探究数列典型问题
数列专题复习之典型例题(含答案)

数列知识点-——-求通项一、由数列的前几项求数列的通项:观察法和分拆与类比法-—-—-猜测———-证明(略)二、由a n 与S n 的关系求通项a n例1已知数列{a n }的前n 项和为S n =3n -1,则它的通项公式为a n =________。
答案2·3n -1练1 已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 答案a n =错误!三、由数列的递推公式求通项例3、(1)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .设3n n n b S =-,求数列{}n b 的通项公式;答案: 13(3)2n n n n b S a -=-=-,*n ∈N .(2)(4)在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠).(Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩(3)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ;答案:(1)2nnn a n λ=-+21212(1)22(1)(1)n n n n n n S λλλλλ+++--+=+-≠- 1(1)22(1)2n n n n S +-=+-λ=(4)已知数列{}n a 满足:()213,22n n a a a n n N *+=+=+∈(1)求数列{}n a 的通项公式; (2)设1234212111n n nT a a a a a a -=+++,求lim n n T →∞答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩注意:由数列的递推式求通项常见类型(请同学们查看高一笔记)1.)(1n f a a n n +=+ 2 . n n a n f a )(1=+.3 q pa a n n +=+1(其中p,q 均为常数,)0)1((≠-p pq )。
深度学习观下数列名题探究---对斐波那契数列的学习及思考

深度学习观下数列名题探究 ---对斐波那契数列的学习及思考关键词:数学思想;深度学习;历史名题;探究深度学习是学生在教师引领下,围绕着具有挑战性的学习主题,在思维、情感、意志、价值观上做到全身心投入,认真参与、积极建构、体验成功、获得发展的有意义的学习过程。
教学的本质是“学”而非“教”,本质在于根据学生经验,设计出据有挑战性的问题,引发学生深度思考,提升学生高阶思维能力,关注知识与技能的同时,挖掘知识与技能背后蕴藏的数学本质,思考其体现的数学思想,最终达成学生形成和发展数学学科核心素养的目标。
斐波那契数列,数列学习中最经典的数列,来自自然,和谐而有趣。
它在2019新课标人教A版选择性必修第二册第四章数列4.1数列的概念的阅读与思考内容中呈现,主要是研究了斐波那契数列的来源(兔子数列)和递推关系,还有相邻两项的关系构成的新数列。
笔者希望能以数列核心思想作引领,从数学文化视角探究斐波那契数列,让学生通过自主探究、合作探究等方式获得新知,实现课堂从浅层学习到深度学习的转型,对数列知识和方法进行反思内化再建构,充分理解本质,达到深度学习数列知识、思想与方法的目的。
一、教学片段(一)认识数列一般而言,兔子在出生两个月后就有防止能力一对兔子每个月能生出一对小兔子来,如果所有的兔子都不死。
[1]问:分别求第1个,第3个,第7个,第12个月的兔子数。
师:大家有什么好的研究方法呢?生:这简单,枚举法,从第1个月开始排列一下。
师:同桌之间合作,把讨论结果填写在下面的表格中。
学生独立思考,填写表格。
教师展示(图1)(图1)师:兔子的只数形成的是一个非常美丽、和谐的数列,各项分别为:师:当时间推长,继续列举下去吗?请观察一下各项之间有什么联系?生:前面两个数之和就是第三个数。
生:前两项不符合的,应该修正一下。
从第三项起,前面两个数的和是第三个数。
师:很好,同学的观察能力很强,逻辑严谨!请同学们用一般性的语言,用数列的语言表达出这个结论。
数学分析中的典型问题与方法

数学分析中的典型问题与方法引言数学分析是数学中的一个重要分支,它研究的是变化和连续性的数学理论。
