第八章非线性控制系统分析习题与解答
自控例题解析

·43·第8章 非线性控制系统的分析例题解析例8-1 设非线性系统具有典型结构,试用等效增益概念分析具有死区的三位置理想继电特性(见图8-1(a))对系统稳定性的影响。
图8-1 稳定性分析解:由等效增益定义x y K /=知,等效增益曲线如图8-1(b)所示,其中∆=/M K m 。
设系统不存在非线性时,临界稳定增益为K c ,于是① 若K c >K m ,如图8-1(b)所示,则因实际增益小于临界增益K c ,所以系统稳定 ② 若K c <K m ,如图8-1(c )所示,其中x 0=M./K c ,则当x<x 0时,因m K K >,系统不稳定,x 发散;当x 增加至使x >x 0时,此时m K K <,系统稳定,x 收敛;当x 减小至使x <x 0时,重复上述过程。
可见,在这种情况下,系统将出现以x 0为振幅的自激振荡。
③ 原系统加入具有死区的理想三位置继电特性后,改善了系统的稳定性。
不论原系统是否发散,现系统都不会发散,但可能产生一个以x 0为振幅的自激振荡。
例8-2 试求图8-2所示非线性环节的描述函数。
(a ) (b )·44·图 8-2 非线性环节解:(1)对于图8-2(a ),因为t X x x y ωsin ,3==且单值奇对称,故A1=03204320432043sin 4sin 1sin 11X t td X t d t X t td y B ====⎰⎰⎰πππωωπωωπωωπ21143)(X X A j X B X N =+=图 8-3(2)对于图8-2(b ),因为图示非线性可以分解为图8-3所示两个环节并联,所以 K XMX N X N X N +=+=π4)()()(21 例8-3 试将图8-4(a ),(b )所示系统归化为一个非线性部分和一个线性部分串联的典型结构。
(a ) (b )图 8-4解:(1)G 1与G 2是小回路的负反馈,则2111G G G G +=从而得典型结构,见图8-5。
精品文档-自动控制原理(王春侠)-第八章

8.2 描 述 函 数 法 8.2.1 描述函数的基本概念
设非线性环节的输入为 x(t)=A sinωt
一般情况下,非线性环节的稳态输出y(t)是非正弦周期信号。 将y(t)用傅氏级数表示为
y t A0 An cos nt+Bn sin nt =A0 Yn sin nt+n
n =1
n =1
kx,
x ≤a
y Msignx, x >a
2
图8-1 饱和非线性特性
3
2. 死区特性
死区又称不灵敏区,如图8-2所示。其输入与输出之间关
系的表达式为
0,
x ≤Δ
y k x Δsignx, x >Δ
式中,Δ为死区范围; k为线性段的斜率。
当输入信号小于Δ时,对系统来说,虽然有输入但无输
出,只有当|x|>Δ时才有输出,这时,输出与输入之间为
第八章 非线性控制系统分析
8.1 非线性系统的基本概念 8.2 描述函数法 8.3 相平面法 8.4 Matlab应用实例
1
8.1 非线性系统的基本概念 8.1.1 典型非线性特性
控制系统中含有本质非线性环节,如果这些本质非线性特 性能用简单的折线来描述,则称为典型非线性特性。
1. 饱和特性 饱和特性是一种常见的非线性特性,如图8-1所示。其数 学表达式为
最后指出,这种方法只适用于单个的非线性元件,如果有 两个以上的非线性元件,则必须把它们合并为一个模块,否则 第二个元件的输入就不会是正弦波。
22
8.2.2 典型非线性特性的描述函数 1. 死区特性 在具有死区的元件中,当输入在死区的幅值范围内时
就没有输出。图8-6所示为死区非线性特性及其输入、输出波 形。
《自动控制原理》第八章 非线性控制系统分析

第八章 非线性控制系统分析8-1 非线性控制系统概述1. 研究非线性控制理论的意义以上各章详细地讨论了线性定常控制系统的分析和设计问题。
