数学文化论文精品
数学文化的论文免费

数学文化的论文免费数学文化是人类社会优秀的、先进的文化,它的传承、传播、弘扬、发展,让人类的学习、生活和工作变得更加幸福和美好。
下文是店铺为大家整理的关于aaa的范文,欢迎大家阅读参考!aaa篇1浅谈高中数学教学中的数学文化摘要:对于高中生来说,当他们初次接触到高中数学时会很不适应甚至会觉得压力很大,很多东西理解起来很难,很抽象,本来就很乏味的课堂再加上抽象难懂的数学题,让学生逐渐失去了学习兴趣,而《普通高中数学课程标准》对此提出了新的要求。
新课标要求老师要把数学文化带入课堂,让孩子们充分体会到数学中蕴含着大量的数学文化价值和数学历史。
帮助学生运用数学文化开拓视野,打开思维,进而提升自身价值。
关键词:高中数学教学;数学文化1.数学教学现状和其中存在的问题由于近年来高考压力的增加加上数学在高考中占的比例很大,所以数学课堂变成了机械的数学习题课堂,同学们一味的算题做题,这种做法虽然提高了学生的计算能力和考试的正确率,却使同学们感受不到学习数学的快乐,久而久之就失去了对数学的兴趣。
这样的教学模式限制了学生的数学思维,一旦遇到困难,就容易产生挫败感。
另外传统的数学教学注重形式,数学学习只是死背数学公式,套用公式,把学生丢在题海里,然而,当问到什么叫做"圆周率"时,大多数高中生只能说出他的数值却不知道它的概念,对其应用更是茫然。
死板的教学方式减弱了学生的自主学习能力,也严重限制了其思维。
2.将数学文化融入高中数学教学的几点建议2.1 通过数学文化丰富教学课堂内容。
课堂学习的内容不再单单是做题和讲课,而是老师在讲课的过程中,适当融入数学历史文化,引入历史人物和一些具有启发意义的历史事件。
例如,当讲到杨辉三角时,可以引进一些有关杨辉儿时的故事,或者是杨辉的一些成就。
当讲到与高斯有关的数学问题和解题方法时,可以讲一些高斯的趣事给学生听,学习高斯思考问题的方法。
在数学学习中,还要注重情景结合,当讲到几何图形学习时,例如,在对三视图学习时,老师可以找一些合适的道具或者生活当中的物品展示给大家看,这样有助于学生的理解,对所学知识有直观的感受,使学生不至于对老师所讲的重点和难点产生沮丧的心理。
民族数学文化范例论文

民族数学文化范例论文民族数学文化范例论文一、引言数学是一门抽象的科学,有着普遍的适用性和客观性,但不同的民族文化对于数学的理解和应用方式也有着独特的特点。
本文旨在通过探讨若干个民族数学文化范例,以期深入了解不同民族对于数学的理解和应用方式。
二、古埃及数学文化古埃及是一个有着悠久历史的古老文明,其数学文化具有独特的特点。
古埃及人在建筑、商业和农业方面运用数学进行测量和计算。
古埃及人使用分数来表示和计算数字,这在当时是非常先进的。
例如,他们发展了用于计算面积和容积的算法,这些算法在当时是前所未有的。
三、古希腊数学文化古希腊是古代文明的重要代表之一,其数学文化对于后世产生了深远的影响。
古希腊的数学注重逻辑推理和证明,他们制定了严密的证明体系,为后来的数学发展奠定了基础。
例如,古希腊人发展了几何学,并发表了《几何原本》这样的重要著作,对于几何学的发展做出了巨大贡献。
四、中国古代数学文化中国古代数学文化源远流长,具有独特的传统和特点。
中国古代数学注重实用性和应用性,在农业、建筑、天文等领域都发挥了重要作用。
例如,中国古代人民发展了算盘和九九乘法表等工具,这些工具在计算过程中起到了重要的辅助作用。
此外,中国古代人民还发展了求解二次方程和开平方的方法,这在当时是非常先进的。
五、阿拉伯数学文化阿拉伯文化对于数学的贡献是不可忽视的。
阿拉伯人将印度数字系统引入欧洲并推广了计算方法,这成为了现代数学表示法的基础。
此外,阿拉伯人在代数学、三角学和算术等方面做出了重要贡献。
例如,阿拉伯人发展了代数学中的“代数方程”概念,并引入了字母表示数值,这对于后来的代数学发展产生了重大影响。
六、结论不同民族的数学文化具有各自的特点和贡献,这反映了不同民族在数学理解和应用上的创新能力和特点。
