连接ME .求证:①ME ⊥BC ;②DE=DN.五、解答题(本大题共2个小题,每小题12分,共24分)225.(12分)(2019•重庆)如图,抛物线y=﹣x ﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标.26.(12分)(2019•重庆)已知:如图①,在矩形ABCD 中,AB=5,AD=关于AB 的对称点,连接AF 、BF .,AE ⊥BD ,垂足是E .点F 是点E(1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.2019年重庆市中考数学试卷(A 卷)参考答案与试题解析一、选择题(本大题共12小题,每小题4分共48分)5.(4分)(2019•重庆)2019年1月1日零点,北京、上海、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时 6.(4分)(2019•重庆)关于x 的方程=1的解是()该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、直线AB 于点G ,若∠1=42°,则∠2的大小是()10.(4分)(2019•重庆)2019年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()12.(4分)(2019•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A 、B ,它们的横坐标分别为﹣1,﹣3,直线AB 与x 轴交于点C ,则△AOC 的面积为()13.(4分)(2019•重庆)方程组的解是.5积为 4﹣.(结果保留π)的图象与x 轴、y 轴围成的三角形的面积为,且使关于x 的不等式组有解的概率为. 11DE=2CE,过点C 作CF ⊥BE ,垂足为F ,连接OF ,则OF 的长为19.(7分)(2019•重庆)计算:12 +(﹣3)﹣2019×|﹣4|+20.20.(7分)(2019•重庆)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=,求sinC 的值.21.(10分)(2019•重庆)先化简,再求值:÷(﹣)+,其中x 的值为方程2x=5x ﹣1的解.了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:13(1)某镇今年1﹣5月新注册小型企业一共有 16 家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.1423.(10分)(2019•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a >0).则每户平均集资的资金在150元的基础上减少了a%,求a 的值.BC 于点E .在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC .(1)求证:BE=CF;(2)在AB 上取一点M ,使BM=2DE,连接MC ,交AD 于点N ,连接ME .求证:①ME ⊥BC ;②DE=DN.15225.(12分)(2019•重庆)如图,抛物线y=﹣x ﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标.1626.(12分)(2019•重庆)已知:如图①,在矩形ABCD 中,AB=5,AD=E 关于AB 的对称点,连接AF 、BF .,AE ⊥BD ,垂足是E .点F 是点(1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角171819。

2019年重庆市中考数学试卷含答案

2019年重庆市中考数学试卷含答案
6.A
解析:A 【解析】 【分析】 作 BM⊥ED 交 ED 的延长线于 M,CN⊥DM 于 N.首先解直角三角形 Rt△CDN,求出
CN,DN,再根据 tan24°= AM ,构建方程即可解决问题. EM
【详解】 作 BM⊥ED 交 ED 的延长线于 M,CN⊥DM 于 N.
在 Rt△CDN 中,∵ CN 1 4 ,设 CN=4k,DN=3k, DN 0.75 3
=∠MAP+∠PAB,则 AP=_____.
20.等腰三角形一腰上的高与另一腰的夹角的度数为 20°,则顶角的度数是 .
三、解答题
21.如图,点 B、C、D 都在⊙O 上,过点 C 作 AC∥BD 交 OB 延长线于点 A,连接 CD,
且∠CDB=∠OBD=30°,DB= 6 3 cm.
(1)求证:AC 是⊙O 的切线; (2)求由弦 CD、BD 与弧 BC 所围成的阴影部分的面积.(结果保留 π)
3.B
解析:B 【解析】 【分析】 根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到. 【详解】 解:∵△MNP 绕某点旋转一定的角度,得到△M1N1P1, ∴连接 PP1、NN1、MM1, 作 PP1 的垂直平分线过 B、D、C, 作 NN1 的垂直平分线过 B、A, 作 MM1 的垂直平分线过 B, ∴三条线段的垂直平分线正好都过 B, 即旋转中心是 B. 故选:B.
何体的侧面积是( )
A.12cm2
B. 12 πcm2
C. 6π cm2
D. 8π cm2
12.甲、乙二人做某种机械零件,已知每小时甲比乙少做 8 个,甲做 120 个所用的时间与
乙做 150 个所用的时间相等,设甲每小时做 x 个零件,下列方程正确的是( )

