九年级数学月考题

合集下载

2024-2025学年山东省德州市九年级(上)第二次月考数学模拟卷

2024-2025学年山东省德州市九年级(上)第二次月考数学模拟卷

2024-2025学年山东省德州市九年级(上)第二次月考数学模拟卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共12小题,每小题4分,共48分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列说法正确的是( )A. 打开电视,它正在播天气预报是不可能事件B. 要考察一个班级中学生的视力情况适合用抽样调查C. 在抽样调查过程中,样本容量越大,对总体的估计就越准确D. 甲、乙两人射中环数的方差分别为SS甲2=2,SS乙2=1,说明甲的射击成绩比乙稳定2.下列函数中,yy是xx的反比例函数的是( )A. yy=1xx2B. xxyy=4C. yy=1xx+1D. yy=5xx+13.在一个不透明的袋子里装有红球.黄球共20个,其中红球有2个.这些球除颜色外其他都相同,随机摸出1个球.摸出的是红球的概率是( )A. 12B. 15C. 110D. 1204.已知点(−2,1)在反比例函数yy=kk xx(kk≠0)的图象上,则kk的值为( )A. 2B. −2C. 12D. −125.已知点AA(xx1,yy1),BB(xx2,yy2)是反比例函数yy=−kk xx(kk≠0)的图象上的两点,且当xx1<xx2<0时,yy1< yy2,则一次函数yy=kkxx+kk(kk≠0)与反比例函数yy=−kk xx在同一平面直角坐标系中的图象可能是( )A. B.C. D.6.已知圆锥的底面半径为4cccc,母线长为6cccc,则圆锥的侧面积是( )A. 24cccc2B. 24ππcccc2C. 48cccc2D. 48ππcccc27.如图,在平面直角坐标系xxxxyy中,点AA,CC分别在坐标轴上,且四边形xxAABBCC是边长为3的正方形,反比例函数yy=kk xx(xx>0)的图象与BBCC,AABB 边分别交于EE,DD两点,△DDxxEE的面积为4,点PP为yy轴上一点,则PPDD+ PPEE的最小值为( )A. 3B. 2√ 5C. 3√ 2D. 58.如图,在平面直角坐标系xxxxyy中,矩形AABBCCDD的BBCC边在xx轴上,点AA、DD分别在反比例函数yy=cc xx(xx<0).、yy=nn xx(xx>0)的图象上,那么矩形AABBCCDD的面积可用cc、nn表示为( )A. cc+nnB. cc−nnC. nn−ccD. −ccnn9.如图,直线yy=xx+2与双曲线yy=cc−3xx在第二象限有两个交点,那么cc的取值范围在数轴上表示为( )A.B.C.D.10.如图,量角器外沿上有三点AA,PP,QQ,它们所表示的读数分别是0∘,110∘,150∘,则∠PPAAQQ的大小是( )A. 40∘B. 30∘C. 20∘D. 10∘11.如图,AA、BB、CC是⊙xx上的三点,若∠CC=40∘,则∠AAxxBB的度数是 ( )A. 40∘B. 50∘C. 55∘D. 80∘12.已知AABB是圆锥(如图1)底面的直径,PP是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从AA点出发,沿着圆锥侧面经过PPBB上一点,最后回到AA点.若此蚂蚁所走的路线最短,那么MM,NN,SS,TT(MM,NN,SS,TT均在PPBB上)四个点中,它最有可能经过的点是( )A. MMB. NNC. SSD. TT第II卷(非选择题)二、填空题:本题共6小题,每小题4分,共24分。

2024-2025学年安徽省阜阳市九年级上学期月考数学试题

2024-2025学年安徽省阜阳市九年级上学期月考数学试题

2024-2025学年安徽省阜阳市九年级上学期月考数学试题1.下列函数一定是二次函数的是()A.B.C.D.2.方程的二次项系数、一次项系数、常数项分别为()A.4、、B.4、2、C.4、、1D.4、2、13.若二次函数的图象经过点,则该图象必经过点()A.B.C.D.4.关于x的一元二次方程的根的情况是()A.实数根的个数由b的值确定B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根5.下列关于二次函数的图象说法中,错误的是()A.它的对称轴是直线B.它的图象有最低点C.它的顶点坐标是D.在对称轴的左侧,y随着x的增大而增大6.若m、n是关于x的方程的两个根,则的值为()A.4B.C.D.7.一抛物线的形状、开口方向与抛物线相同,顶点为,则此抛物线的解析式为()A.B.C.D.8.《九章算术》中有这样一道题:“今有二人同所立.甲行率六,乙行率四.乙东行,甲南行十步而邪东北与乙会.问:甲、乙行各几何?”大意是说:已知甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲走了多少步()A.24B.30C.32D.369.某校从本学期开始实施劳动教育,在学校靠墙(墙长22米)的一块空地上,开辟出一块矩形菜地,如图所示,矩形菜地的另外三边用一根长49米的绳子围成,并留1米宽的门,若想开辟成面积为300平方米的菜地,则菜地垂直于墙的一边的长为()A.10米B.12米C.15米D.不存在10.函数和()在同一平面直角坐标系中的图象可能是()A.B.C.D.11.二次函数的顶点坐标是______.12.由于制药技术的提高,某种疫苗的成本下降了很多,因此医院对该疫苗进行了两次降价,设平均降价率为x,已知该疫苗的原价为462元,降价后的价格为y元,则y与x之间的函数关系式为______.13.已知关于x的一元二次方程,其中a、b、c分别为三边的长,如果方程有两个相等的实数根,则的形状为______.14.抛物线的图象交y轴于点A,点A关于x轴的对称点为点B.(1)点B坐标为______;(2)点,,且线段CD与抛物线恰有一个公共点,则m的取值范是______.15.解方程:16.直线与抛物线交于点.(1)求a和n的值;(2)对于二次函数,当y随x的增大而增大时,求自变量x的取值范围.17.已知关于x的一元二次方程.(1)判断方程根的情况;(2)设,是方程的两个根,求的值.18.如图,将一些小圆按规律摆放:(1)第个图形有个小圆,第个图形有个小圆(用含的代数式表);(2)能用个小圆摆成这样的图形吗?如果能,请求出摆成的是第几个图形;如果不能,请说明理由.19.如图,在中,,,点M从点A开始沿AC以的速度向点C运动(到点C时停止),过点M作,交BC与点N,并设点M的运动时间为t s.(1)当t为何值时,的面积为?(2)若,求t的值.20.如图,抛物线与y轴交于点A,过点A作与x轴平行的直线,交抛物线相交于点B、C(点B在点C的左面),若,求m的值.21.已知二次函数.(1)求证:不论n取何值时,抛物线的顶点始终在一条直线上.(2)若点,都在二次函数图象上,求证:.22.某商店销售一款成本价为40元的洗发水,如果每瓶按60元销售,每天可卖20瓶.该商店通过调查发现,每瓶洗发水售价每降低1元,日销售量增加2瓶.(1)如果该商店想保持日利润不变,且尽快销售完这批洗发水,每瓶售价应定为多少元?(2)同城另一家商店也销售同款洗发水,标价为每瓶62.5元.为促进销售,提高利润,这家商品决定实行打折促销,且其销售价格不低于(1)中的售价且不高于60元,则洗发水至少需打几折?23.如图,抛物线与x轴相交于B,C两点(点B在点C的左边),与y轴相交于点A,直线AC的函数解析式为.(1)求点A,C的坐标;(2)求抛物线的解析式;(3)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标.。

