第七章 压力容器中的薄膜应力弯曲应力和二次应力 2
合集下载
化工机械设备基础第七章压力容器的薄膜应力、弯曲应力与二次应力

•三、受内压的椭球壳体 •X=0
•X=a
•当a/b=2时,为标准型式的椭圆形封头 •X=0 •X=a
•四、受内压的锥形壳体 •锥底应力最大:
•五、承受液体静压作用的圆筒壳体
•若容器是开口的,
•σm=0
•底边支承圆筒
•沿顶部边缘支承的圆筒
•第四节 内压薄壁圆筒和球壳强度计算
•一、薄壁圆筒强度计算公式
•相当应力σr
•钢板在设计温度下的许用应力
•焊接接头系数
•pD/2δ≤[σ]tφ
化工机械设备基础第七 章压力容器的薄膜应力 、弯曲应力与二次应力
2020年6月3日星期三
•轴对称——壳体的几何形状、约束条件和所受外力都对称 于回转轴 •中间面——与壳体内外表面等距离的曲面。 • 母线——由平面曲线绕回转回转轴旋转一周而成,AB • 经线——回转轴作一纵截面与壳体曲面相交所得的交线, AB’ • 法线——通过经线上的一点垂直于中间面的直线,n • 纬线——如果以过N点的法线为母线作圆锥面与壳体中间面 正交,CND; • 第一曲率半径——中间面上的一点处经线的曲率半径,
R1=MK1 • 第二曲率半径——通过经线上一点的法线作垂直于经线的 平面,其与中间面相交形成曲线,此曲线在M点处的曲 •率半径, R2=MK2
•第一曲率半径 •第二曲率半径
•轴
•经线 •母线 •法线来自• 纬线•中间面
• 二、基本假设
•(1)直法线假设——壳体在变形前垂直于中间面的直线段 ,在变形后仍保持直线,并垂直于变形后的中间面,且直 线段长度不变。变形前后壳体厚度不变。 •(2)互不挤压假设——壳体各层纤维变形后均互不挤压。 壳壁的法向应力可以忽略。
•第二节 回转壳体薄膜应力分析
第七篇 压力容器中的薄膜应力、弯曲应力与二次应力

pD
2
圆筒形壳体最大薄膜应力:
pD
2
圆平板的最大弯曲应力远大于同直径、同厚度圆筒形壳体最大薄膜应力
(2KD/δ倍)。
压力容器一般采用回转壳体,很少用平板组成矩形。
第七章 压力容器的薄膜应力、弯曲应力、二次应力
➢ 1 回转壳体中的薄膜应力 ➢ 2 圆形平板承受均布载荷时
的弯曲应力 ➢ 3 边界区内的二次应力 ➢ 4 强度条件 ➢ 5 本章小结
a4
]
a4 x2 (a2 b2 )
又称胡金伯格方程
a,b:分别为椭球壳的长、短轴半径,mm ; x :椭球壳上任意点距椭球壳中心轴的距离mm。
O
x2 y2 1 a2 b2
第一节 回转壳体中的薄膜应力
1)椭球壳上各点应力是不相等的,与点的位置(x,y)有关。
在壳体顶点处(x=0,y=b):
m
第三节 边界区内的二次应力
三、边界应力的性质
1. 局部性
边界应力只存在于局部区域(连接处)内,随离开边缘的距离增大,边 界应力迅速衰减。
2. 自限性
边缘应力是由于不连续处的两侧产生相互约束而出现的附加应力。当边 缘处的附加应力达到材料屈服极限时,相互约束便缓解,不会无限制地增大。
第四节 强度条件
一、薄膜应力强度条件
1. 薄膜应力的相当应力
单向拉伸的强度条件
S P
AA