重庆市珊瑚中学三校联考2019-2020学年七年级上学期期末数学试卷 (含解析)

重庆市珊瑚中学三校联考2019-2020学年七年级上学期期末数学试卷 (含解析)

重庆市珊瑚中学三校联考2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.计算−1−1的结果是()A. 0B. 1C. 2D. −22.如果海平面以上200米记作+200米,则海平面以上50米记作()A. −50B. +50C. 可能是+50米,也可能是−50米D. 以上都不对3.如图所示,由三个相同的小正方体组成的立体图形的主视图是()A. B. C. D.4.下列图中,是正方体展开图的为()A. B. C. D.5.某市旅游节期间,共接待游客2420000人次,则2420000用科学记数法表示为()A. 242×104B. 2.42×106C. 24.2×105D. 0.242×1076.下列计算正确的是()A. 7a+a=7a2B. 5y−3y=2C. 3x2y−2yx2=x2yD. 3a+2b=5ab7.已知3a−2b=1,则代数式5−6a+4b的值是()A. 4B. 3C. −1D. −38.如图,点O在直线AE上,OB平分∠AOC,∠BOD=90°,则∠DOE和∠COB的关系是().A. 互余B. 互补C. 相等D. 和是钝角9.钟表在3点半时,它的时针与分针所成锐角是()A. 70°B. 85°C. 75°D. 90°10.如图是某校七、八两个年级借阅图书的人数的扇形统计图,下列说法错误的是()A. 七年级借阅文学类图书的人数最多B. 八年级借阅教辅类图书的人数最少C. 两个年级借阅文学类图书的人数最多D. 七年级借阅教辅学类图书的人数与八年级借阅科普类图书的人数相同11.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x个人,则可列方程是()A. 3(x+2)=2x−9B. 3(x−2)=2x+9C. x3+2=x−92D. x3−2=x+9212.计算(−5)+(−7)的值是()A. −12B. −2C. 2D. 12二、填空题(本大题共6小题,共24.0分)13.11.计算:|−7+3|=________.14.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是______ .15.数轴上点A表示6,点B表示−13,则AB的长为____,线段AB的中点表示的数为____.16.进价为1000元的商品,按进价提高50%标价,要想获得20%的利润,需打____折销售。

2019重庆中考数学试题及答案

2019重庆中考数学试题及答案

2019重庆中考数学试题及答案数学试卷重庆市2019年初中毕业暨高中招生考试数学试题全卷共五个大题,满分150分,考试时间120分钟。

注意事项:1.试题的答案书写在答题卡(卷)上,不得在试卷上直接作答。

2.作答前认真阅读答题卡(卷)上的注意事项。

3.考试结束,由监考人员将试题和答题卡(卷)一并收回。

一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填入答题卷中对应的表格内)。

1.在一3,一1,0,2这四个数中,最小的数是()A.一3B.一1C.0D.22.下列图形中,是轴对称图形的是()3.计算(ab)的结果是(。

)A.2abB.abC.abD.ab4.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上则∠XXX的度数为()A.45°B.35°C.25°D.20°5.下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率6.已知:如图,BD平分∠ABC,点E在BC上,EF//AB。

若∠CEF=100°,则∠ABD的度数为()A.60°B.50°C.40°D.30°7.已知关于x的方程2x+a-9=0的解是x=2,则a的值为(。

)A.2B.3C.4D.58.2019年“国际攀岩比赛”在重庆举行。

XXX从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时XXX也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场。

设XXX从家出发后所用时间为t,XXX与比赛现场的距离为S。

下面能反映S与t的函数关系的大致图象是()9.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为(。

重庆市2019年中考数学考试试卷共二套 附参考答案与答案解析 P67

重庆市2019年中考数学考试试卷共二套 附参考答案与答案解析 P67
4 平方米摊位的总个数将在 5 月份参加活动一的同面积个数的基础上增加 6a%,每个摊 位的管理费将会减少 a%.这样,参加活动二的这部分商户 6 月份总共缴纳的管理费比
他们按原方式共缴纳的管理费将减少 a%,求 a 的值.
25.(10 分)在▱ ABCD 中,BE 平分∠ABC 交 AD 于点 E.
验完;乙组先用 2 天将第四、五车间的所有成品同时检验完后,再用了 4 天检验完第六
车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速
度一样,则甲、乙两组检验员的人数之比是