湖南省郴州市延寿瑶族乡中学2024--2025学年上学期九年级10月考数学试卷

湖南省郴州市延寿瑶族乡中学2024--2025学年上学期九年级10月考数学试卷

湖南省郴州市延寿瑶族乡中学2024--2025学年上学期九年级10月考数学试卷一、单选题1.下列各点中,在反比例函数3y x=图象上的是()A .(3,1)B .(-3,1)C .(3,13)D .(13,3)2.已知函数ky x=的图象过点12(,-),则该函数的图象必在()A .第二、三象限B .第二、四象限C .第一、三象限D .第三、四象限3.已知三角形的面积一定,则它底边a 上的高h 与底边a 之间的函数关系的图象大致是()A .B .C .D .4.方程05)1(22=-+-mx x m 是关于x 的一元二次方程,则m 的值不能是()A .0B .12C .1±D .12-5.用配方法解方程2640x x -+=,下列配方正确的是()A .()2313x -=B .()2313x +=C .()235x +=D .()235x -=6.一元二次方程22x x =中二次项系数、一次项系数分别是()A .0,2B .1,2-C .0,2-D .1,27.如图,函数y 1=x ﹣1和函数22y x=的图象相交于点M (2,m ),N (﹣1,n ),若y 1>y 2,则x 的取值范围是()A .x <﹣1或0<x <2B .x <﹣1或x >2C .﹣1<x <0或0<x <2D .﹣1<x <0或x >28.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是()A .x 2+130x ﹣1400=0B .x 2+65x ﹣350=0C .x 2﹣130x ﹣1400=0D .x 2﹣65x ﹣350=09.如图,正方形ABCD 位于第一象限,边长为3,点A 在直线y =x 上,点A 的横坐标为1,正方形ABCD 的边分别平行于x 轴、y 轴.若双曲线ky x=与正方形ABCD 有公共点,则k 的取值范围为()A .1<k <9B .2≤k ≤34C .1≤k ≤16D .4≤k <1610.若222(5)25a b +-=,则22( a b +=)A .8或−2B .−2C .8D .0或10二、填空题11.某种抗癌药品经过两次降价,每瓶零售价由256元降为144元,两次降价的百分率相同,则每次降价的百分率x 应满足方程为的:.12.已知近视眼镜的度数y (度)是镜片焦距x (米)的反比例函数,当近视眼镜的度数是400度时,镜片的焦距为0.25米,那么近视眼镜的度数y (度)与镜片焦距x (米)之间的函数关系式为.13.如图,P 是反比例函数ky x=的图象上的一点,过点P 分别作x 轴、y 轴的垂线,得图中阴影部分的面积为3,则这个反比例函数的比例系数是.14.若关于x 的方程263m mx x -+=是一元二次方程,则m 的值为.15.如图是一个简单的数值运算程序,若输出的值为12,则输入的x 的值为.16.已知点()11,P x y 、()22,Q x y 、()33,M x y 在反比例函数9y x-=的图象上,并且1230x x x <<<,则1y 、2y 、3y 的大小关系为(用<号表示)三、解答题17.解方程:(1)2450x x +-=(2)()()2312x x --=(3)2314x x -=;18.如图,一次函数y ax b =+的图象与反比例函数ky x=的图象交于M 、N 两点.(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.19.先化简,再求值:2224124422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中,a 是方程2310x x ++=的根.20.一辆汽车匀速通过某段公路,所需时间()t h 与行驶速度()/v km h 满足函数关系:k t v=,其图象为如图所示的一段曲线且端点为()40,1A 和(),0.5B m .()1求k 和m 的值;()2若行驶速度不得超过60/km h ,则汽车通过该路段最少需要多少时间?21.如图,王大爷准备用栅栏围建一个面积为260m 的矩形养鸡场ABCD ,其中一边AB 靠墙,墙长为15m .设AD 的长为m x ,AB 的长为m y .(1)求y 与x 之间的函数关系式,并求出自变量x 的取值范围;(2)现有两种方案,4x =或3x =,试选出合理的设计方案,并求出栅栏的总长.22.对于任意实数a ,b ,定义()*a b a a b b =++,已知*425a =,求实数a 的值.23.“20a ≥”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:()2224544121x x x x x ++=+++=++,()220x +≥ ,()2211x ∴++≥.2451x x ∴++≥.试利用“配方法”解决下列问题:(1)填空:因为246x x -+=(2)x -+,所以当x =___________时,代数式246x x -+有最__________)(填“大”或“小”)值,这个最值为_________.(2)比较代数式21x -与23x -的大小.24.如图,一次函数y ax b =+的图象与反比例函数ky x=的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连接OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 的面积相等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.。