σb、σs、[σ]来自单向拉伸试验
绝大多数构件是处于双向应力状态,为了将单向拉伸试验得到的σb、σs、 [σ]用于双向应力状态,需找出“相当应力”代表双向薄膜应力,与单向拉伸 试验的σb、σs、[σ]进行比较,确定强度条件。
第一节 回转壳体中的薄膜应力
(二)圆球形壳体上的薄膜应力
第七章 压力容器中的薄膜应力、弯曲应力和二次应力

σ max
pD a pD = σ m = σθ = ( )= 4δ b 2δ
圆锥形壳体薄膜应力: 圆锥形壳体薄膜应力: 薄膜应力 pD 1 σθ = ⋅ 2δ cos α pD 1 σm = ⋅ 4δ cos α
31
薄膜应力通式: 薄膜应力通式:
σ =K
pD
δ
32
第二节圆形平板承受均布载荷时的弯曲应力
12
三
几种常见回转壳体上的薄膜应力
(一)圆筒形壳体上的薄膜应力 1 环向薄膜应力 σ θ
的合力T 作用在筒体纵截面上的 σ θ 的合力T:
T = 2 ⋅ δ ⋅ l ⋅σθ
13
介质内压力p 介质内压力p作用于 半个筒体所产生的 合力N 合力N为:
N = ∫ dN sin θ = ∫ Ri dθ ⋅ l ⋅ p ⋅ sin θ
pD 1 σθ = ⋅ 2δ cos α
pD 1 σm = ⋅ 4δ cos α
30
本节小结: 本节小结:
圆筒形壳体薄膜应力: 圆筒形壳体薄膜应力: 薄膜应力 球形壳体薄膜应力: 球形壳体薄膜应力: 薄膜应力
σθ
σ
m
pD = 2δ
pD = 4δ
σθ = σ m
pD = 4δ
标准椭球形壳体薄膜应力: 标准椭球形壳体薄膜应力: 薄膜应力
18
结论: 结论:
(1)内压圆筒筒壁上各点的薄膜应力相同, 内压圆筒筒壁上各点的薄膜应力相同, 就某一点, 就某一点,该点环向薄膜应力是径向薄膜 应力的二倍。 应力的二倍。 ( 2)
σθ =
p 2
δ
D
σm =
p 4
δ
D
决定应力水平高低的截面几何量是圆筒 决定应力水平高低的截面几何量是圆筒 壁厚与直径的比值, 壁厚与直径的比值,而不是壁厚的绝对 值。
化工设计课件-7压力容器中的薄膜应力、弯曲应力与二次应力

横截面。
注意横截面与
锥截面的区别!
D
CHAP. 7 压力容器中的薄膜应力、弯曲应力与二次应力
2) 回转壳体中的拉伸应力 回转壳体在其内表面受到介质均匀的内压作用时,(介质是气体或流
体,当介质流体时不考虑其静压),壳壁将在二个方向上产生拉伸应力。
一是壳壁的环向纤l 维将受到拉伸,在壳壁的纵向截面上将l 产生环向拉伸应
)
pR2
2
对于钢 0.3
则 , M max
1.24 pR2
2
带“-”号的是圆板上表面的应力,带“+”号的是圆板下表面的应力。
b. 周边固定,承受均D 匀载荷的圆平板,其最大应力出现在板的周围。
max
( r,M
)rR
0.75
pR2
2
CHAP. 7 压力容器中的薄膜应力、弯曲应力与二次应力
力,用 表示;由于壳体壁厚相对直径说很小,可近似比作薄膜,并认为沿
、壁厚均匀分布,称环向薄膜应力。 二是壳壁的径向纤维也受到拉伸,因而在壳壁的锥截面内将产生径向拉伸
应力,用 m 表示。也可视为沿壁厚均匀分布。
m 如何求呢?