三、解答题:(本大题 7 个小题,每小题 10 分,共 70 分)解答时每小题必须给出必要的演
算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的
(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.
22.(10 分)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习 自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数 ﹣“纯数”. 定义:对于自然数 n,在通过列竖式进行 n+(n+1)+(n+2)的运算时各位都不产生进 位现象,则称这个自然数 n 为“纯数”. 例如:32 是“纯数”,因为 32+33+34 在列竖式计算时各位都不产生进位现象;23 不是“纯 数”,因为 23+24+25 在列竖式计算时个位产生了进位. (1)请直接写出 1949 到 2019 之间的“纯数”; (2)求出不大于 100 的“纯数”的个数,并说明理由.

15.(4 分)一枚质地均匀的骰子,骰子的六个面上分别刻有 1 到 6 的点数.连续掷两次骰
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020重庆珊瑚中学数学中考试卷附答案一、选择题1.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4)B.(6,2)C.(4,4)D.(8,4)2.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×1064.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°5.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.154B.14C.1515D.17176.如图,在矩形ABCD中,2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个7.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°8.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.129.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.23C.22D510.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A .15.5,15.5B .15.5,15C .15,15.5D .15,1511.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x -=+C .60(125%)6030x x ⨯+-=D .6060(125%)30x x⨯+-= 12.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.15.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是_____.16.如图,⊙O 的半径为6cm ,直线AB 是⊙O 的切线,切点为点B ,弦BC ∥AO ,若∠A=30°,则劣弧»BC 的长为 cm . 17.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________.18.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.19.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____. 20.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____. 三、解答题21.如图1,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD=23.过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积;(3)若43AB AC =,DF+BF=8,如图2,求BF 的长.22.如图,在四边形ABCD 中,AB DC P ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.24.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A ,B ,C ,D 四个等级,并绘制了如下不完整的频数分布表和扇形统计图: 等级成绩(s ) 频数(人数) A90<s≤100 4 B80<s≤90 x C70<s≤80 16 D s≤70 6根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n= ,C 等级对应的扇形的圆心角为 度;(3)该校准备从上述获得A 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a 1,a 2表示)和两名女生(用b 1,b 2表示),请用列表或画树状图的方法求恰好选取的是a 1和b 1的概率.25.计算:(1)2(m﹣1)2﹣(2m+1)(m﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13 ADBG=,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴13 OA OB=∴0A1 4OA3= +解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.2.A解析:A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.考点:由三视图判定几何体.3.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.4.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.5.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC,则cos B =BC AB =4, 故选A 6.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴△ABE 是等腰直角三角形,∴AB ,∵AB ,∴AE=AD ,又∠ABE=∠AHD=90°∴△ABE ≌△AHD (AAS ),∴BE=DH ,∴AB=BE=AH=HD ,∴∠ADE=∠AED=12(180°﹣45°)=67.5°, ∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED ,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB (对顶角相等), ∴∠OHE=∠AED ,∴OE=OH ,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH ,∴OH=OD ,∴OE=OD=OH ,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD ,又BE=DH ,∠AEB=∠HDF=45°∴△BEH ≌△HDF (ASA ),∴BH=HF ,HE=DF ,故③正确;由上述①、②、③可得CD=BE 、DF=EH=CE ,CF=CD-DF ,∴BC-CF=(CD+HE )-(CD-HE )=2HE ,所以④正确;∵AB=AH ,∠BAE=45°,∴△ABH 不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质7.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.8.A解析:A【解析】试题解析:∵直线l:3与x轴、y轴分别交于A、B,∴B(0,3∴3在RT△AOB中,∠OAB=30°,∴333,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.9.C解析:C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FH AHP FHG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△APH ≌△FGH (ASA ), ∴AP=GF=1,GH=PH=12PG , ∴PD=AD ﹣AP=1, ∵CG=2、CD=1, ∴DG=1,则GH=12PG=122, 故选:C .