通过探讨民族数学文化的范例,我们可以更好地理解数学对于不同民族文化的意义和价值,也可以更好地促进不同民族之间的数学交流和互动。
希望本文能够为进一步研究民族数学文化提供一定的借鉴和参考。
数学知识论文(5篇)

数学知识论文(5篇)数学学问论文篇1一、引导同学学会识图,让同学感受数学的“形之美”在教学有关“圆”的学问时,老师可以举例,把“圆”比作太阳、苹果等有形的东西,加深同学对“圆”的熟悉。
老师还可以利用多媒体来展现和我们的日常生活有紧密联系的有关“圆”的东西,如水面上激起的涟漪,既有静感又有动感,使同学如身临其境,有所感受,比老师单纯在课堂上用圆规画圆要形象得多、生动得多、鲜亮得多。
这样的课堂教学自然能激发同学的学习爱好,使同学深刻感受到数学的美。
二、让同学学会鉴赏,在鉴赏中感受数学的“和谐美”美是人们所憧憬和追求的,美感不但表达在艺术领域,在数学教学中也有肯定的美。
所以,老师要教给同学如何发觉和鉴赏数学之美,要让同学学会用审美的视角来观看数学,深化挖掘数学的结果美、过程美。
首先,老师要引导同学树立在数学中发觉和鉴赏数学美的观念,调动同学的主动性。
例如,在讲解“黄金分割”时,同学一开头会很生疏,不知道什么是黄金分割,这时,老师可以让同学测量一下自己身体的黄金分割点,并讲解有关黄金分割点的意义,让同学在实际生活中去找黄金分割点。
这样,同学自然会发觉其中存在的美感,从而产生深厚的学习爱好,由被动学习变为主动主动学习。
再如,老师在讲授数学应用题时,可以借助线段图形让同学理解题意。
同学在线段的引导下既能理解应用题的题意,又能感受到数学学问的系统性和关联性,感受到数学深层次的体系美。
总之,数学的美表达在方方面面,只要老师擅长引导,使同学树立发觉美的观念,就肯定能使同学感受到数学的美。
三、让同学在嬉戏中体验数学的“趣味美”传统的数学教学过分重视学问,缺乏对同学力量的培育,主要以老师为中心,同学只是被动地接受学问,严峻抑制了同学独特的进展。
新课程改革对数学教学提出了更高的要求,对教学方式进行了大胆的改革和创新,更加注意同学的参加性和主动性。
所以,数学老师应转变教学观念,尽量让同学主动参加到数学教学中。
其中,一种重要的参加方式就是让同学在数学课堂上参加嬉戏,在嬉戏中感受数学的趣味美。
关于数学文化的价值获奖论文优秀范文

关于数学文化的价值获奖论文优秀范文数学文化可以表述为以数学科学为核心,以数学的思想、精神、方法、技术、理论等所辐射的相关文化领域为有机组成部分的一个具有强大功能的动态系统。
下文是店铺为大家整理的关于数学文化的论文的内容,欢迎大家阅读参考!数学文化的论文篇1浅析数学的独特文化美感【摘要】数学在普通人的心目中似乎永远是枯燥学科的代名词,正是这种先入为主的误解阻碍着更多人欣赏其独特宏大的自然学术之美。
本文结合美学的相关知识和作者本人数学专业学习的心得感受,从理性、简约、确定、基础四个方面,力图展示数学的独特文化美感,揭示其美中之最上者的学术文化地位。
【关键词】数学之美;文化美学相信在大多数人的眼中,世界上最枯燥的学科非数学莫属。
枯燥的数字,枯燥的定理,枯燥的推演方式,关于数学的一切都枯燥得令人敬畏。
学校里,同学们谈数学色变,偶然遇到一位学生,且不论其专业课成绩如何,有勇气选择这个充满挑战性的专业学习本身已经很值得佩服了。
这样一门世人眼中乏味枯燥的学科,为什么能让那么多拥有天赐之才的科学家为之着迷?为什么人类追求美的天性并没有让他们对似乎没有任何美感的数学退避三舍?直到最近一次偶然机会,才让我有时间仔细寻找学习数学的十几年在我的思想深处留下的痕迹,我终于能够明白“天堂里也有数学之美”是出自对于怎样一种宏大之美的敬畏与向往。
1 美之理性篇如果说培根的科学研究思想开启了人类认识世界的系统理性大门,那么最能够体现这种理性美的学科当之无愧非数学莫属。