D
CHAP. 7 压力容器中的薄膜应力、弯曲应力与二次应力
2) 回转壳体中的拉伸应力
l
l
D
从球截面变形看 ,M ,M 的产生
CHAP. 7 压力容器中的薄膜应力、弯曲应力与二次应力
3. 圆形平板承受均布载荷时的弯曲应力
1)平板的变形与内力分析
(2)相邻环形截面的相对转动及由此产生的径向弯曲应力
l
l
r,M
在前述半径r的圆环外面,再取一个半径r+dr的圆环,加载后发现:当圆平
化工设备机械基础第七章(dingao)

31
32Βιβλιοθήκη x y 2 1 2 a b
椭球壳的长半轴——a
短半轴——b 椭球壳顶点坐标:(0,b) 边缘坐标:(a,0)
3 1 4 2 2 2 R1 4 [ a - x ( a - b )] 2 a b 1 1 4 2 2 2 R2 [ a - x ( a - b )] 2 b
2
2
33
• 通商贸易——国内国际间通用,消除贸易障碍。 我国已实现容器零部件标准化的有:圆筒体、封头、 法兰、支座、人孔、手孔、视镜和液面计等。
5
7.1.3 容器零部件标准化的基本参数
公称直径(DN) 公称压力 (PN)。
法兰
规定:
(1)圆筒体的公称直径: 板卷制的——筒体内径; 无缝钢管制的——筒体 外径。 (2)法兰与其相配的管子 或筒体的PN、DN相一 致。 注意:钢管的DN≠Di,D0
9
4.耐久性——保证使用寿命。一般化工设备设计使 用寿命为10~15年。大多取决于腐蚀情况,有些 取决于疲劳、蠕变或振动。
5.密封性——包括内漏和外漏。
10
6. 标准化设计
法兰、螺栓、封头、筒体、支座、接管、人孔? 7.方便制造、操作与检修,便于运输 ※操作阀门位于操作台面2米高,可否? ※储罐内介质脏,设计结构如何考虑?
55
B
2
1
3
主单元体
56
三、主平面的概念 单元体三对相互垂直的平面既可能只作用有正应力,也 可能只作用有剪应力,还可能既作用有正应力又作用有剪应 力。若在单元体的各个平面上只作用有正应力而无剪应力。 这样的平面称为主平面;作用在主平面的上应力称主应力。
由于主平面上没有剪应力,用由三对主平面构成的单 元体表示一点的应力状态。便于对各种受力构件的 应力状态进行比较。在表示一点的应力状态时,就 不任意截取单元体了,而是截取由三个主平面构成 的单元体——用该点的三个主应力表示一点的应力 状态。 • 按代数值大小顺序排列,可正、可负,可为0。拉为 正,压为负。
化工设计课件-7 压力容器中的薄膜应力、弯曲应力与二次应力

讨论薄膜应力在压力容 器中的分布情况,以及 对容器性能的影响。
弯曲应力与二次应力
弯曲应力
解释什么是弯曲应力,以 及在压力容器中如何计算 和分析。
二次应力
介绍二次应力的概念以及 在压力容器设计中的重要 性。
常见来源
讨论导致二次应力的常见 因素,如热应力和卸荷引 起的不均匀载荷。
薄膜应力 vs. 弯曲应力
化工设计课件-7 压力容器 中的薄膜应力、弯曲应力 与二次应力
本节课程将探讨压力容器中的薄膜应力、弯曲应力和二次应力。我们将学习 与这些应力相关的计算方法、来源以及影响因素。
薄膜应力的分析
1 定义与它产生的原理。
介绍计算薄膜应力的常 用方法,例如壳程法和 弯曲法。
二次应力的计算方法
1
解析方法
介绍解析计算二次应力的常用方法,如应力分析法和有限元法。
2
经验法则
讨论基于实际案例和经验的计算二次应力的规则和准则。
3
数值模拟
介绍使用计算机模拟和仿真软件进行二次应力计算的方法。