辽宁省铁岭市2024—2025学年上学期第二次月考九年级数学试卷

辽宁省铁岭市2024—2025学年上学期第二次月考九年级数学试卷

辽宁省铁岭市2024—2025学年上学期第二次月考九年级数学试卷一、单选题1.下列关于x 的方程有实数根的是()A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+1=02.下列运动属于旋转的是()A .滚动过程中的篮球的滚动B .钟摆的摆动C .一个图形沿某直线对折过程D .气球升空的运动3.如图,在平面直角坐标系中,(4,2)D -,将Rt OCD △绕点O 逆时针旋转90︒到OAB △位置,则点B 坐标为()A .(2,4)B .(4,2)C .(4,2)--D .(2,4)-4.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.一棋谱中四部分的截图由黑白棋子摆成的图案是中心对称的是()A .B .C .D .5.如图,将△ABC 绕点C 顺时针方向旋转40°得△A’CB’,若AC ⊥A’B’,则∠BAC 等于()A .50°B .60°C .70°D .80°6.如图,已知抛物线2y ax c =+与直线y kx m =+交于()()123,,1,A y B y -,则关于x 的不等式2ax c kx m +≥+的解集是()A .3x ≤-或1x ≥B .1x ≤-或3x ≥C .31x -≤≤D .13x -≤≤7.若a ,b 是方程x 2+2x-2016=0的两根,则a 2+3a+b=()A .2016B .2015C .2014D .20128.如图是一个在建隧道的横截面,它的形状是以点O 为圆心的圆的一部分,O M 是O 中弦CD 的中点,EM 经过圆心O 交O 于点E ,且8=CD m ,8m EM =,则O 的半径为()m .A .5B .6.5C .7.5D .89.如图,AD 是半圆O 的直径,点B 、C 在半圆上,且 AB BC CD==,点P 在 CD 上,若130PCB ∠=︒,则PBC ∠等于()A .25︒B .20︒C .30︒D .35︒10.如图,AB 是O 的直径,点C 为圆上一点,AC =D 是弧AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则BC 的长为()A .5B .4C .3D .2二、填空题11.已知点(,2)A m 与点(3,)B n -关于原点对称,则m n -的值为.12.已知1x =是方程²30x mx -+=的一个解,则另一个解为.x =13.如图,四边形ACBD 内接于O ,连接AB ,CD ,AB 是O 的直径,若28ADC ∠=︒,则BAC ∠的度数为.14.定义:关于x 的函数2y ax bx =+与2y bx ax =+(其中a b ≠)叫做互为交换函数,如225y x x =-与252y x x =-+是互为交换函数,如果函数22y mx x =+与它的交换函数图象顶点关于x 轴对称,那么m =.15.如图,在矩形ABCD 中,8AB =,5BC =,点M 是AB 边的中点,点N 是AD 边上任意一点,将线段MN 绕点M 顺时针旋转90︒,点N 旋转到点N ',则MBN '△周长的最小值为.三、解答题16.解方程:(1)用配方法解方程:2650x x ++=(2)用因式分解法解方程:()3224x x x -=-17.利用你所学的平移与旋转知识作答.(1)如图1,是某产品的标志图案,要在所给的图形图2中,把A ,B ,C 三个菱形通过一种或几种变换,均可以变为与图1一样的图案.你所用的变换方法是______.①将菱形B 绕点O 旋转60︒;②将菱形B 绕点O 旋转120︒;③将菱形B 绕点O 旋转180︒.(在以上的变换方法中,选择一种正确的填到横线上.).(2)如图,在平面直角坐标系中,已知点()0,2A 、()2,2B 、()1,1C .①若将ABC V 先向左平移3个单位长度,再向下平移1个单位长度,得到111A B C △,请画出111A B C △,并写出点1C 的坐标为______;②若将ABC V 绕点O 按顺时针方向旋转180︒后得到222A B C △,直接写出点2C 的坐标为______;③若将ABC V 绕点P 按顺时针方向旋转90︒后得到333A B C △,则点P 的坐标是______.18.如图,在O 中,4OA =, CDBD =,直径AB CD ⊥于点E ,连接OC ,OD .(1)求COD ∠的度数;(2)求CD 的长度.19.某公司电商平台,在2022年十一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y (件)是关于售价x (元/件)的一次函数,下表仅列出了该商品的售价x ,周销售量y ,周销售利润W (元)的三组对应值数据.x407090y1809030W 360045002100(1)求y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价为a (元/件),售价x 为多少时,周销售利润W 最大?并求出此时的最大利润.20.如图,AB 是O 的直径,点C 、M 在O 上,且OM BC ∥,连接AC 分别与OM ,BM 相交于点E ,F .(1)求证:点M 为弧AC 的中点;(2)若2ME =,4AE =,求BC 的长.21.等边ABC V 的边长为4,D 为BC 的中点,ABD △绕点B 顺时针旋转得到FBE ,点A 的对应点为F ,点D 的对应点为E ,连接EC ,EC BF ∥.(1)求BEC ∠的度数;(2)求EC 的长度.22.综合与实践已知:90MBN ∠=︒,在BM 和BN 上截取BA BC =,将线段AB 边绕点A 逆时针旋转α()0180α︒<<︒得到线段AD ,点E 在射线BD 上,连接CE ,45BEC ∠=︒.【特例感知】(1)如图1,若旋转角90α=︒,则BD 与CE 的数量关系是______;【类比迁移】(2)如图2,试探究在旋转的过程中BD 与CE 的数量关系是否发生改变?若不变,请求BD 与CE 的数量关系;若改变,请说明理由;【拓展应用】(3)如图3,在四边形ABCD 中,5AD AB BC ===,90ABC ∠=︒,点E 在直线BD 上,45BEC ∠=︒,CE =,请直接写出CDE 的面积.23.定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线(即直线y c =)称为这条抛物线的横向分割线.(1)抛物线243y x x =++的横向分割线与这条抛物线的交点坐标为______.(2)抛物线21142y x mx n =-++与x 轴交于点−2,0和()(),02B x x >-,与y 轴交于点C .它的横向分割线与该抛物线另一个交点为D ,请用含m 的式子表示点C 和点D 的坐标.(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分线段OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②是否存在点P ,使2PF OE =?若存在,直接写出m 的值;若不存在,请说明理由.。