但实际上,理想的线性系统并不存在,因为组成控制系统的各元件的动态和静态特性都存在着不同程度的非线性。
以随动系统为例,放大元件由于受电源电压或输出功率的限制,在输入电压超过放大器的线性工作范围时,输出呈饱和现象,如图8-l(a)所示;执行元件电动机,由于轴上存在着摩擦力矩和负载力矩,只有在电枢电压达到一定数值后,电机才会转动,存在着死区,而当电枢电压超过一定数值时,电机的转速将不再增加,出现饱和现象,其特性如图8-1(b)所示;又如传动机构,受加工和装配精度的限制,换向时存在着间隙特性,如图8-1(c)所示。
在图8-2所示的柱形液位系统中,设H 为液位高度,Q i为液体流入量,Q o 为液体流出量,C 为贮槽的截面积。
根据水力学原理0Q k H = (8-1)其中比例系数k 是取决于液体的粘度和阀阻。
液位系统的动态方程为0i i dH CQ Q Q k H dt =-=-显然,液位H 和液体输入量Q i 的数学关系式为非线性微分方程。
由此可见,实际系统中普遍存在非线性因素。
当系统中含有一个或多个具有非线性特性的元件时,该系统称为非线性系统。
一般地,非线性系统的数学模型可以表示为:(,,...,,)(,,...,,)n m n m d y dy d r dr f t y g t r dt dt dt dt =(8-3)其中f(·)和g(·)为非线性函数。
当非线性程度不严重时,例如不灵敏区较小、输入信号幅值较小、传动机构间隙不大时,可以忽略非线性特性的影响,从而可将非线性环节视为线性环节;当系统方程解析且工作在某一数值附近的较小范围内时,可运用小偏差法将非线性模型线性化。
例如,设图8—2液位系统的液位H 在H 0附近变化,相应的液体输入量Q i 在Q i0,附近变化时,可取ΔH =H −H 0,ΔQ i =Q i −Q i0,对√H 作泰勒级数展开。
23第八章 非线性控制系统分析(第十九讲)

反之,若-1/N(A)曲线沿着振幅A增 加的方向由稳定区域进入不稳定区域时, 该交点对应的周期运动是不稳定的。
欲利用非线性系统产生不受扰动 影响的自激振荡,应选图8-21(a) 所示的系统。
jw)N ( A)]
0
由上两式可解得交点处得频率ω 和幅值A。
交点处,系统响应为等幅振荡,即系 统处于周期运动。此时,非线性环节 的输入近似为等幅振荡。
每个交点对应一个周期运动。 如果该周期运动能够维持,即在外界
小扰动作用下使系统偏离该周期运动, 而当该扰动消失后,系统的运动仍能 恢复原周期运动,则称为稳定的周期 运动。
置。
非线性系统稳定性分析的描述函数法
条件(1)具有典型结构形式(2)满足描 述函数法应用条件。
描述函数可作为一个具有复变增益的比例 环节,非线性系统变成一个等效的线性系 统。可以应用线性系统理论中的频率域稳 定判据分析非线性系统的稳定性。
变增益线性系统的稳定性分析
图8-17(a)线性系统,其中K为比例环节 增益。
非线性系统的稳定性判据
若奈氏曲线不包围-1/N(A)曲线, 则非线性系统稳定;若奈氏曲线包 围-1/N(A)曲线,则非线性不系统 稳定。
例8-3 系统不稳定
若奈氏曲线与-1/N(A)曲线有交点,表明特 征方程有ω 的正实数解,则系统存在着无 外作用下的周期运动,其稳定性和周期运 动的稳定性需另行分析。
生等幅振荡。
若设K在一定范围内可变,即有
K1 K K2
则(-1/K,j0)为复平面实轴上的一段 直线。 若奈氏曲线不包围该直线,则系统 闭环稳定,反之,系统闭环不稳定。
第8章 非线性系统分析 参考答案

参考答案一、填空题1. 非本质;本质2. 自持振荡3. 初始条件;输入信号大小4. 饱和非线性;死区非线性;间隙非线性;继电器非线性5. 不稳定6. 稳定;不稳定;半稳定7. 自左向右;自右向左 二、分析与计算题1. 求3()()y t ax t =的描述函数。