在数学分析中,我们常常会遇到一些典型的问题和方法。
本文将介绍其中一些典型问题和方法,并对每个问题和方法进行详细讨论。
1. 极限和连续性在数学分析中,极限和连续性是最基本的概念之一。
极限描述了函数在某一点上的趋近行为,而连续性描述了函数在某一区间上的无间断性。
我们常用数列极限来定义函数极限,而函数连续性则可以用极限的概念来描述。
1.1 数列极限数列极限是指数列中的元素在趋近无穷大或趋近某一实数时的行为。
对于一个数列 {an},如果当 n 趋近于无穷大时,数列的元素无限接近于某一实数 L,则称 L 为数列 {an} 的极限,记作lim (n -> ∞) an = L数列极限具有一些重要的性质,比如唯一性、保序性和四则运算等,这些性质是我们研究数列极限时常用的工具。
1.2 函数极限函数极限描述了函数在某一点上的趋近行为。
对于一个函数 f(x),如果当 x 趋近于某一实数 a 时,函数的值无限接近于某一实数 L,则称 L 为函数 f(x) 在点 a 处的极限。
我们常用极限的定义来研究函数的性质和行为。
函数极限也具有一些重要的性质,比如唯一性、保序性和四则运算等,我们能够利用这些性质来求解函数的极限。
1.3 连续性连续性是函数的一个重要性质,它描述了函数在某一区间上的无间断性。
对于一个函数 f(x),如果对于任意给定的实数a,函数 f(x) 在点 a 处的极限存在且等于函数在点 a 处的函数值,则称函数 f(x) 在点 a 处连续。
连续函数具有一些重要的性质,比如介值定理、最值定理和零点定理等,这些性质是帮助我们分析函数行为的重要工具。
2. 导数和微分导数和微分是数学分析中的另一个重要概念。
导数描述了函数在某一点上的瞬时变化率,而微分则描述了函数在某一点上的线性近似。
2.1 导数对于一个函数 f(x),如果函数在某一点 a 处的极限lim (h -> 0) [f(a + h) - f(a)] / h存在,则称这一极限为函数 f(x) 在点 a 处的导数,记作f’(a) 或 df/dx | x=a。
高考数学中常见的数列问题解答

高考数学中常见的数列问题解答数列作为高考数学中的常见考点之一,经常出现在各类数学试题中。
学好数列的相关知识,不仅能够帮助我们解答问题,还能够提高我们的逻辑推理能力和问题解决能力。
本文将针对高考数学中常见的数列问题,进行详细的解答和分析,帮助同学们更好地应对考试。
一、等差数列问题解答等差数列是指数列中相邻两项之差都相等的数列。
常见的等差数列问题通常涉及求和、通项等问题。
1. 求等差数列的前n项和:设等差数列的首项为a1,公差为d,首项为a1,末项为an,共有n 项。
根据等差数列的特点,可得到如下公式:Sn = (2a1 + (n - 1)d) * n / 22. 求等差数列的通项公式:设等差数列的首项为a1,公差为d,第n项为an。
根据等差数列的特点,可得到如下公式:an = a1 + (n - 1)d3. 求等差数列中满足特定条件的项数:对于等差数列,我们常常需要求出满足一定条件的项数。
例如,已知等差数列的首项为a1,公差为d,求第n项为m的项数时,可以通过以下公式解答:an = a1 + (n - 1)d = m二、等比数列问题解答等比数列是指数列中相邻两项之比都相等的数列。
常见的等比数列问题通常涉及求和、通项等问题。
1. 求等比数列的前n项和:设等比数列的首项为a1,公比为q,首项为a1,末项为an,共有n 项。
根据等比数列的特点,可得到如下公式:Sn = a1 * (1 - q^n) / (1 - q)2. 求等比数列的通项公式:设等比数列的首项为a1,公比为q,第n项为an。
根据等比数列的特点,可得到如下公式:an = a1 * q^(n - 1)3. 求等比数列中满足特定条件的项数:对于等比数列,我们常常需要求出满足一定条件的项数。
例如,已知等比数列的首项为a1,公比为q,求第n项为m的项数时,可以通过以下公式解答:an = a1 * q^(n - 1) = m三、其他常见数列问题解答除了等差数列和等比数列外,还有一些其他常见的数列形式,如递推数列、斐波那契数列等,下面将对这些问题进行解答。
完整版)数列典型例题(含答案)

完整版)数列典型例题(含答案)等差数列的前n项和公式为代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得。