无论是推理演绎的方法,还是严格的假设与证伪,都是数学研究中随处可见的思想,更不用说著名的庞加来猜想、歌德巴赫猜想等等人类对客观世界的理性扣问。
在古希腊时代,《几何原本》影响巨大,直到今天,它都是印刷数量、版本仅次于《圣经》的读物;文艺复兴延续到17、18世纪的近代文明,牛顿发明了微积分,连同他的力学理论把整个科学带到了新的境界;以爱因斯坦相对论为基础的现代文明中,高斯、黎曼准备了很多数学工作,黎曼几何就是相对论的数学基础;20世纪下半叶的信息时代,就是冯·诺伊曼创造了计算机的数学基础,开启了通往今日世界繁荣的大门。
关于数学文化的论文

关于数学文化的论文一、教学中的常见问题1、学习兴趣不足在当前的中小学数学教学中,学习兴趣不足成为了一个普遍存在的问题。
导致这一现象的原因有以下几点:(1)教学内容与实际生活脱节:教材中部分内容与学生的生活实际相去甚远,使得学生难以产生学习兴趣。
(2)教学方式单一:部分教师在课堂上采用“填鸭式”教学,缺乏启发性和互动性,使得学生感到枯燥无味。
(3)评价体系过于注重结果:过于关注考试成绩,使得学生在学习过程中承受较大压力,从而影响学习兴趣。
2、重结果记忆,轻思维发展在数学教学中,部分教师过于注重学生的结果记忆,而忽视了思维发展。
这种现象表现在以下方面:(1)课堂教学以解题为主:教师将大量时间用于讲解和练习解题,而忽略了数学思维的培养。
(2)过度依赖公式和定理:学生在解题过程中,往往直接套用公式和定理,缺乏对问题的深入思考。
(3)缺乏问题探究:教师未能充分引导学生进行问题探究,使得学生无法体会数学思维的魅力。
3、对概念的理解不够深入在数学学习中,概念的理解是基础。
然而,在实际教学中,学生对概念的理解往往不够深入,原因如下:(1)教师对概念的讲解不够透彻:部分教师在讲解概念时,未能充分揭示其内涵和外延,导致学生理解不深。
(2)缺乏实例支撑:教师在教学过程中,未能提供足够的实例帮助学生理解概念,使得学生难以形成深刻印象。
(3)忽视概念之间的联系:教师在教学中,未能有效引导学生把握概念之间的联系,导致学生理解孤立,难以形成知识体系。
二、教学实践与思考1、梳理脉络,全面理解教材(1)从培养目标出发,理解课程核心素养的发展体系在教学实践中,教师应当首先从培养目标出发,深入理解课程核心素养的发展体系。
这要求教师在备课过程中,不仅要关注知识的传授,还要关注学生能力的培养和素质的提高。
具体措施如下:- 确定核心素养目标:明确数学课程所期望培养学生的核心素养,如逻辑思维、问题解决、数学表达等。
- 整合教学内容:根据核心素养目标,整合教材内容,突出重点,强化学生能力的培养。
数学文化的论文

数学文化的论文导言数学是一种全球通用的语言,不仅仅是一门学科,更是一种文化。
在这篇论文中,我们将探讨数学与文化之间的关系,并分析数学文化的影响和价值。
数学与文化的关系数学与文化之间存在着密切的联系。
首先,数学是人类智慧的结晶,它体现了不同文化的思维方式和观念。
不同文化背景下的人们对数学的理解和应用方式有所不同。
其次,数学也受到文化环境的影响。
不同文化中的数学问题和解决方法往往是基于特定的背景和需求而产生的。
数学文化的影响数学作为一种文化现象,对人们的思维、生活和社会发展都产生着深远的影响。
对思维的影响数学培养了人们的逻辑思维能力和分析问题的能力。
通过数学的学习,人们能够锻炼出严密的逻辑思维,培养出辨别问题本质和解决问题的能力。
对生活的影响数学在生活中无处不在,它影响着我们的日常决策和行为。
例如,在购物时,我们需要计算折扣和价格比较;在理财时,我们需要进行利息计算和资产管理。
数学使我们能够更好地理解和应用数字,提高我们的生活质量。
对社会的影响数学在社会中扮演着重要角色。
它是科学研究和技术发展的基础。
无论是医学、工程还是经济等领域,都离不开数学的支持。
数学促进了社会进步和创新,推动了科学技术的发展,对社会经济具有重要影响。
数学文化的价值数学文化具有独特的价值,主要体现在以下几个方面:智力培养数学是培养人们智力的重要途径之一。