福建省漳州市2024-2025学年九年级上学期第一次数学月考试题

福建省漳州市2024-2025学年九年级上学期第一次数学月考试题

2024-2025学年上学期数学月考学校: 班级: 姓名: 座号:一、单项选择题(本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)A.0x >B.1x >C.1x ≥D.1x ≠ 2.下列根式是最简二次根式的是( )A.9B.3C.4.用配方法解方程2210x x +−=时,配方结果正确的是( ) A.2(2)2x +=B.2(1)2x +=C.2(2)3x +=D.2(1)3x +=5.下列关于x 的方程中,一定是一元二次方程的是( )A.10x −=B.33x x +=C.2350x x +−=D.6.函数2y =++,则y x 的值为( )A.0B.2C.4D.87.下列计算正确的是( )4=3=−8.关于x 的一元二次方程280x mx +−=的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根9.微信红包是沟通人们之间感情的一种方式,已知小丽在2018年”元旦节”收到微信红包为300元,2020年为363元,若这两年小丽收到的微信红包的年平均增长率为x ,根据题意可列方程为( ) A.2300(1)363x +=B.2300(1)363x +=C.363(12)300x +=D.2300363x +=10.已知m ,n 是一元二次方程220230x x +−=的两个实数根,则代数式20ax bx c ++=22m m n ++的值等于( )A.2019B.2020C.2021D.2022二、填空题(本题共6小题,每小题4分,共24分。

) 11.比较大小:13.已知n 是整数,则n 的最小值是______ .14.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为_____________.15.已知a ,b 是一元二次方程2320x x −+=的两根,则22a b ab +=____________. 16.等腰三角形的边长都是方程2680x x −+=的根,则此三角形的周长为_____. 三、解答题(本题共9小题,共86分。