因此,前项和为。
⑵由已知条件可得代入等差数列的前n项和公式,得到化简得因此,前项和为。
8.(2010山东理) 已知等差数列 $a_1,a_2,\ldots,a_n,\ldots$,其中 $a_1=1$,公差为 $d$。
1) 求 $a_5$ 和 $a_{10}$。
2) 满足 $a_1+a_2+\ldots+a_k=100$,$a_1+a_2+\ldots+a_{k+1}>100$,$k\in\mathbb{N}$,求该等差数列的前 $k$ XXX。
考查目的:考查等差数列的通项公式和前项和公式等基础知识,考查数列求和的基本方法以及运算求解能力。
答案:(1) $a_5=5d+1$,$a_{10}=10d+1$;(2) $k=13$,前$k$ 项和为 $819$。
解析:(1) 根据等差数列的通项公式 $a_n=a_1+(n-1)d$,可得 $a_5=1+4d$,$a_{10}=1+9d$。
2) 设该等差数列的前 $k$ 项和为 $S_k$,则由等差数列的前项和公式可得 $S_k=\dfrac{k}{2}[2a_1+(k-1)d]$。
根据已知条件可列出不等式组:begin{cases}S_k=100\\S_{k+1}>100end{cases}将 $S_k$ 代入得:frac{k}{2}[2+(k-1)d]=100整理得:$k^2+kd-400=0$。
(完整版)数列题型及解题方法归纳总结

知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)2434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
探索性问题——精选推荐

探索性问题【考点梳理】一、探索性问题如果把一个数学问题看作是由条件、解题依据、解题方法和结论这四个要素组成的一个系统,那么我们把这四个要素中有两个是未知的数学问题称为探索性问题。
条件不完备和结论不确定是探索性问题的基本特征。
二、探索型问题的基本类型1.条件追溯型这类问题的外在形式是针对一个结论,条件未知需探究,或条件增删需确定,或条件正误需判断。
解决这类问题的基本策略是执果索因,先寻找结论成立的必要条件,再通过检验或论证找到结论成立的充分条件。
在执果索因的推理过程中,不考虑推理过程的可逆与否,误将必要条件当作充分条件,是一种常见错误,必须引起注意。
确定条件是否多余时要着眼于每个条件对所求(或所证)对象的确定性,判断条件正误时多从构造反例入手。
2.结论探索型这类问题的基本特征是有条件而无结论或结论的正确与否需要确定。
探索结论而后论证结论是解决这类问题的一般型式。
3.存在判断型判断存在型问题是指判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立的探索性问题,解决这类问题通常假设题中的数学对象存在(或结论成立)或暂且认可其中一部分的结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论的证明。
4.方法探究型这里指的是需要非常规的解题方法或被指定要用两种以上的方法解决同一个问题,难度较高的构造法即属此型。
在探究方法的过程中,常常需要研究简化形式但保持本质的特殊情形,运用类比、猜测、联想来探路,解题过程中创新成分比较高。
三、思想方法解决探索性问题,较少现成的套路和常规程序,需要较多的分析和数学思想方法的综合运用。
对观察、联想、类比、猜测、抽象、概括诸方面的能力有较高要求。
高考题中一般对这类问题有如下方法:1.直接法2.观察—猜测—证明3.赋值法4.数形结合 5.联想类比6.从特殊到一般7.从特殊到一般再到特殊8.等价转化四、怎样提高解探索问题的能力1.注重双基的训练,夯实基础知识。
(完整版)数列典型例题(含答案)