解:由于3()()y t ax t =是单值奇函数,所以其傅里叶级数展开式中A 0=0、A 1=0、φ1=0,将()sin x t A t ω=代入B 1的计算公式,可得2102330340320320303031()sin 1sin sin 2sin 21cos 2()2212cos 2cos 241cos 412cos 22242311(cos 2cos 4)828231(sin 284B y t td taA t td t aA td t aA t d t aA t t d t tt aA d t aA t t d t aA πππππππωωπωωωπωωπωωπωωωπωωωπωωωπππ===-=-+=+-+==-+=-⎰⎰⎰⎰⎰⎰⎰31sin 4)003234t t aA ππωω+=所以32133()44B aA N A aA A A ===2.设具有滞环继电器非线性特性的非线性系统结构如题图8.1所示,已知b =1,a =0.3,试判断系统是否存在自持振荡,若存在,则求出自持振荡的幅值和频率。
题图8.1解:具有滞环的继电器非线性特性的描述函数为24()j()abN A A a Aπ=≥其描述函数负倒数特性为1j ()()4a A a N A bπ-=≥ 可见,描述函数负倒数特性的虚部为常数4a b π-,即1()N A -曲线为一条虚部为4abπ-的直线。
由于10()(21)(0.41)G s s s =++,所以222222222210(j )(2j 1)(0.4j 1)10(12j )(10.4j )(14)(10.16)10(1 2.4j 0.8)(14)(10.16)10824j (14)(10.16)(14)(10.16)G ωωωωωωωωωωωωωωωωω=++--=++--=++-=-++++由以上可知,1()N A -曲线与(j )G ω必有交点,而且交点为稳定的,因此会产生自持振荡。
《自动控制原理》第八章非线性控制系统分析

K G jw = ( ) S 0.1S+1)( 0.2S+1) ( K −0.3w− j(1−0.02w2 )] [ = 4 2 w 0.0004w + 0.05w +1) (
S= jw
令 ImG(jw) = 0 即 1 – 0.02w2 = 0 ,可得 G(jw) 曲线与负实轴交点的频率为:
1 wx = = 50 = 7.07rad / s 0.02
C(t)
∆2 ∆3 ∆ = ∆1 + + k k k2 1 1
K1 ,k2 ,k3 为传递函数各自的增益
处于系统前向通路最前边的元件,其死区所 造成的影响最大,而放大元件和执行元件的影响 可以通过提高这些元件前几项的传递函数来减小。 死区对系统的直接影响是造成稳态误差,降 低了定位精度。
≤ 时,输出量 y 与 x 是线 饱和:当输入量 x≤ a x> a > 时,输出量不再 性关系 y = kx ,当 随着输入量线性增长,而保持为某一常值。
两条曲线在交点处的幅值相等,即: −π
1 1 1 2 [arcsin + 4 1−( ) ] A A A = −1
得:A = 0.5 应用奈氏判据可以判断交点对应的周期运动 2.5sin7.07t 是稳定的,故当 k = 15 时,非线性系统 工作在自振状态,自振振幅 A = 2.5 ,频率 w = 7.07rad/s (2)欲使系统稳定地工作,不出现自振荡,由于 G(s) 的极点均在右半平面,故根据奈氏判据
相对负倒描述函数为:
A A2 ( ) 1 π π h h − =− =− NA ( ) 4 4 A2 h2 1−( ) ( ) −1 h A
采用相对描述函数后,系统的特征方程改写为:
自动控制原理第8章_非线性控制系统分析

B1 1 3 2 N ( A) A A 2 16
8.2.3 典型非线性特性得描述函数
1.饱和特性的描述函数