通过数学的学习,人们能够提高逻辑思维和问题解决能力,培养出创造力和创新精神。
人文素养数学是一门人文学科,它不仅仅是一种技术或工具,更是一种文化表达和思考方式。
通过学习数学,人们能够深入了解数学的历史、发展和应用,增强人文素养和对数学文化的欣赏。
跨学科交叉数学作为一门跨学科性质强的学科,与其他学科有着广泛的联系和交叉。
数学文化能够促进不同学科之间的交流和合作,推动知识的整合与创新。
数学文化的传承与发展为了促进数学文化的传承和发展,我们应该采取以下措施:1.在教育中重视数学文化的培养,将数学教育与人文教育相结合,加强对数学文化的宣传和教育。
数学思想与文化论文

数学思想与文化论文第一篇:数学思想与文化论文浅谈数学与文化与思想的教育作用摘要:数学文化与思想对教师、学生的教学和学习有重要的作用。
数学文化主要包括数学史,数学美,数学思想等。
本文主要从数学文化与思想的概念和教学作用这两方面论述数学文化与思想对数学教学的促进作用。
关键词:数学文化数学思想教学教育作用正文:一、数学思想与文化的概念“数学思想”作为数学课程论的一个重要概念,我们完全有必要对它的内涵与外延形成较为明确的认识。
关于这个概念的内涵,我们认为:数学思想是人们对数学科学研究的本质及规律的理性认识。
这种认识的主体是人类历史上过去、现在以及将来有名与无名的数学家;而认识的客体,则包括数学科学的对象及其特性,研究途径与方法的特点,研究成就的精神文化价值及对物质世界的实际作用,内部各种成果或结论之间的互相关联和相互支持的关系等。
可见,这些思想是历代与当代数学家研究成果的结晶,它们蕴涵于数学材料之中,有着丰富的内容。
通常认为数学思想包括方程思想、函数思想、数形结合思想、转化思想、分类讨论思想和公理化思想等。
这些都是对数学活动经验通过概括而获得的认识成果。
既然是认识就会有不同的见解,不同的看法。
数学文化,不只是数学本身,它更是一种文化。
文化即人文,即人的精神。
数学不只是关于数学的世界、形的世界或更广阔世界的科学,数学还是一门充满人文精神的科学。
最早系统提出数学文化观的是美国学者怀德尔(R.Wilder,1896——1982),他认为数学是一个由于其内在力量与外在力量共同作用而处于不断发展和变化之中的文化系统。
数学文化即由数学传统及数学本身组成[1]。
张奠宙教授指出:“数学文化是什么样子呢?就是人人喜爱数学,在公众当中树立美好的数学形象”。
他认为数学文化的含义是“在特定的社会历史下,数学团体和个人在从事数学活动时,说现示的民族特征、传统习惯、规则约定、以及思想方法等的总和。
丰富多彩的数学文化,以符号化、逻辑化、形式化的数学体系为载体,隐形地存在着”。
数学文化的论文范文参考

数学文化的论文范文参考数学文化是以数学科学体系为核心,以数学的思想、精神、知识、方法、技术、理论等所辐射的相关文化领域为有机组成部分的一个具有强大精神与物质功能的动态系统。
下文是店铺为大家整理的关于数学文化的论文的内容,欢迎大家阅读参考!数学文化的论文篇1试论初中数学教学中的数学文化教育数学思想是数学中的理性认识,是数学知识的本质,是数学中的高度抽象、概括的内容。
它蕴涵于运用数学方法分析、处理和解决数学问题的过程之中。
数学的研究对象是现实世界中的空间形式和数量关系。
数学不仅是一门科学,更是一个内容十分丰富的文化系统,蕴涵了大量的哲学、美学、文学、史学、经济学等知识。
初中数学文化教育的意义十分重大。
一、初中数学与哲学“数学:辩证的辅助工具和表现形式”(恩格斯)。
初中数学中蕴涵着大量的辩证唯物主义因素,如数学来源于实践又反作用于实践的认识论,数学内容中普遍存在的运动变化、相互联系、相互转化的辩证法和方法论等。
在有理数的运算、分式、二次根式等有关内容中,可通过揭示加法与减法、乘法与除法、乘方与开方的对立、统一与相互转化,“负负得正”中蕴涵的否定之否定规律,对学生进行初步的辩证唯物主义思想教育。