《2.3 等差数列的前n项和》测试题一、选择题1.(2008陕西卷)已知是等差数列,,,则该数列前10项和等于( )A.64B.100C.110 D .120考查目的:考查等差数列的通项公式与前项和公式及其基本运算.答案:B解析:设的公差为. ∵,,∴两式相减,得,.∴,.2.(2011全国大纲理)设为等差数列的前项和,若,公差,,则( )A.8B.7C.6D.5考查目的:考查等差数列通项公式的应用、前项和的概念.答案:D解析:由得,,即,将,代入,解得.3.(2012浙江理)设是公差为的无穷等差数列的前项和,则下列命题错误的是( )A.若,则数列有最大项B.若数列有最大项,则C.若数列是递增数列,则对任意,均有D.若对任意,均有,则数列是递增数列考查目的:考查等差数列的前项和公式及其性质.答案:C解析:根据等差数列的前项和公式,可得,因为,所以其图像表示的一群孤立的点分布在一条抛物线上. 当时,该抛物线开口向下,所以这群孤立的点中一定有最高点,即数列有最大项;反之也成立,故选项A、B的两个命题是正确的. 选项C的命题是错误的,举出反例:等差数列-1,1,3,5,7,…满足数列是递增数列,但.对于选项D的命题,由,得,因为此式对任意都成立,当时,有;若,则,与矛盾,所以一定有,这就证明了选项D的命题为真.二、填空题4.(2011湖南理)设是等差数列的前项和,且,,则.考查目的:考查等差数列的性质及基本运算.答案:81.解析:设的公差为. 由,,得,. ∴,故.5.(2008湖北理)已知函数,等差数列的公差为. 若,则.考查目的:考查等差数列的通项公式、前项和公式以及对数的运算性质,考查运算求解能力.答案:.解析:∵是公差为的等差数列,∴,∴,∴,∴.6.(2011广东理)等差数列前9项的和等于前4项的和. 若,,则____.考查目的:考查等差数列的性质及基本运算.答案:10.解析:设等差数列前项和为. ∵,∴;∵,∴. ∴,故.三、解答题7.设等差数列的前项和为,且,求:⑴的通项公式及前项和;⑵.考查目的:考查等差数列通项公式、前项和的基本应用,考查分析问题解决问题的能力.答案:⑴;.⑵解析:设等差数列的公差为,依题意,得,解得.⑴;⑵由,得.当时,.当时,,∴8.(2010山东理)已知等差数列满足:,,的前项和为.⑴求及;⑵令,求数列的前项和.考查目的:考查等差数列的通项公式与前项和公式等基础知识,考查数列求和的基本方法以及运算求解能力.答案:⑴,;⑵.解析:⑴设等差数列的公差为,因为,,所以有,解得,,所以,.⑵由⑴知,所以,所以,即数列的前项和.一、选择题1.(2009广东文)已知等比数列的公比为正数,且,,则( ).A. B. C.D.2考查目的:考查等比数列通项公式的基本应用.答案:B解析:设公比为,由已知得,得,又因为等比数列的公比为正数,所以,故.2.(2007天津理)设等差数列的公差,.若是与的等比中项,则( ).A.2B.4C.6D.8考查目的:考查等差数列、等比数列的概念与通项公式、等比中项的概念等基础知识及基本运算能力.答案:B解析:∵,∴;又∵是与的等比中项,∴,即;∵,∴,解得,或(舍去).3.(2010江西理数)等比数列中,,,函数,则( )A. B. C.D.考查目的:多项式函数的导数公式、等比数列的性质等基础知识,考查学生的创新意识,综合与灵活地应用所学数学知识、思想和方法解决问题的能力.答案:C.解析:∵是多项式函数,∴的常数项的一次项系数,∴.二、填空题4.(2007重庆理)设为公比的等比数列,若和是方程的两根,则__________.考查目的:考查一元二次方程、等比数列的概念等基础知识,考查分析问题解决问题的能力.答案:18.解析:根据题意,得,,∴,∴.5.(2009江苏卷)设是公比为的等比数列,,令,若数列有连续四项在集合中,则 .考查目的:考查等比数列的概念、等价转化思想和分析推理能力.答案:.解析:根据题意可知,有连续四项在集合中,因为是等比数列,且公比满足,所以这四项只能依次是,所以公比,.6.(2012辽宁理)已知等比数列为递增数列,且,,则数列的通项公式______________.考查目的:考查等比数列的通项公式及方程思想和逻辑推理能力.答案:.解析:∵,∴,得,∴;又∵,∴,∴,解得或(舍去),∴.三、解答题7.已知数列的首项,关于的二次方程(,且)都有实数根,且满足.⑴求证:是等比数列;⑵求的通项公式.考查目的:考查等比数列的概念、通项公式、一元二次方程的根与系数的关系等基础知识,考查综合运用知识分析问题解决问题的能力.答案:⑴略;⑵.解析:⑴由题设可得,,(,且);又由,得. 所以,即(),化为(,且),又,所以是首项为,公比为的等比数列.⑵由⑴的结论,得,所以的通项公式为.8.(2012广东文)设数列前项和为,数列的前项和为,满足,.⑴求的值;⑵求数列的通项公式.