河北省石家庄市第二十八中学2024-2025学年九年级上学期9月数学月考试卷

河北省石家庄市第二十八中学2024-2025学年九年级上学期9月数学月考试卷

河北省石家庄市第二十八中学 2024-2025学年九年级上学期9月数学月考试卷一、单选题1.已知32a b =(a ≠0,b ≠0),下列变形正确的是( ) A .23a b = B .32b a = C .2a =3b D .3a =2b 2.如图,在Rt ABC △中,90C ∠=︒,5AB =,3BC =,则sin B ∠的值为( )A B .45 C .34 D 3.如图,直线l 1、l 2、…l 6是一组等距离的平行线,过直线l 1上的点A 作两条射线,分别与直线l 3,l 6相交于点B 、E 、C 、F .若BC =2,则EF 的长是( )A .4B .5C .6D .74.方程23x x =的根是( )A .3x =B .0x =C .10x =,23x =D .13x =,23x =-5.若方程240x x c -+=有两个不相等的实数根,则实数c 的值可以是( ) A .6 B .5 C .4 D .36.某药品经过连续两次降价,每盒售价由16元降为9元,设平均每次降价的百分率是x ,则可列方程为( )A .2169x =B .()29116x += C .()21619-=x D .()21619x -= 7.如图,每个小正方形的边长均为1,则下列图中的三角形(阴影部分)与如图中的ABC V 相似的是( )A .B .C .D . 8.如图2中的矩形边长分别是将图1中的矩形边长4拉长2x ,边长5拉长x 得到的,若两个矩形相似(不全等),则x 的值是( )A .3B .4C .5D .69.两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P 是线段AB 上一点(AP >BP ),若满足BP AP AP AB=,则称点P 是AB 的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x 米时恰好站在舞台的黄金分割点上,则x 满足的方程是( )A.(20﹣x)2=20x B.x2=20(20﹣x)C.x(20﹣x)=202D.以上都不对10.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=3,按图中虚线剪下的三角形与△ABC 不相似的是()A.B.C.D.11.如图,△ABC中,D是AB边上一点,∠ACD=∠B,AD=2,AC=4,△ADC的面积为2,则△BCD的面积为()A.2 B.4 C.6 D.812.如图,有一块形状为Rt△ABC的斜板余料,∠A=90°,AB=6cm,AC=8cm,要把它加工成一个形状为▱DEFG的工件,使GF在边BC上,D、E两点分别在边AB、AC上,若DEFG的面积为()cm2.点D是边AB的中点,则S▱A.10 B.12 C.14 D.16二、填空题13.若2a b=,则a b b +=. 14.若,m n 是方程2560x x -+=的两个实数根,则22m n mn +-的值为.15.在平面直角坐标系中,A (3,﹣3),B (1,0),C (3,0),点P 在y 轴的正半轴上运动,若以点O 、B 、P 为顶点的三角形与三角形ABC 相似,则点P 的坐标为 .16.如图,正方形ABCD 的边长为6,连接,BD P Q 、两点分别在AD CD 、的延长线上,且满足45PBQ ∠=︒.(1)当BD 平分PBQ ∠时,DP DQ 、的数量关系为.(2)当BD 不平分PBQ ∠时,DP DQ ⋅=.三、解答题17.(1)用适当的方法解方程:2230x x +-=;(2)计算:tan45cos302sin60︒︒-︒.18.如图是小明解一元二次方程224100x x --=的过程.(1)在小明的解题过程中,从第______步开始出现错误,出现错误的原因:______;(2)请写出正确的解答过程.19.如图在平面直角坐标系中,△OAB的顶点坐标分别是O(0,0),A(2,4),B(6,0).(1)以原点O为位似中心,在点O的异侧画出△OAB的位似图形△OA1B1,使它与△OAB 的相似比是1:2.(2)写出点A1、B1的坐标.(3)若△OAB关于点O的位似图形△OA2B2中,点A的对应点A2的坐标为(﹣3,﹣6),则△OA2B2与△OAB的相似比为______.20.如图,点E是平行四边形ABCD的边CB延长线上一点,AB与DE相交于点F.△∽△;(1)求证:ECD DAF(2)若2,3,4BE BC CD ===,求BF 的长.21.某社区在开展“美化社区,幸福家园”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用40米长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,AD 两边),设AB x =米.(1)若花园的面积为300平方米,求x 的值;(2)若在直角墙角内点P 处有一棵桂花树,且与墙BC ,CD 的距离分别是10米,24米,要将这棵树围在矩形花园内(含边界,不考虑树的粗细),则花园的面积能否为400平方米?若能,求出x 的值;若不能,请说明理由.22.商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由.23.【学科融合】如图1,在反射现象中,反射光线,入射光线和法线都在同一个平面内:反射光线和入射光线分别位于法线两侧;入射角i 等于反射角r .这就是光的反射定律.【问题解决】如图2,小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙,木板和平面镜,手电筒的灯泡在点G 处,灯泡到地面的高度 1.2m AG =,手电筒的光从平面镜上点B 处反射后,恰好经过木板的边缘点F ,落在墙上的点E 处,点F 到地面的高度 1.8m CF =,灯泡到木板的水平距离6m AC =,木板到墙的水平距离为4m CD =.图中,,,A B C D 在同一条直线上.(1)求AB 的长;(2)求点E 到地面的高度DE .24.如图(1)矩形ABCD 中,2,5,1,90AB BC BP MPN ===∠=︒.将M P N ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交AB (或AD )于点E ,PN 交边AD (或CD )于点F ,当PN 旋转至PC 处时,MPN ∠的旋转随即停止.(1)特殊情形:如图(2),发现当PM 过点A 时,PN 也恰好过点D ,此时,ABP V __________PCD △(填:“≌”或“∽”)(2)类比探究:如图(3)在旋转过程中,PE PF的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设,AE t EPF =△面积为S ,试确定S 关于t 的函数关系式;当 4.2S =时,求出所对应的t 的值.。