X(t) X(t)
kA sin t 0 ω t 1 x(t ) ka b ω t 1 2
X(t)是单值奇函数,所以A1=0
非线性环节的描述函数总是输入信号幅值A的函数, 一般也是频率的函数,因此,描述函数一般记为
N ( A, j )
非线性元件的描述函数或等效幅相频率特性与输入 的正弦振荡的振幅A有关,这是非线性特性本质的反 映。它与线性环节的情况正好相反,线性环节的幅 相特性(频率特性)与正弦输入的幅值无关。
8.2.2描述函数
4 B1 [ kA sint sinω td (ω t ) ka sinω td (ω t )] π
1
e(t)
0
4kA 4ka sin2 d π π
1
2
1
0
4kA 1 1 4ka ( sin 2 1 ) cos 1 2 4
2k a a a A[arcsin( ) 1 ( )2 ] A A A
8.1.4
继电器特性
8.1.4
继电器特性
(t ) 0 m a e(t ) a, e 0 , 0 , (t ) 0 a e ( t ) m a , e x(t ) bsign[e(t )], e(t ) a b , e(t ) m a, e (t ) 0 (t ) 0 b , e(t ) m a, e
(6)气动或液压滑阀的搭接段。 放大器的输出饱和或输出限幅
8.1.3
《自动控制原理》---丁红主编---第八章习题答案

8-1已知非线性环节的特性如图8.1a 所示,试计算该环节的描述函数。
答:方法一:由图8.1a 所示,,0...............0...............⎩⎨⎧<->+=x A Kx x A Kx y 令代入则可以得到, 因为非线性特性为奇函数,所以=0,A 1=,B 1==在此处键入公式。
可以得到B 1=KX+4,所以该非线性环节的描述函数为 。
方法二:图8.1a 所示的非线性特性可以看作是图8.1b ,图8.1c 叠加而成的。
图8.1b 对应的非线性环节的描述函数为。
图8.1c 对应的为理想继电器非线性,其描述函数为。
所以,图8.1a 对应的飞线性特性描述函数为。
8.2.试绘制0=++x x x &&&非线性系统的相平面图。
答:y 0 -a a x k (a ) y 0 xk (b ) y(c )0 -aa x由题意,此方程可以改写为:,开关线为x=0。
当x>0时,相轨迹方程对应的特征方程为+λ+1=0,,由可以得到.故奇点为稳定的焦点。
当x<0时,相轨迹方程对应的特征方程为+λ-1=0,,由可以得到此时的奇点为(0,0),奇点为鞍点,推导等倾线方程。
令=α,可以得到等倾线方程为,令等倾线的斜率为k ,即可以得到,得到,列写表格如下表所示。
K -3 -2 -10 1 2 3 +∞,8.3.系统方框图如图8-29所示,其中K>0,T>0。
当非线性元件N分别为理想继电特性;死区继电特性;滞环继电特性;带死区和滞环的继电特性,在cc&-相平面上绘制相平面图。
8-29系统方框图(1)具有死区的三位置继电特性线性部分的微分方程为当继电特性为具有死区的三位置继电特性时,上式可以写成分段微分方程为:C(t)r = 0- )1(+TssKN(e)e)开关线为,两条开关将相平面划分为三个线性区域,下面分区绘制相轨迹在区域,相轨迹方程为:类似于具有饱和特性的非线性控制系统时的讨论,像平面与该区域无奇点,相轨迹均渐进于的直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 非线性控制系统分析习题与解答
7-1 三个非线性系统的非线性环节一样,线性部分分别为
(1) G s s s ()(.)=
+1011 (2) G s s s ()()=+2
1
(3) G s s s s s ()(.)
()(.)
=+++21511011
试问用描述函数法分析时,哪个系统分析的准确度高?