考查目的:考查等比数列的概念、递推公式的处理方法、化归思想,考查分析问题解决问题的能力.答案:⑴;⑵.解析:⑴当时,. 因为,所以,求得.⑵当时,,∴①,∴②. ②①得,所以. ∵,易求得,∴,∴. 所以是以3为首项,2为公比的等比数列,,故所以,.置:首页>>高中数学>>教师中心>>同步教学资源>>课程标准实验教材>>同步试题>>必修5《2.5 等比数列的前n项和》测试题一、选择题1.(2007陕西理)各项均为正数的等比数列的前项和为,若,,则( )A.16B.25C.30D.80考查目的:考查等比数列的前项和公式及运算求解能力.答案:C.解析:由,可知,的公比,∴①,②,②式除以①式,得,解得(舍去),代入①,得. ∴.2.(2010天津理)已知是首项为的等比数列,是的前项和,且,则数列的前项和为( )A.或B.或C.D.考查目的:考查等比数列前项和公式的应用及等比数列的性质.答案:C解析:设的公比为,若,则,,不合题意,所以. 由,得,得,所以,因此是首项为1,公比为的等比数列,故前5项和为.3.设等比数列的前项和为,若,则等于( )A. B. C.D.考查目的:考查等比数列前项和公式及性质等基础知识,考查运算求解能力.答案:A.解析:解法1:若公比,则,∴. 由,得,∴,∴.解法2:由可知,公比(否则有).设,则,根据,,也成等比数列,及,,得,∴,故.二、填空题4.在等比数列中,已知,则公比.考查目的:考查等比数列的前项和公式及其中包含的分类讨论思想.答案:1或.解析:由已知条件,可得,当时,,符合题意;当时,由,消去,得,解得或(舍去). 综上可得,公比或.5.(2009浙江理)设等比数列的公比,前项和为,则.考查目的:考查等比数列通项公式与前项和公式的基本应用.答案:15.解析:∵,,∴.6.已知等比数列的首项为,是其前项和,某同学经计算得,,,后来该同学发现其中一个数算错了,则算错的那个数是,该数列的公比是 .考查目的:考查等比数列的概念、前项和概念及公式等基础知识,考查分析问题解决问题的能力.答案:,.解析:假设正确,则由,得,所以公比,可计算得,,但该同学算只算错了一个数,所以不正确,,正确,可得,,所以公比.三、解答题7.(2010重庆文)已知是首项为,公差为的等差数列,为的前项和.⑴求通项及;⑵设是首项为,公比为的等比数列,求数列的通项公式及其前项和.考查目的:考查等差数列、等比数列的通项公式与前项和公式的基本应用以及运算求解能力.答案:⑴,;⑵,.解析:⑴因为是首项为,公差为的等差数列,所以,.⑵由题意,所以,.8.(2012陕西理)设是公比不为1的等比数列,其前项和为,且成等差数列.⑴求数列的公比;⑵证明:对任意,成等差数列.考查目的:考查等比数列的通项公式、前项和公式、等差数列的概念等基础知识,考查推理论证能力.答案:⑴;⑵略.解析:⑴设数列的公比为(). 由成等差数列,得,即. 由,得,解得(舍去),所以数列的公比为.⑵证法一:对任意,,所以对任意,成等差数列.证法二:对任意,,,∴,因此,对任意,成等差数列.第二章《数列》测试题(一)一、选择题1.(2012安徽理)公比为等比数列的各项都是正数,且,则( ).A.4B.5C.6D.7考查目的:考查等比数列的通项公式与性质、对数的概念与运算等基础知识.答案:B.解析:∵,∴,∵的各项都是正数,∴,∴,∴.2.(2011江西理)已知数列的前项和满足:,且,那么( ).A.1B.9C.10D.55考查目的:考查数列的递推公式、等差数列的概念及通项公式、与的关系.答案:A解析:令,得,∵,∴,∴是首项为,公差为的等差数列,,因此,.3.(2011天津理)已知为等差数列,其公差为,且是与的等比中项,为的前项和,,则的值为( ).A.-110B.-90C.90D.110考查目的:考查等比中项的概念以及等差数列通项公式、前项和公式的基本应用.答案:D解析:设等差数列的公差为,根据题意得,即,将代入,并解得,所以.4.(2012湖北理)定义在上的函数,如果对于任意给定的等比数列,仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数:①;②;③;④.则其中是“保等比数列函数”的的序号为( ).A.①②B.③④C.①③ D.②④考查目的:本题考察等比数列的性质及函数计算.答案:C.