北京市中国人民大学附属中学2024~2025学年上学期10月月考九年级数学试卷

北京市中国人民大学附属中学2024~2025学年上学期10月月考九年级数学试卷

北京市中国人民大学附属中学2024~2025学年上学期10月月考九年级数学试卷一、单选题1.一元二次方程2230x x --=的二次项系数、一次项系数、常数项分别是( ) A .2,1,3 B .2,1,3- C .−2,1,3 D .2,1-,3- 2.巴黎奥运会后,受到奥运健儿的感召,全民健身再次成为了一种时尚,球场上出现了更多年轻人的身影.下面四幅球类的平面图案中,是中心对称图形的是( ) A . B . C . D . 3.抛物线2(4)5y x =--的开口方向和顶点坐标分别是( )A .开口向下,(4,5)-B .开口向上,(4,5)-C .开口向下,(4,5)--D .开口向上,(4,5)--4.如图,将ABC V 绕点A 逆时针旋转100°,得到ADE V .若点D 在线段BC 的延长线上,则B ∠的度数为( )A .30°B .40°C .50°D .60°5.用配方法解方程2420x x -+=,配方正确的是( )A . ()222x +=B .(()222x -=C .()222x -=-D .()226x -= 6.已知二次函数2y ax bx c =++的图象如图所示,则下列选项中错误的是( )A .0a <B .0c >C .0b >D .20a b +>7.如图,在正三角形网格中,以某点为中心,将MNP △旋转,得到111M N P △,则旋转中心是( )A .点AB .点BC .点CD .点D8.已知点()()()1212,2024,,2024P x Q x x x ≠在二次函数21y ax bx =++的图象上,则当12x x x =+时,y 的值为( )A .1B .2025C .1-D .2024二、填空题9.方程25x x =的解是.10.点()1,2P -关于原点的对称点的坐标为.11.如果关于x 的方程2310kx x +-=有两个不相等的实数根,那么k 的取值范围是 . 12.将抛物线223y x =-向右平移2个单位,向下平移1个单位后,所得抛物线的顶点坐标为.13.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(1,0)-,将线段AB 绕点(2,2)逆时针旋转α角()0180α︒<<︒,若点A 的对应点A '的坐标为(2,0),则α为,点B 的对应点B '的坐标为.14.如图,抛物线y =ax 2+bx +c 的对称轴为x =1,点P ,点Q 是抛物线与x 轴的两个交点,若点P 的坐标为(4,0),则点Q 的坐标为.15.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB 为O e 的直径,弦CD AB ⊥于点1E AE =,寸,10CD =寸,求直径AB 的长.小宇对这个问题进行了分析:(1)由直径AB CD ⊥于E ,可得5CE DE ==,其依据是.(2)连接OC ,则有OC OA =,在COE V中利用勾股定理列方程可求得OC 的长,从而得到直径AB 长为寸.16.如图,菱形ABCD 的边长为6,将一个直角的顶点置于菱形ABCD 的对称中心O 处,此时这个直角的两边分别交边,BC CD 于M ,N ,若ON CD ⊥,且2ON =,则MN 的长为.三、解答题17.解方程:233x x x -=+.18.如图,ABC V 是等边三角形,点D 在边AC 上,以CD 为边作等边CDE V .连接BD ,AE .求证:BD AE =.19.已知1x =是关于x 的方程2230x mx m -+=的根,求代数式2(2)(3)(1)m m m -+-+的值. 20.已知二次函数2y x bx c =++的图象过点(0,3),(1,0)A B .(1)求这个二次函数的解析式;(2)画出这个函数的图象;(3)写出当13x -<<时,函数值y 的取值范围.21.判断下列说法是否正确,如正确,请说明理由;如错误,请举出反例.(注:本题无论正误都需要画图并说明)(1)圆的任意一条弦的两个端点把圆分成优弧和劣弧;(2)平分弦的直径垂直于弦,并且平分弦所对的两条弧.22.已知关于x 的一元二次方程22230x mx m --=.(1)求证:该方程总有两个实数根;(2)若方程恰有一个实根大于1-,求m 的取值范围.23.如图,Rt ABC V 中,90C ∠=︒,6AC =,8BC =.动点P ,Q 分别从A ,C 两点同时出发,点P 沿边AC 向C 以每秒3个单位长度的速度运动,点Q 沿边BC 向B 以每秒4个单位长度的速度运动,当P ,Q 到达终点C ,B 时,运动停止.设运动时间为t (单位:秒).(1)①当运动停止时,t 的值为______.②设P ,C 之间的距离为y ,则y 与t 满足______(选填“正比例函数关系”,“一次函数关系”,“二次函数关系”)(2)设PCQ △的面积为S ,①求S 的表达式(用含有t 的代数式表示),并写出t 的取值范围;②S 是否可以为7?若可以,请求出此时t 的值,若不能,请通过计算说明理由. 24.如图,MPN α∠=,点A ,B 在射线PN 上,以AB 为直径作半圆,圆心为O ,半圆交射线PM 于点C ,D .(1)如图1,当30α=︒时,若,AB 10CD 6==,求AP 的长;(2)如图2,若PC OB =,且AB ,求α的值.25.如图1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上.若将拱门看作抛物线的一部分,建立如图2所示的平面直角坐标系.当拱门上的点到O 点的水平距离为x (单位:m )时,它距地面的竖直高度为y (单位:m ).(1)经过对拱门进行测量,发现x 与y 的几组数据如下:根据上述数据,直接写出该拱门的高度(即最高点到地面的距离)和跨度(即拱门底部两个端点间的距离),并求y 与x 满足的函数关系式.(2)在一段时间后,公园重新维修拱门.在同样的坐标系下,新拱门上的点距地面的竖直高度y (单位:m )与它到O 点的水平距离x (单位:m )近似满足函数关系()20.187.30y x h =--+,若记原拱门的跨度为1d ,新拱门的跨度为2d ,则1d ______2d (填“>”,“=”或“<”).26.在平面直角坐标系xOy 中,点()11x y ,,()21a y +,在抛物线22y x ax c =-+上.(1)抛物线的对称轴为______(用含a 的式子表示),当01a <<时,2y 与c 的大小关系为2y ______c (填“>”“<”或“=”);(2)若110x -<<,且对于每个1x ,都有12y y >成立.①求a 的取值范围;②若抛物线还过点()33a y ,,求证:如果1230y y y <,那么()2130y y y ->.27.如图,在ABC V 中,90,45,ACB BAC D ∠=︒∠<︒为边AC 上一点(不与点A ,C 重合),点D 关于直线AB 的对称点为E ,连接BD ,将线段BD 绕点B 旋转,使点D 的对应点F 恰好在线段AE 的延长线上.(1)求证:12ABC DBF ∠=∠; (2)连接DF ,过点C 作AB 的垂线,分别交,AB DF 于点G ,H .①依题意补全图形;②用等式表示DH 与HF 的数量关系,并证明.28.在平面直角坐标系xOy 中,已知点(,)P a b ,对于点M 给出如下定义:将点M 向右(0a ≥)或向左(0)a <平移a 个单位长度,得到点M ',点M '关于点P 的对称点为N ,称点N 为点M 关于点P 的“联络点”.(1)若点(2,0)M -,点(1,1)P ,则点M 关于点P 的“联络点”的坐标为______;(2)如图,若点M 与点P 关于原点O 对称,点M 关于点P 的“联络点”为点N ,①求作:点M '和点N (尺规作图,保留作图痕迹);②连接MN ,在MN 上取点T ,使PT x ∥轴,连接OT ,求证:14OT M N '=;(3)已知点C 是直线2y x =+上的动点,点D 是直线y x =-上的定点,点C 关于点D 的“联络点”为点E ,若线段CE 长的取值范围是CE ≥D 的横坐标D x 的取值范围.。