从“数的开方”的引入和数的扩展过程可以看出,数学知识的产生和发展,是既来源于实践又应用、服务于实践并受实践检验的,事物内部的矛盾性是促进事物发展的动力。
在“一次函数的图像和性质”中渗透了运动、发展的思想,曲线与方程的数形结合更是矛盾转化的范例。
在直线和圆、圆与圆的位置关系、圆幂定理(相交弦定理、切割线定理)等内容中,通过运动、发展、普遍联系的观点,揭示了事物量变引起质变的质量互变规律。
通过辩证唯物主义观点的教育与渗透,引导学生探索相近知识间的内在联系,优化认知结构,把握数学中蕴涵的本质规律,可以使学生逐步形成解决问题的科学方法,增强他们认识世界和改造世界的能力,促进科学的世界观和方法论的形成。
二、初中数学与美学罗素指出:“数学,如果正确地看,不但拥有真理,而且也具有高尚的美。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【关键字】历史、方法、条件、前提、成就、空间、领域、地方、认识、问题、矛盾、系统、有效、充分、现代、合理、和谐、文明、统一、发展、建立、提出、发现、研究、规律、特点、突出、关键、内涵、思想、成果、地位、精神、基础、途径、倾向、作用、结构、本质属性、反映、关系、分析、汇集、吸引、形成、拓宽、丰富、严格、发挥、教育、解决、分工、方向、实现、提高、协调、创造性谈数学史与数学文化理学院数学081张林静 0内容提要:数学的思想、精神、文化对于人类历史文化变革有着重要的影响。
我们正是在这一意义下来学习、讨论、研究数学文化的。
关键字:数学方法数学发展三次数学危机数学美数学与哲学一智慧展现——数学方法和数学思想数学方法和数学思想将数学的智慧和魅力展现得淋漓尽致,。
数学的方法是贯穿了整个数学,也是学习数学的基础。
数学的很多方法是有辩证性的,比如具体与抽象;演绎与归纳;发现与证明;分析与综合;这些方法之间有联系又有区别。
(一)、具体与抽象:具体是社会实践,是客观存在的东西,因为数学是源于社会实践的。
同时数学是一种利用自身已有的概念、定理、公设,借助已知的相互关系,通过推理、计算而获得新发现的学科。
数学的概念是抽象的,数学的方法也是抽象的。
爱因斯坦相对论的发现恰恰是借助于数学的方法论路径去实现的,如果没有非欧几何人类可能还要在牛顿的时空观中走过许多年才能寻找到相对论。
数学方法的抽象是借助数学概念、公理、定理、公设等,把所有涉及研究对象的概念以及研究对象的抽象性归并汇集在一起,找出他们更具体抽象、统一的结论。
这种抽象方法,人们一般冠以公理化方法。
它大大拓宽了人们的视野,从只抽象个别对象扩展到抽象整个数学理论的逻辑结构。
现在,数学研究的对象已不是具体、特殊的对象,而是抽象的数学结构。
(二)、演绎与归纳:演绎法是由一般到特殊的推理,它有三段论的表现形式,由一般的判断,特殊判断,结论三部分组成。
归纳与演绎不同,归纳是这样一种推理:其中所得到的结论超越了经验材料所提供的东西的一种经验猜想。
看起来归纳与演绎很有区别的,事实归纳与演绎是相依而存、互为发展、对立统一的。
恩格斯在《自然辩证法》中说:“我们用世界上的一切归纳法都永远不能把归纳过程弄清楚,只有对这个过程的分析才能做到这一点——归纳与演绎,正如分析与综合一样是必然相互联系着的,不应当牺牲一个而把另一个捧上天,应当把每一个用到该用的地方,而要做到这一点,就只有注意它们的相互联系,它们的相互补充。
”(三)、发现与证明:发现实际上就是定律的发现和理论地提出问题,最主要是通过假说,猜想。
猜想是提出新思想,一个猜想可以带出或生出一个新的学科方向。
比如,对欧氏第五公设的证明产生了非欧几何理论,四色猜想对开辟数学研究新途径有重要意义。
在数学史上有很多有名猜想,人们熟悉的费马猜想,曾是一个悬赏10万马克的定理,实际上,它是源于几千年前的勾股定理。
德国数学家曾宣称:当n大于2时,不存在一个整数n次幂是另外两个整数n次幂之和。
数学家韦尔斯花了34年心血来解这道难题,并获得沃尔夫奖。