解析:对于①,,所以是“保等比数列函数”;对于②,,所以不是“保等比数列函数”;对于③,,所以是“保等比数列函数”;对于④,,所以不是“保等比数列函数”.5.已知数列满足,当时,,则( ).A.1B.2C.-1D.-2考查目的:考查数列递推公式的运用、周期数列的概念与判断,考查分析判断能力.答案:A.解析:由条件可得该数列为:,所以是周期为的周期数列,所以.6.(2012上海理)设,,在中,正数的个数是( ).A.25B.50C.75D.100考查目的:数列前项和的概念、三角函数的周期性,考查综合运用知识分析问题解决问题的能力.答案:D.解析:当时,;当时,,但其绝对值要小于时相应的值;当时,;当时,,但其绝对值要小于时相应的值;当时,. ∴当时,均有.二、填空题7.(2009北京理)已知数列满足:,,,,则______;_________.考查目的:考查数列的概念、周期数列等基础知识.答案:1,0.解析:依题意,得,.8.(2011湖北理)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为升.考查目的:考查等差数列的概念、基本运算以及运算能力.答案:.解析:记题中的等差数列为,公差为,前项和为. 根据题意知,,两式联立解得,,∴.9.(2010天津文)设是等比数列,公比,为的前项和.记,,设为数列的最大项,则 .考查目的:考查等比数列的前项和公式及平均值不等式等基础知识,考查运算能力.答案:4.解析:根据等比数列前项和公式,得.∵,当且仅当,即时取等号,而,∴当时,取最大值,即数列的最大项为,所以.10.(2011江苏卷)设,其中成公比为的等比数列,成公差为1的等差数列,则的最小值是________.考查目的:考查等差数列、等比数列的概念和通项公式,考查不等式的有关知识及推理判断能力.答案:.解析:由题意可得,∴. ∵,∴当取最小值时,,∴,即的最小值是.11.(2012四川理)记为不超过实数的最大整数,例如,,,.设为正整数,数列满足,,现有下列命题:①当时,数列的前3项依次为5,3,2;②对数列都存在正整数,当时总有;③当时,;④对某个正整数,若,则. 其中的真命题有____________.(写出所有真命题的编号)考查目的:本题属于新概念问题,主要考查对新概念的理解、不等式的性质,以及数列知识的灵活运用和推理论证能力.答案:①③④解析:易证,对于取整函数有下列性质:性质1:当时,;性质2:对,有;性质3:若,,则. ①当时,,,故①为真;②当时,易知该数列为:(1与2交替出现),所以②为假;③∵,∴;由题易知,对一切,均为正整数,所以无论是奇数还是偶数,均有,故③为真;④若对某个正整数,则由,得,∴,∵是正整数,∴.又∵,,∴(或由③为真,及,直接可得),故,因此④为真.第二章《数列》测试题(二)三、解答题12.(2009浙江文)设为数列的前项和,,,其中是常数.⑴求及;⑵若对于任意的,,,成等比数列,求的值.考查目的:考查数列的通项与前项和以及它们之间的关系,考查等比数列的概念以及运算求解能力.答案:⑴,;⑵或.解析:⑴当时,;当时,.而也适合上式,所以.⑵∵,,成等比数列,∴,即,化简并整理得. ∵此式对成立,∴或.13.(2010全国卷Ⅱ文)已知是各项均为正数的等比数列,且,.⑴求的通项公式;⑵设,求数列的前项和.考查目的:考查等比数列的通项公式与前项和公式、方程与方程组等基础知识,考查运算求解能力.答案:⑴.⑵.解析:⑴设的公比为,则.由已知,有,化简得,解得,(舍去),所以.⑵由⑴知,所以.14.(2008湖南理)数列满足⑴求,,并求数列的通项公式;⑵设,,证明:当时,.考查目的:考查数列递推公式的运用、等差数列、等比数列的概念和通项公式、三角函数等基础知识,考查数列求和、不等式证明的基本方法,以及分析问题解决问题的能力.答案:⑴,,;⑵略.解析:⑴∵,,∴,.一般地,当时,,即,所以数列是首项为1、公差为1的等差数列,因此.当时,,所以数列是首项为2、公比为2的等比数列,因此.∴数列的通项公式为.⑵由⑴知,,①,②,得,,∴.要证明当时,成立,只需证明当时,成立.证明:要证明,只需证明.令,则,∴当时,.∴当时,.于是当时,.15.(2012广东理)设数列的前项和为,满足,且,,成等差数列.⑴求的值;⑵求数列的通项公式;⑶证明:对一切正整数,有.考查目的:考查数列和不等式的概念及其性质、数列与函数的关系等基础知识,考查数列递推公式的运用、不等式放缩等基本方法,考查综合运用知识分析问题的能力、推理论证能力和运算求解能力.答案:⑴;⑵;⑶略.解析:⑴在中,令得;令得,解得,.又∵,∴解得.⑵由,得.又∵也满足,∴成立,∴,∴,∴.⑶(法一)∵,∴,∴.(法二)∵,∴,当时,,,,…,,累乘得,∴.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究数列典型问题