薄膜应力
对比薄膜应力与弯曲应力,包括应力类型、产生 原因和应力分布。
弯曲应力
了解弯曲应力与薄膜应力之间的区别和相互作用。
二次应力的影响因素
材料特性
讨论材料的弹性模量、热膨 胀系数和塑性变形对二次应 力的影响。
几何结构
解释容器的形状、尺寸和连 接方式如何影响二次应力的 产生。
工作条件
讨论压力、温度和载荷变化 对二次应力的影响。
7 压力容器中的薄膜应力、弯曲应力与二次应力

名称
说明
(1) 高压容器; (2) 毒性程度为极度和高度危害介质的中压容器; (3) 中度危害介质,且pV大于等于10MPa·m3中压储存容器; (4) 中度危害介质,且pV大于等于0.5MPa·m3中压反应容器; (5) 毒性程度为极度和高度危害介质,且pV乘积大于等于 0.2MPa·m3的低压容器; (6) 高压、中压管壳式余热锅炉; (7) 中压搪玻璃压力容器; (8) 使用强度级别较高的材料制造的压力容器; (9) 移动式压力容器,铁路罐车、罐式汽车和罐式集装箱等; (10) 容积大于等于50 m3的球形储罐; (11) 容积大于5 m3的低温液体储存容器。 (1) 中压容器; (2) 毒性程度为极度和高度危害介质的低压容器; (3) 易燃介质或毒性程度为中度危害介质的低压反应容器和低 压储存容器; (4) 低压管壳式余热锅炉; (5) 低压搪玻璃压力容器。
σ Aθ
B
t
σϕ
σϕ
σθ
p p B
D
i
σθ
σθ
i
DDD
o
A
薄壁圆筒在内压作用下的应力
无力矩理论的基本方程 A 微元平衡方程
微体法线方向的力平衡
σ ϕ tR2 sin ϕdϕdθ + σ θ tR1dϕdθ sin ϕ = pR1 R2 sin ϕdϕdθ
按管理
《压力容器安全技术检查规程》(《容规》)适用范围 压力容器安全技术检查规程》(《容规 容规》)适用范围
项目 最高工作压力 pw
条件
pw≥0.1MPa,不包括液体静压 ≥0.1MPa,不包括液体静压
内径D ,容积V 内径Di,容积V Di≥0.15m 且 V≥0.025m3 气体、液化气体或最高工作温度高于等于标准 沸点的液体
化工机械设备基础 第七章 压力容器中的薄膜应力、弯曲应力与二次应力

第一节 回转壳体中的薄膜应力 化 工 设 备 机 械 基 础 化 工 学 院
3.按承压性质和能力分类 3.按承压性质和能力分类 (1)内压容器:当容器内部介质的压力大于外部压力时, 内压容器:当容器内部介质的压力大于外部压力时, 为内压容器,容器设计时主要考虑强度问题。 为内压容器,容器设计时主要考虑强度问题。 强度问题 外压容器: (2)外压容器:当容器外部压力大于内部介质压力时为 外压容器,设计时主要考虑稳定问题。 外压容器,设计时主要考虑稳定问题。 稳定问题 通常内压容器按照其设计压力的大小分为: 设计压力的大小分为 通常内压容器按照其设计压力的大小分为:P384 低压容器: 1.6MPa; 低压容器:0.1MPa ≤ p < 1.6MPa; 中压容器: 10MPa; 中压容器:1.6MPa ≤ p < 10MPa; 高压容器: 100MPa; 高压容器:10MPa ≤ p < 100MPa; 超高压容器: 100MPa; 超高压容器:p > 100MPa;
)、回转壳体的几何特点 (四)、回转壳体的几何特点
化 工 设 备 机 械 基 础 化 工 学 院