许许多多数学猜想是由简单到复杂无休无止地产生出来。
一个猜想解决了,又猜想出来了,数学家们总有解决不完的猜想。
许多重要猜想,总能吸引众多数学家为此皓首穷经。
在证明各个猜想的过程中,数学们会取得一系列重要理论成果。
(四)、分析与综合:分析是由未知去推导已知,在假定的前提下导出结论,而这一结论恰恰是已给出的条件或已知的命题。
综合是由已知命题开始,通过演绎、归纳能一连串来导出未有的命题,或解决所要给出的问题的解。
善于结合运用这些数学方法可以更好的来解决数学问题和体会数学的内涵。
二、成长与磨砺——数学的发展写关于数学文化不得不写数学的发展。
数学是人类最古老的科学知识之一,它主要是研究现实生活中数与数、形与形,以及数与形之间相互关系的一门学科。
他们发展也经历的很多的坎坷,在磨砺中也得以不断的成长。
首先是数学的萌芽阶段,在这一时代的杰出代表是古巴比伦数学、中国数学、埃及数学、印度数学等。
古埃及文化可追溯到公元前4000年,在那里,公元前3200年就已有了统一的国家。
公元前2900年,开始建筑金字塔,就金字塔的建筑来讲,已经具备一些初等几何的知识;巴比伦文化可以上溯到公元前2000年左右的苏美尔文化,这一时期,人们基于对量的认识,经建立了数的概念。
从大约公元前1800年开始,巴比伦已经使用较为系统的以60为基数的数系;另一个重要的是古希腊数学,希腊文化在世界文明史上的贡献是至高无上的。
它广泛的吸取了其他文明中的有价值的东西,创立了自己的文明与文化,对西方文明乃至世界文明的发展起了重要作用;同时,在中亚和东方也创造了灿烂的数学文化。
自公元前8世纪起,印度已有一些丰富的数学知识。
中国数学是世界数学史中的瑰宝,在仰韶文化中,已经出土的陶器上已刻有用|,||,|||,||||等表示1,2,3,4的记号。
西安半坡出土的陶器中就有用圆点堆成的三角形或正多边形。
然后是常数学阶段,这时期,数位希腊数学家取得辉煌成就,在2000年时间内,希腊人创造的文明一直延续到牛顿时代。
M.克莱因在评价希腊人的《几何原本》和《圆锥曲线》时说:“从这些精心撰述的著作中,我们看得出此前三百年间数学上的创造性工作,或此后数学史上关系重大的一些问题。
”说道希腊时代的辉煌,不得不提到希腊璀璨的数学家们。
毕达哥拉斯,曾被人们认为是一个神秘主义者,他把证明引入了数学,这也是他最伟大的功绩之一。
毕达哥拉斯还提出了抽象,抽象引发了几何的思辨,从实物的数与形,抽象到数学上的数与形,本身就把数学推向科学的开始。
在希腊数学时期还有芝诺的四个简单悖论,这四个简单悖论震惊了哲学界。
在希腊数学里最主要的工作精华和最大的光荣落在了欧几里德和阿波罗尼奥斯的头上。
欧几里德撰写的《几何原本》是古希腊数学的集大成,它充分发挥了希腊哲学的优势,借助演绎推理,展现给人们一个完整的典范的学科系统。
阿波罗尼奥斯的突出工作是《圆锥曲线论》,《圆锥曲线论》的杰出工作,几乎将圆锥曲线的所有性质开采殆尽,以至使后代许多几何学工作者至少是在笛卡尔之前的近2000年间,不敢对此再有发言权。
后人提到评价圆锥曲线,评价阿波罗尼奥斯,就联想到我国李白登黄鹤楼时,看到崔颢诗后的“眼前有景道不得,崔颢题诗在上头”的那样一种心情。
还有阿基米德的得意之作《论球与圆柱》,也是数学上的杰作。
中国著作《九章算术》给出了三元一次方程组的解法,同时在世界历史上第一次使用负数,叙述了对负数进行运算的规则,也给出了求平方根和立方根的方法。
然后就进入了变量数学建立时期,有笛卡尔著作《几何学》,以及牛顿和莱布尼兹创立的微积分,,在数学发展史上是很重要的一个里程碑。
在大一的时候就学了微积分,微分及其中的变量、函数和极限等概念,运动、变化等思想,是辩证法渗入了全部数学:并使数学成为精确表述自然科学和技术的规律及有效地解决问题的有力工具。
最后是现代数学时期,其中比较突出的问题是高于四次的代数方程的根式求解问题、欧几里德几何中平行线公设的证明问题和微积分方法的逻辑基础问题。