作者:李沫兰
来源:《学周刊·上旬刊》2016年第04期
摘要:数列是我们从中学时期就会接触和涉及的一个知识点,虽看似简单却蕴含着很玄妙的数学规律,值得我们去深入探讨。
我们通过了解数列的产生和发展过程,可以发现数列中所代表和体现的数学规律之美。
其中,菲波那切数列更能体现出数学的应用之美。
关键词:数列;历史;应用;菲波那切数列
中图分类号:G63 ; ; ; ; ;文献标识码:A ; ; ; ; ;文章编号:1673-9132(2016)10-0245-151
DOI:10.16657/ki.issn1673-9132.2016.10.036
一、数列的概念
数列(sequence of number)是一列有序的数。
它是以正整数集或它的有限子集为定义域的一种函数。
数列中所包含的每一个数叫做这个数列的项。
排在这个数列第一位的数称之为首项(通常也叫做数列的第1项),而排在第二位的数称为数列的第2项……依次类推排在第n 位的数则称为这个数列的第n项,通常使用来an表示。
开始接触并学习函数的知识以后,可以发现,数列其实是一种比较特殊的函数。
它的特殊性主要表现在数列的定义域和值域上。
一般的,数列可以被看做是一个定义域为正整数集N*或者其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能被省略。
可以看到用函数的观点认识数列是一种重要的思想方法,一般情况下,函数通常有三种表示方法,同样的数列也有三种表示的方法:1.列表法;2.图像法;3.解析法。
其中解析法包含以通项公式表示数列和以递推公式表示数列。
因为函数不一定有解析式,所以同样的数列也并非都有通项公式。
(一)数列的分类
常用的数列通常有以下几种:“有穷数列”(finite sequence),项数有限的数列;“无穷数列”(infinite sequence),项数无限的数列。
正项数列,数列的各项都是正数;递增数列,即从第2项起,每一项都大于它的前一项的数列;递减数列,即从第2项起,每一项都小于它的前一项的数列;摆动数列,从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列;周期数列,数列各项呈周期性变化的数列;常数列,各项相等的数列。
(二)数列的表示
数列有时会有很多项数,而有的无限数列的项数是无穷的,那么应该如何更好地表示数列呢?通常我们使用通项公式和递推公式来表达和表示一个数列。
1.数列的通项公式,即数列{an}的第n项与序号n之间的关系可以通过同一个式子来表示,即数列的通项公式。
如an=(-1)n+1+1,可以注意到首先有些数列的通项公式可以有不同形式,而有些数列没有通项公式。
比如,素数由小到大排成一列2,3,5,7,11,……这个数列就没有通项公式。
2.数列的递推公式,即表现数列的某一项和它的前一项或前若干项之间关系的式子。
数列的递推公式同其通项公式的特点类似,即有些数列的递推公式是不唯一的,可以有不同形式。
同样有些数列也可以没有递推公式,且有递推公式的数列不一定有通项公式。
二、数列的产生与发展
数列是除去数字、三角、函数之外的另一个非常重要的数学概念。
数列很早就体现出了人类的睿智,因为它不仅推进了级数的产生和组合的发展,还充满着人文气息和人类智慧,并被广泛应用在艺术、建筑等诸多领域,是数学中的重要模型。
数列的历史十分悠久,在古代中国、古印度、古希腊、古代阿拉伯等历史中都可以发现数列的记载和介绍。
在古代中国,《庄子》中就有:“一尺之锤,日取其半,万世不竭。
”的记载。
而在古巴比伦,约在公元前20世纪的石板上记录了以下数字:1,4,9,16,25,36,49,……其实这是现在非常常见的自然数的平方和。
同时,中国的《九章算术》或西方的欧几里得的《几何原本》都对数列有丰富的记录。