1、回转壳体:以任何直线或平面曲线为母线,绕其同平面 回转壳体:以任何直线或平面曲线为母线, 内的轴线(回转轴)旋转一周即形成回转曲面。 内的轴线(回转轴)旋转一周即形成回转曲面。以回转曲 回转曲面 面作为中间面的壳体统称为回转壳体。 面作为中间面的壳体统称为回转壳体。 回转壳体
(四)、容器的几何特点 )、容器的几何特点 化 工 设 备 机 械 基 础 化 工 学 院
4.回转壳体的纵截面与锥截面 4.回转壳体的纵截面与锥截面
(1)横截面 过壳体上一点C作一与回转轴垂直的平面, 过壳体上一点C作一与回转轴垂直的平面,该平面与回转 曲面的交线是一个圆,称为该回转曲面的平行圆 平行圆( 曲面的交线是一个圆,称为该回转曲面的平行圆(在同一个 回转曲面上可以截得无数个平行圆)。 )。用平行圆截取的壳体 回转曲面上可以截得无数个平行圆)。用平行圆截取的壳体 平面称为回转壳体的横截面 横截面。 平面称为回转壳体的横截面。 (2)纵截面 用过壳体上一点C 用过壳体上一点C和回转轴的平面截开壳体得到的截面 称作壳体的纵截面。 称作壳体的纵截面。 (3)锥截面 用过壳体上一点C 用过壳体上一点C并与回转体内表面正交的倒锥面截开壳 体得到的截面,称作壳体的锥截面 锥截面。 体得到的截面,称作壳体的锥截面。锥截面不但与纵截面正 而且与壳体的内表面也是正交的。 交,而且与壳体的内表面也是正交的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2Ril•pDi l•p
Ril
p
sind
0
Ril
p(coscos0)
2Ril pDi l p
结论:由作用于任一曲面上介质压力产生的合力等于
介质压力与该曲面沿合力方向所得投影面积的乘积,
而与曲面形状无关。
14
由力的平衡条件可得:
N T
D ilp2l
环向薄膜应力:
pDi
2
15
2 经向薄膜应力 m
N/
20
知识回顾:
横截面
21
环向薄膜应力σθ: 在介质均匀的内压作用
下,壳壁的环向“纤维”受到拉伸,在壳壁的 纵
截面上产生的环向拉伸应力。
经向薄膜应力σm:在介质均匀的内压作用
下,壳壁的经向“纤维”受到拉伸,在壳壁的 锥
截面上产生的经向拉伸应力。
22
1、圆筒形壳体上的薄膜应力
环向薄膜应力:
pD
2
37
3 σθ,M与σr,M的分布规律及它们的最大值
12
三 几种常见回转壳体上的薄膜应力
(一)圆筒形壳体上的薄膜应力
1 环向薄膜应力
作用在筒体纵截面上的 的合力T:
T2l
13
介质内压力p作用于
半个筒体所产生的
合力N为:
N0 dNsin 0 Rid l p•sin
N dNsin 0
0 Rid
l psin
Ril p 0 sind Ril p(cossin)
4
1
cos
30
本节小结:
圆筒形壳体薄膜应力: 球形壳体薄膜应力:
pD
2
m
pD
4
标准椭球形壳体薄膜应力:
m axmp 4D(b a)p 2D
m
pD
4
圆锥形壳体薄膜应力:
pD 1
2 cos
m
pD 1
4 cos
31
薄膜应力通式:
K pD
32
第二节圆形平板承受均布载荷时的弯曲应力
一 平板的变形与内力分析
(1)内压圆筒筒壁上各点的薄膜应力相同, 就某一点,该点环向薄膜应力是径向薄膜 应力的二倍。
(2)
p 2
D
m
p 4
D
决定应力水平高低的截面几何量是圆筒 壁厚与直径的比值,而不是壁厚的绝对 值。
19
(二)圆球形壳体上的薄膜应力
m
pD
4
结论:
内压圆球形壳体上各点的薄膜应力相同, 就某一点,该点环向薄膜应力等于径 向薄膜应力 。