代数、几何、分析领域中这些问题得以研究和解决,数学学科的分支得以迅速发展。
顺着时间的发展将数学史大概说了下,现在说说在数学史上出现的三次数学危机。
第一次数学危机:由毕达哥拉斯提出的著名命题“万物皆数”和“一切数均可表成整数或整数之比”。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。
小小√2的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
第二次数学危机导源于微积分工具的使用。
伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。
这一工具一问世,就显示出它的非凡威力。
许许多多疑难问题运用这一工具后变得易如翻掌。
但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。
两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。
因而,从微积分诞生时就遭到了一些人的反对与攻击。
罗素悖论与第三次数学危机:十九世纪下半叶,康托尔创立了著名的集合论,1903年,英国数学家罗素提出著名的罗素悖论。
罗素构造了一个集合S:S由一切不是自身元素的集合所组成。
然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。
因此,对于一个给定的集合,问是否属于它自己是有意义的。
但对这个看似合理的问题的回答却会陷入两难境地。
如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。
无论如何都是矛盾的。
罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动,引起的巨大反响则导致了第三次数学危机。
三数学韵味——数学的美说到数学美。
数学美可以分为形式美和内在美。
数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。
数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,。
数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。
数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素。
数学中的严谨美,严谨美是数学独特的内在美,我们通常用“滴水不漏”来形容数学。
它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等四、内涵——数学与哲学在数学的发展中,形成许多哲学的观点,有以罗素为代表的逻辑主义,以布劳威尔为代表的直觉主义,以希尔伯特为代表的形式主义三大学派。
(一)、逻辑主义罗素在1903年出版的《数学的原理》中对于数学的本性发表了自己的见解。
他说:“纯粹数学是所有形如‘p蕴涵q’的所有命题类,其中p和q都包含数目相同的一个或多个变元的命题,且p和q除了逻辑常项之外,不包含任何常项。
所谓逻辑常项是可由下面这些对象定义的概念:蕴涵,一个项与它所属类的关系,如此这般的概念,关系的概念,以及象涉及上述形式一般命题概念的其他概念。
除此之外,数学使用一个不是它所考虑的命题组成部分的概念,即真假的概念。
”(二)、直觉主义直觉主义有着长远的历史,它植根于数学的构造性当中。
古代数学大多是算,只是在欧几里得几何学中逻辑才起一定作用。
到了十七世纪解析几何和微积分发明之后,计算的倾向大大超过了逻辑倾向。
十七、十八世纪的创造,并不考虑逻辑的严格,而只是醉心于计算。
现代直觉主义的奠基人是布劳威尔,布劳威尔是从哲学中得出自己观点的,基本的直觉是按照时间顺序出现的感觉,而这形成自然数的概念。