关于数列,还有许多经典的命题广为流传,像熟悉的数学家高斯幼年巧算1到100自然数和的故事,以及国际棋盘上叠加小麦的问题和比较著名的阿莫斯之谜等。
不仅在数学研究上,在自然界和生活中,数列依然随处可见。
下文将就菲波那切数列的单独分析来揭示上述讨论。
三、菲波那切数列
菲波那切数列是一个比较常见的数列,学生应该都比较熟悉,即0,1,1,2,3,5,8,13,21,34,……这个数列的特点是从第三项起,每一项都等于它的前两项相加之和,是意大利数学家列昂纳多·斐波那契发现的,自斐波那契数列发现之时起,就引起了人们的广泛关注。
在数学表示上,斐波那契数列可以表示为:
F(n)=0,当n=0时;
F(n)=1,当n=1时;
F(n)=F(n-1)+F(n-2),当n>1时。
(一)斐波那契数列的相关数学性质
1.与黄金比例的关系。
通过研究可以发现,对于菲波那切数列的各项来说,相邻两项的商,越靠后就越接近0.618,而通过通项公式去求相邻两项商的极限其结果正是黄金比例,因此,菲波那切数列又称为黄金比数列。
2.简单的规律。
透过数列我们可以发现其中一些简单的规律:每3个连续的斐波那契数有且只有一个被2整除,每4个连续的斐波那契数有且只有一个被3整除,每5个连续的斐波那契数有且只有一个被5整除,每6个连续的斐波那契数有且只有一个被8整除,每7个连续的斐波那契数有且只有一个被13整除,……每n个连续的斐波那契数有且只有一个被整除。
(二)斐波那契数列的应用
除了在数学方面的研究外,菲波那切数列在很多领域都有着广泛的应用。
1.物理学。
在已学到的氢原子能级方面,在氢原子吸收能量发生能级跃迁时,电子所处的状态可能的情形是:1、2、3、5、8、13、21…种。
这就是斐波那契数列的一部分。
2.计算机科学。
在计算机算法方面,同样可以应用到斐波那契数列。
如斐波那契堆(Fibonacci heap),它是计算机科学中,最小堆有序树的集合。
可用于计算机计算时实现合并优先队列。
通过斐波那契数列算法的应用,它可以不涉及删除元素的操作的平摊时间,和另一种算法二项堆相比是巨大的改进,大大提高了计算速度。
3.自然界。
在自然界中,很多动植物的生长都遵从斐波那契数列的规律。
一些植物的萼片、花瓣、果实数目以及排列方式上,都非常符合斐波那契数列,如菠萝、松子等。
而贝壳螺旋轮廓线则符合斐波那契螺旋。
四、结语
数列从古至今的发展可以看到,在每个细微的方面深入思考,都可以有很深入的发现。
这也是每个人在学习上应当具备的优良品德。
通过数列这一小小的切入点,也可以看到数学是如此实用和美妙的学科。
正是对数学的研究才逐步推动着各个领域科技的进步与发展,也需要一代代人们努力去研究,让数学的发展更进一步。
[1] 王君行.斐波那契数列的一些有趣性质[J].数学通报,2009(3):
60.
[2] 闫萍,王见勇.斐波那契数列与黄金分割数[J].高等数学研究,
2005(1):28-29.
Exploration on the Typical Problems of Sequence of Number
LI Mo-lan
(Handan No. 1 High School, Handan Hebei, 056000, China)
Abstract: Sequence of number is a knowledge point that we commonly contact in high schools. Although it seems simple, it contains a mysterious mathematical law which needs further exploration. We could find the mathematical laws of beauty in sequence through analysis on the emergence and development process of sequence. Among them, Fibonacci Sequence could particularly reflect the beauty of mathematics.
Key words: sequence of number; history; application; Fibonacci Sequence
[ 责任编辑赵建荣 ]。