图a
图b
33
1 环形截面的变形及由此而产生的环向弯曲应力σθ,M
34
中性圆
承受载荷
环向弯曲应力σθ,M: 伴随平板弯曲变形产生的环向“纤维”的
每
个点沿该点切线方向的拉伸应力或压缩应 35
力。(径向截面内)
σθ,M
σr,M
36
2 相邻环形截面的相对转动及产生的径向弯曲应力σr,M
径向弯曲应力σr,M: 圆平板弯曲时,平板的径向纤维发生了程度不等的伸 长或缩短,这样平板内的每一个点在其径向产生沿板 厚呈线性分布的拉伸和压缩应力。(环截面内)
介质内压力p作用于封头内表面所产生的轴向
合力 N 为/ :
N / Di2 p
4
16
作用在筒壁环形横截面上的内力 T /为:
T/ Dm
其中:中径 DDi
根据力的平衡条件 N/ T/ 可得:
Di2
4
pDm
经向薄膜应力:
m
pD 4
17
环向薄膜应力:
pD
2
经向薄膜应力:
m
pD
4
中径公式
18
结论:
(1)小位移假设。壳体受压变形, 各点位移都小于壁厚。简化计算。
(2)直法线假设。沿厚度各点法向 位移均相同,即厚度不变。
(3)不挤压假设。沿壁厚各层纤维 互不挤压。
8
二 回转壳体中的拉伸应力及其应力特点
化工容器和化工设备的外壳, 一般都属于薄壁回转壳体:
S / Di <、 弯曲应力和二次应力
1
一 回转壳体的薄膜应力 二 圆形平板的弯曲应力 三 边界区内的二次应力 四 强度条件
2
第一节 回转壳体中的薄膜应力——薄膜理论简介
一 基本概念与基本假设 1 基本概念 (1) 容器:化工生产所用各种设备外壳的总称。(贮 (2) 罐、换热器、蒸馏塔、反应器、合成炉)
接管
人孔 封头
液面计
筒身
支座
3
(2)容器的几何特点
回转曲面:由任何直线或平面曲线为母线,绕其同平 面内的固定轴旋转3600而成的曲面。
4
回转壳体:据内外表面之间,且与内外表 面等距离的面为中间面,以回转曲面为中 间面的壳体。
5
回转壳体的纵截面与锥截面
纵截面
锥截面
横截面 6
横截面
7
2.基本假设:
(1)a/b≤2,顶点处应力 最大
(2) m
pa(a ) pD(a )
2 b 4 b
26
3 椭球形壳体赤道C处的薄膜应力的特点
(1)直径不变:
m
pa
2
pD
4
(2)直径不变:
pa a2
2 (2 b2 )
27
4 标准半椭球形封头特点
(1) a/b=2 (2)
m axmp 4D(b a)p 2D
薄膜理论与有矩理论概念:
计算壳壁应力有如下理论: (1)无矩理论,即薄膜理论。
假定壳壁如同薄膜一样,只承受 拉应力和压应力,完全不能承受弯 矩和弯曲应力。壳壁内的应力即为 薄膜应力。
11
(2)有矩理论。壳壁内存在除拉应力或压应力 外,还存在弯曲应力。
在工程实际中,理想的薄壁壳体是不存在的, 因为即使壳壁很薄,壳体中还会或多或少地存 在一些弯曲应力,所以无矩理论有其近似性和 局限性。由于弯曲应力一般很小,如略去不计, 其误差仍在工程计算的允许范围内,而计算方 法大大简化,所以工程计算中常采用无矩理论。
在介质压力作用下壳体壁内 存在环向应力和经(轴)向应力。
σ1 σ2 σ2
σ1
9
环向薄膜应力σθ: 在介质均匀的内压作用
下,壳壁的环向“纤维”受到拉伸,在壳壁的纵 截面上产生的环向拉伸应力。
经向薄膜应力σm:在介质均匀的内压作用
下,壳壁的经向“纤维”受到拉伸,在壳壁的锥 截面上产生的经向拉伸应力。
10
结论:标准半椭球内的最大
薄膜应力值与同直径、同厚 度的圆筒形壳体内的最大薄 膜应力值相等。