点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.10.D解析:D 【解析】 【分析】 【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .11.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.解析:B 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、是中心对称图形,不是轴对称图形,故该选项不符合题意,B 、是中心对称图形,也是轴对称图形,故该选项符合题意,C 、不是中心对称图形,是轴对称图形,故该选项不符合题意,D 、是中心对称图形,不是轴对称图形,故该选项不符合题意. 故选B . 【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比解析:【解析】 【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果. 【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=.故答案为8. 【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型.14.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3 【解析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G 的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A解析:18【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为18.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B解析:2π.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧»BC的长=606=2180ππ⋅⋅(cm).17.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.18.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.19.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:∴积为大于-4小于2的概率为612=12, 故答案为12. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15x y =⎧⎨=⎩【解析】 【分析】由加减消元法或代入消元法都可求解. 【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③ 将③代入①得5y = ∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.(1)证明见解析(2)﹣2π;(3)3 【解析】 【分析】(1)连结OD ,如图1,由已知得到∠BAD=∠CAD ,得到»»BDCD =,再由垂径定理得OD ⊥BC ,由于BC ∥EF ,则OD ⊥DF ,于是可得结论;(2)连结OB ,OD 交BC 于P ,作BH ⊥DF 于H ,如图1,先证明△OBD 为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt △DBP 中得到,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,由»»BD CD=得到CD=BD=△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12,在Rt△DEP中,∵,,∴=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1,∴,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5DF=,解得DF=12,在Rt△BDH中,BH=12S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=212⨯+=2π;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵»»BD CD=,∴CD=BD=∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即3x=xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD ,而∠DFB=∠AFD ,∴△FDB ∽△FAD ,∴DF BFAF DF=,即848y y y x y -=+-, 整理得16﹣4y=xy ,∴16﹣4y=4,解得y=3,即BF 的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.22.(1)证明见解析;(2)2. 【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可. (2)根据菱形的性质和勾股定理求出222OA AB OB =-=.根据直角三角形斜边的中线等于斜边的一半即可求解. 详解:(1)证明:∵AB ∥CD , ∴CAB ACD ∠=∠ ∵AC 平分BAD ∠ ∴CAB CAD ∠=∠, ∴CAD ACD ∠=∠ ∴AD CD = 又∵AD AB = ∴AB CD = 又∵AB ∥CD ,∴四边形ABCD 是平行四边形 又∵AB AD = ∴ABCD Y 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O . ∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB V 中,90AOB ∠=︒. ∴222OA AB OB -=.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC V 中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.23.(1)DE 与⊙O 相切,理由见解析;(2)阴影部分的面积为2π﹣33. 【解析】 【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案. 【详解】(1)DE 与⊙O 相切, 理由:连接DO ,∵DO=BO, ∴∠ODB=∠OBD,∵∠ABC 的平分线交⊙O 于点D , ∴∠EBD=∠DBO, ∴∠EBD=∠BDO, ∴DO∥BE, ∵DE⊥BC,∴∠DEB=∠EDO=90°, ∴DE 与⊙O 相切;(2)∵∠ABC 的平分线交⊙O 于点D ,DE⊥BE,DF⊥AB, ∴DE=DF=3, 3223+33()=6,∵sin∠DBF=31=62,∴∠DBA=30°, ∴∠DOF=60°,∴sin60°=32DF DO DO ==,则故图中阴影部分的面积为:26013236022ππ⨯-=-. 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键. 24.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为16. 【解析】【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C 等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a 1和b 1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人, ∴x=40﹣(4+16+6)=14, 故答案为14;(2)∵m%=440×100%=10%,n%=1640×10%=40%, ∴m=10、n=40,C 等级对应的扇形的圆心角为360°×40%=144°, 故答案为10、40、144;(3)列表如下:a 1和b 1的有2种结果, ∴恰好选取的是a 1和b 1的概率为21126=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.25.(1)﹣3m+3;(2)【解析】【分析】(1)先根据完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)先计算括号内分式的减法,将除法转化为乘法,再约分即可得.【详解】(1)原式=2(m2﹣2m+1)﹣(2m2﹣2m+m﹣1)=2m2﹣4m+2﹣2m2+2m﹣m+1=﹣3m+3;(2)原式=(﹣)÷==.【点睛】本题主要考查分式和整式的混合运算,熟练掌握分式与整式的混合运算顺序和运算法则是解题关键.。

相关文档
最新文档