北京市中国人民大学附属中学朝阳学校2024~—2025学年上学期10月月考九年级数学试卷

北京市中国人民大学附属中学朝阳学校2024~—2025学年上学期10月月考九年级数学试卷

北京市中国人民大学附属中学朝阳学校2024~—2025学年上学期10月月考九年级数学试卷一、单选题1.若关于x 的方程()2110m x mx -+-=是一元二次方程,则m 的取值范围是( )A .1m ≠B .1m =C .1m ≥D .0m ≠ 2.抛物线()222y x =-+的顶点坐标是( )A .()2,2-B .()2,2-C .()2,2D .()2,2--3.抛物线y=﹣12x 2+3x ﹣52的对称轴是( ) A .x=3 B .x=﹣3 C .x=6 D .x=﹣524.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.要得到抛物线()2241y x =--,可以将抛物线22y x =:( )A .向左平移4个单位长度,再向上平移1个单位长度B .向左平移4个单位长度,再向下平移1个单位长度C .向右平移4个单位长度,再向上平移1个单位长度D .向右平移4个单位长度,再向下平移1个单位长度6.已知方程2x 2+4x ﹣3=0的两根分别为x 1和x 2,则x 1+x 2的值等于( ) A .2 B .﹣2 C .32 D .﹣327.函数221y ax x =-+和y ax a =+(a 是常数,且0)a ≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .8.如图,在菱形ABCD 中,∠BAD =60°,AB =2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF =30°.设DE =x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ).A .线段ECB .线段AEC .线段EFD .线段BF二、填空题9.方程22x x =的根1x =,2x = .10.已知a 是方程23610x x +-=的一个根,则22a a +=.11.写一个当x >0时,y 随x 的增大而增大的函数解析式.12.已知11(,)A x y ,22(,)B x y 是函数22y x =-图象上的两点,如果120x x <<,那么1y ,2y 的大小关系是.13.如图,某小区规划在一个长为16m 、宽为9m 的矩形场地ABCD 上修建三条同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若草坪部分的总面积为112m 2,求小路的宽度.若设小路的宽度为x m ,则x 满足的方程为.14.菱形ABCD 的一条对角线长为6,边AB 的长是方程27120x x -+=的一个根,则菱形ABCD 的周长为15.抛物线y =ax 2+bx+c 的部分图象如图,则当y >3时,x 的取值范围是.16.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论中正确的是.①0ac >;②当1x >时,y 随x 的增大而减小;③20b a -=;④3x =是关于x 的方程20(a 0)++=≠ax bx c 的一个根;⑤若(0,)A m ,(2.5,)B n ,(3,)C t 均在二次函数的图象上,则m n t >>;⑥若抛物线与y 轴的交点在(0,3)-与(0,2)-之间(包含边界),则系数a 的取值范围是213a ≤≤.三、解答题17.解下列一元二次方程:(1)2410x x --=;(2)2(1)250x +-=.18.解不等式组27442x x x x +>-⎧⎪⎨+<⎪⎩,并将解集表示在数轴上.19.已知210x y +-=,求代数式222444x y x xy y +++的值. 20.已知关于x 的一元二次方程x 2+(k +1)x +k =0.(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k 的取值范围.21.已知:如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点,且AF CE =.求证:DE BF =.22.已知抛物线243y x x =-+.(1)在平面直角坐标系中画出这条抛物线;(2)当x 取什么值时,0y >;(3)当x 取什么值时,y 随x 的增大而减小?23.二次函数23y ax bx =+-中的,x y 满足下表:(1)求这个二次函数的解析式.(2)求m 的值.24.在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(4,3),(2,0)-,且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值,直接写出n 的取值范围.25.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500kg ,销售价每涨价1元,月销售量就减少10kg .(1)设涨价x 元,则销售量为____________kg (用含x 的式子表示),月销售利润y (单位:元)与涨价x (单位:元/千克)之间的函数解析式为____________;(2)求当涨价多少元时利润最大?26.在平面直角坐标系xOy 中,已知抛物线:224(0)y ax ax a =-+>.(1)抛物线的对称轴为x =____________;抛物线与y 轴的交点坐标为____________;(2)若抛物线的顶点恰好在x 轴上;写出抛物线的顶点坐标,并求它的解析式;(3)11(,)A x y ,22(,)B x y 是此抛物线上的两点,若12x x <,且122x x +>,比较1y ,2y 的大小,并说明理由.27.已知:如图,ABC V 中,AC BC =,90ACB ∠=︒,点D 在AB 边上,点A 关于直线CD 的对称点为E ,射线BE 交直线CD 于点F ,连接AF .(1)设ACD α∠=,则CBF =∠____________(用含α的式子表示);(2)用等式表示线段AF ,CF ,BF 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,对于点00(,)P x y ,给出如下定义:若存在实数1x ,2x ,1y ,2y 使得0112x x x x -=-且0112y y y y -=-,则称点P 为以点11(,)x y 和22(,)x y 为端点的线段的等差点.(1)若线段m 的两个端点坐标分别为(1,2)和(3,2)-,则下列点是线段m 等差点的有__________;(填写序号即可)①1(16)P -,;②2(20)P ,;③3(4,4)P -;④4(5,6)P -. (2)点A ,B 都在直线y x =-上,已知点A 的横坐标为2-,(0)M t ,,(11)N t +,. ①如图1,当1t =-时,线段AB 的等差点在线段MN 上,求满足条件的点B 的坐标; ②如图2,点B 横坐标为2,以AB 为对角线构造正方形ACBD ,在正方形ACBD 的边上(包括顶点)任取两点连接的线段中,若线段MN 上存在其中某条线段的等差点,直接写出t 的取值范围__________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每题3分,共30分)
1.代数式24
-+x x 中,x 的取值范围是( )
A. 4-≥x
B. 2>x C . 24≠-≥x x 且 D. 24≠->x x 且
2.抛物线
222
8,5,41x y x y x y =-==
共有的性质是( )
A .开口方向相同
B .开口大小相同
C .当x > 0时,y 随x 的增大而增大
D .对称轴相同 4. 如图,∠1=∠2,则下列各式不能说明△ABC ∽△ADE
的是( )
A .∠D =∠
B B .∠E =∠C
C .AC AE AB A
D = D .BC
DE
AB AD =
4、等腰三角形的底和腰是方程2680x x -+=的两个根,则这个三
角形的周长是( )
A .8
B .10
C .8或10
D . 不能确定
5.已知⊙O 1与⊙O 2的半径分别为3和4,O 1O 2=5,那么这两个圆的位置关系是( )。