28
(四)圆锥形壳体中的薄膜应力
横截面 半锥角
1.圆锥形壳体的锥截面与 横截面不是同一截面,经向 薄膜应力与回转轴相交成α 角。
2.圆锥形壳体上的薄膜应力 大端小端不同。
29
圆锥薄膜应力:
pD
2
1
cos
m
pD
经向薄膜应力:
m
pD
4
2、圆球形壳体上的薄膜应力
m
pD
4
中径公式
23
(三)椭球形壳体上的薄膜应力
1 球形壳体和椭球形壳体的区别
球
椭
形
球
壳
形
体
壳
体
24
区别:
(1)球形壳体上各点处薄膜应力相同。
m
(2)椭球形各点处薄膜应力不同,与椭 球形壳体长短轴半径a,b有关。
25
2 椭球形壳体顶点B处的薄膜应力的特点
Ril
p
sind
0
Ril
p(coscos0)
2Ril pDi l p
结论:由作用于任一曲面上介质压力产生的合力等于
介质压力与该曲面沿合力方向所得投影面积的乘积,
而与曲面形状无关。
14
由力的平衡条件可得:
N T
D ilp2l
环向薄膜应力:
pDi
2
15
2 经向薄膜应力 m
N/
20
知识回顾:
横截面
21
环向薄膜应力σθ: 在介质均匀的内压作用
下,壳壁的环向“纤维”受到拉伸,在壳壁的 纵
截面上产生的环向拉伸应力。
经向薄膜应力σm:在介质均匀的内压作用
下,壳壁的经向“纤维”受到拉伸,在壳壁的 锥
截面上产生的经向拉伸应力。
22
1、圆筒形壳体上的薄膜应力
环向薄膜应力:
pD
2
37
3 σθ,M与σr,M的分布规律及它们的最大值
12
三 几种常见回转壳体上的薄膜应力
(一)圆筒形壳体上的薄膜应力
1 环向薄膜应力
作用在筒体纵截面上的 的合力T:
T2l
13
介质内压力p作用于
半个筒体所产生的
合力N为:
N0 dNsin 0 Rid l p•sin
N dNsin 0
0 Rid
l psin
Ril p 0 sind Ril p(cossin)
4
1
cos
30
本节小结:
圆筒形壳体薄膜应力: 球形壳体薄膜应力:
pD
2
m
pD
4
标准椭球形壳体薄膜应力:
m axmp 4D(b a)p 2D
m
pD
4
圆锥形壳体薄膜应力:
pD 1
2 cos
m
pD 1
4 cos
31
薄膜应力通式:
K pD
32
第二节圆形平板承受均布载荷时的弯曲应力
一 平板的变形与内力分析
(1)内压圆筒筒壁上各点的薄膜应力相同, 就某一点,该点环向薄膜应力是径向薄膜 应力的二倍。
(2)
p 2
D
m
p 4
D
决定应力水平高低的截面几何量是圆筒 壁厚与直径的比值,而不是壁厚的绝对 值。
19
(二)圆球形壳体上的薄膜应力
m
pD
4
结论:
内压圆球形壳体上各点的薄膜应力相同, 就某一点,该点环向薄膜应力等于径 向薄膜应力 。
图a
图b
33
1 环形截面的变形及由此而产生的环向弯曲应力σθ,M
34
中性圆
承受载荷
环向弯曲应力σθ,M: 伴随平板弯曲变形产生的环向“纤维”的
每
个点沿该点切线方向的拉伸应力或压缩应 35
力。(径向截面内)
σθ,M
σr,M
36
2 相邻环形截面的相对转动及产生的径向弯曲应力σr,M
径向弯曲应力σr,M: 圆平板弯曲时,平板的径向纤维发生了程度不等的伸 长或缩短,这样平板内的每一个点在其径向产生沿板 厚呈线性分布的拉伸和压缩应力。(环截面内)
介质内压力p作用于封头内表面所产生的轴向
合力 N 为/ :
N / Di2 p
4
16
作用在筒壁环形横截面上的内力 T /为:
T/ Dm