解 线性部分低通滤波特性越好,描述函数法分析结果的准确程度越高。
分别作出三个系统线性部分的对数幅频特性曲线如图所示。
由对数幅频特性曲线可见,L 2的高频段衰减较快,低通滤波特性较好,所以系统(2)的描述函数法分析结果的准确程度较高。
7-2 将图示非线性系统简化成环节串联的典型结构图形式,并写出线性部分的传递函数。
解 (a) 将系统结构图等效变换为图(a)的形式。
G s G s H s ()()[()]=+111 (b) 将系统结构图等效变换为图(b)的形式。
G s H s G s G s ()()
()
()
=+1111
7-3 判断题7-41图中各系统是否稳定;)(1A N -与)(ωj G 两曲线交点是否为自振点。
解 (a ) 不是 (b) 是 (c) 是 (d) c a 、点是,b 点不是 (e) 是
(f) a 点不是,b 点是 (g) a 点不是,b 点是 (h) 系统不稳定 (i) 系统不稳定 (j) 系统稳定
7-4 已知非线性系统的结构如图所示
图中非线性环节的描述函数为N A A A A ()()=++>6
2
试用描述函数法确定:
(1)使该非线性系统稳定、不稳定以及产生周期运动时,线性部分的K值范围; (2)判断周期运动的稳定性,并计算稳定周期运动的振幅和频率。
解 (1)
-=-++126N A A A ()(), -=--∞=-101
3
1
1N N (),()
dN A dA A ()()=-+<4
202
N(A)单调降,)(1A N -也为单调降函数。
画出负倒描述函数曲线)(1A N -和
G j ()ω曲线如图所示,可看出,当K 从小到大变化时,
系统会由稳定变为自振,最终不稳定。
求使 Im[G j ()]ω=0 的ω值: 令 ∠=-︒-=-︒G j arctg ()ωω902180 得 arctg ωω=︒=451,
令 G j K
()ωωωωω===+12
2
11⎪⎩⎪
⎨⎧=→
=
→==21
32
31231K K K 可得出K 值与系统特性之间的关系:
(2)由图解7-13可见,当)(1A N -和G j ()ω相交时,系统一定会自振。
由自振条件
N A G j A A K A K
A ()()()()
ωω==
++⋅-=-++=-16226221 ()A K A +=+624 解出 )232(1
246<<⎪⎩⎪⎨⎧=--=K K
K A ω 7-5 非线性系统如图所示,试用描述函数法分析周期运动的稳定性,并确定系统输出信号
振荡的振幅和频率。
解 将系统结构图等效变换为下图。
G j j j j ()()()
ωωωωωω=
+=-+-+10110110
122
222.042.014)(A j A A A N ππ⨯-⎪⎭⎫ ⎝⎛-=⎥⎥⎦
⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-=A j A A 2.02.0142π
1()N A -
0.2j A π= 令G j ()ω与)(1A N -的实部、虚部分别相等得
2
22.014110⎪⎭
⎫ ⎝⎛-=+A A πω
10102401572
ωωπ()..+== 两式联立求解得 ω==3910806.,
.A 。
由题图,0)(=t r 时,有)(51)()(t x t e t c =-=,所以)(t c 的振幅为161.05
806
.0=。
7-6 试用描述函数法说明图示系统必然存在自振,并确定输出信号c 的自振振幅和频率,分别画出信号y x c 、、的稳态波形。
解
N A A N A A
(),()=
-=
-414
ππ 绘出)(1A N -和G j ()ω曲线如图(a )所示,可见D 点是自振点, 系统一定会自振。
由自振条件可得:
N A G j ()()
=
-1ω
即 -=-+42102πωωA j j ()10
)4(10422ωωω---=j 令虚部为零解出ω=2,代入实部得A=0.796。
输出信号的自振幅值为:398.02==A A c 。
画出y x c 、、点的信号波形如图(b )所示。