A .相切
B .相离
C .相交
D .内含
6、已知抛物线2y=x x 1--与x 轴的交点为(m ,0),则代数式2
m m+2011-的
值为( )。

A .2009
B .2012
C .2011
D .2010
7.某种商品零售价经过两次降价后,每件的价格由原来的800元,降为现在的578元,则平均每次降价的百分率为( )。

A .10%
B .12%
C .15%
D .17% 8.同一坐标平面内,图象不可能由函数y=2x 2+1的图象通过平移变换、轴对称变换和旋转变换得到的函数是( )。

A .
2
112y x =
-
B .y=2x 2+3
C .y=-2x 2-1
D .y=2(x+1)2-1
A
B
C
D
E
1 2
第4题图
A
C B
D
E
O
. 9. 把抛物线y=x 2+2x+5的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是 ( )。

A.y= x 2-2x+5
B. y= x 2+8x+18
C. y=x 2-4x+6
D.y= x 2+2x+3 10.函数y=ax +1与y=ax 2+bx +1(a≠0)的图象可能是( )。

二、填空题(每空3分,共30 分)
11. 已知最简二次根式2x+1 与x+3 是同类二次根式,则x=_______; 12 .已知⊙O 的面积为36π,若PO =7,则点P 在⊙O_______;(填“内”,“外”,“圆
周上”)
13.已知抛物线
2
y ax bx c =++(a >0)的对称轴为直线1x =,且经过点()()212y y -1,,,,试比较1y 和2y 的大小:1y ______2y (填“>”,“<”或“=”)
14、已知函数 2521
2
-+-=+x x mx y m
是关于x 的二次函数, 则m =__________.
15.已知21x =-,则代数式2
25x x +-的值为__________.
16. 如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,CE =1,DE =3,
则⊙O 的半径是__________
17. 在平行四边形ABCD 中,AB=10,AD=6,E 是AD 的中点,在AB 上取一
点F ,使⊿CBF ∽⊿CDE ,则BF 的长为________
18. 写出抛物线经过(0,1)且顶点在y 轴左侧的一个二次函数的解析式
为 _________________________ 。

19、已知m,n 是关于x 的一元二次方程22
2420x ax a a +++-=的两实根,那么22m n
+的最小值是 __________ 。

20、如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线2
()y a x m n =-+的顶点
在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小__________ 。

`
第16题图 第18题图
B .
C .
D .
1
1
1
1
x
o y y o x y o x x
o
y
B (4,4)
A (1,40
x
y O
C
D
第20题
三、解答题
21.(本题5分) 先化简,后求值:
x2
y-4y3
x2+4xy+4y2·(
x
y
x
xy
+
-2
4
),其中⎪⎩



+
=
-
=
1
2
1
2
y
x
22.(本题6分)彤彤和朵朵玩纸牌游戏.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,彤彤先从中抽出一张,朵朵从剩余的3张牌中也抽出一张.彤彤说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.
(1)请用树状图(或列表)表示出两人抽牌可能出现的所有结果;
(2)若按彤彤说的规则进行游戏,这个游戏公平吗?请说明理由.
23、(本题6分)正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两
端分别在CB 、CD 上滑动,那么当CM 为何值时,△ADE 与△MN C 相似
.
24、(本题8分)己知关于x 的一元二次方程x 2+(2k+1)x+k 2-2=0。

(1)若方程有两个不相等的实数根,求实数k 的取值范围; (2)若方程的两根时x 1、x 2且满足x 12+x 22=3x 1x 2-10,求k 的值。

25.(8分)如图,AB 是⊙O 的直径,AE 平分∠BAF,交⊙O 于点E ,过点E 作直线ED⊥AF,交AF 的延长线于点D ,交AB 的延长线于点C . (1)求证:CD 是⊙O 的切线;
(2)若CB=2,CE=4,求圆的半径.
26.(本题9分)已知二次函数的图象以A (-1,4)为顶点,且过B (2,-5)
O
A B D
E C F
(1)求该函数的关系式;
(2)求该函数图象与坐标轴的交点坐标;
(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至点A '、B ',
求OA B ''∆的面积。

27.(本题8分)如图(1),某建筑物有一抛物线形的大门,小强想知道这道门的高度. 他先测出门的宽度m AB 8=,然后用一根长为m 4的小竹杆CD 竖直地接触地面和门的内壁,并测得m AC 1=. 小强画出了如图(2)的草图,请你帮他算一算门的高度OE . E
28、(本题10分)电子商务的快速发展带动了网上购物的人越来越多,订购的商品往往通过快递来送达。

买多网上某店铺率先与“青蛙王子”童装厂取得联系,经营该厂
C
A D B
家某种型号的童装。

根据第一周的销售记录,该型号服装每天的售价x(元/件)与当日的销售量y(件)的相关数据如下表:
已知该型号童装每件的进价是70元,同时为吸引顾客,该店铺承诺,每件服装的快递费10元由卖家承担。

(1)请用一次函数表示出y与x的函数关系式。

(2)设第一周每天的赢利为w元,求w关于x的函数关系式,并求出每天的售价为多少元时,每天的赢利最大?最大赢利是多少?。

相关文档
最新文档