其中:中径 DDi
根据力的平衡条件 N/ T/ 可得:
Di2
4
pDm
经向薄膜应力:
m
pD 4
17
环向薄膜应力:
pD
2
经向薄膜应力:
m
pD
4
中径公式
18
结论:
(1)小位移假设。壳体受压变形, 各点位移都小于壁厚。简化计算。
(2)直法线假设。沿厚度各点法向 位移均相同,即厚度不变。
(3)不挤压假设。沿壁厚各层纤维 互不挤压。
8
二 回转壳体中的拉伸应力及其应力特点
化工容器和化工设备的外壳, 一般都属于薄壁回转壳体:
S / Di <、 弯曲应力和二次应力
1
一 回转壳体的薄膜应力 二 圆形平板的弯曲应力 三 边界区内的二次应力 四 强度条件
2
第一节 回转壳体中的薄膜应力——薄膜理论简介
一 基本概念与基本假设 1 基本概念 (1) 容器:化工生产所用各种设备外壳的总称。(贮 (2) 罐、换热器、蒸馏塔、反应器、合成炉)
接管
人孔 封头
液面计
筒身
支座
3
(2)容器的几何特点
回转曲面:由任何直线或平面曲线为母线,绕其同平 面内的固定轴旋转3600而成的曲面。
4
回转壳体:据内外表面之间,且与内外表 面等距离的面为中间面,以回转曲面为中 间面的壳体。
5
回转壳体的纵截面与锥截面
纵截面
锥截面
横截面 6
横截面
7
2.基本假设:
(1)a/b≤2,顶点处应力 最大
(2) m
pa(a ) pD(a )
2 b 4 b
26
3 椭球形壳体赤道C处的薄膜应力的特点
(1)直径不变:
m
pa
2
pD
4
(2)直径不变:
pa a2
2 (2 b2 )
27
4 标准半椭球形封头特点
(1) a/b=2 (2)
m axmp 4D(b a)p 2D
薄膜理论与有矩理论概念:
计算壳壁应力有如下理论: (1)无矩理论,即薄膜理论。
假定壳壁如同薄膜一样,只承受 拉应力和压应力,完全不能承受弯 矩和弯曲应力。壳壁内的应力即为 薄膜应力。
11
(2)有矩理论。壳壁内存在除拉应力或压应力 外,还存在弯曲应力。
在工程实际中,理想的薄壁壳体是不存在的, 因为即使壳壁很薄,壳体中还会或多或少地存 在一些弯曲应力,所以无矩理论有其近似性和 局限性。由于弯曲应力一般很小,如略去不计, 其误差仍在工程计算的允许范围内,而计算方 法大大简化,所以工程计算中常采用无矩理论。
在介质压力作用下壳体壁内 存在环向应力和经(轴)向应力。
σ1 σ2 σ2
σ1
9
环向薄膜应力σθ: 在介质均匀的内压作用
下,壳壁的环向“纤维”受到拉伸,在壳壁的纵 截面上产生的环向拉伸应力。
经向薄膜应力σm:在介质均匀的内压作用
下,壳壁的经向“纤维”受到拉伸,在壳壁的锥 截面上产生的经向拉伸应力。
10
结论:标准半椭球内的最大
薄膜应力值与同直径、同厚 度的圆筒形壳体内的最大薄 膜应力值相等。
28
(四)圆锥形壳体中的薄膜应力
横截面 半锥角
1.圆锥形壳体的锥截面与 横截面不是同一截面,经向 薄膜应力与回转轴相交成α 角。
2.圆锥形壳体上的薄膜应力 大端小端不同。
29
圆锥薄膜应力:
pD
2
1
cos
m
pD
经向薄膜应力:
m
pD
4
2、圆球形壳体上的薄膜应力
m
pD
4
中径公式
23
(三)椭球形壳体上的薄膜应力
1 球形壳体和椭球形壳体的区别
球
椭
形
球
壳
形
体
壳
体
24
区别:
(1)球形壳体上各点处薄膜应力相同。
m
(2)椭球形各点处薄膜应力不同,与椭 球形壳体长短轴半径a,b有关。
25
2 椭球形壳体顶点B处的薄膜应力的特点