整数规划方法

合集下载

整数规划解法与实际案例分析

整数规划解法与实际案例分析

整数规划解法与实际案例分析整数规划是运筹学中的一个重要分支,它在实际问题中有着广泛的应用。

整数规划问题是指决策变量被限制为整数的线性规划问题,通常用于需要做出离散决策的情况。

在本文中,我们将介绍整数规划的基本概念和解法,并结合一个实际案例进行分析,以帮助读者更好地理解整数规划的应用。

### 整数规划的基本概念整数规划是一种特殊的线性规划问题,其决策变量被限制为整数。

一般来说,整数规划可以分为纯整数规划和混合整数规划两种情况。

纯整数规划要求所有的决策变量都是整数,而混合整数规划则允许部分决策变量为整数,部分为连续变量。

整数规划可以用数学模型来描述,通常形式如下:$$\begin{aligned}\text{Maximize} \quad & c^Tx \\\text{Subject to} \quad & Ax \leq b \\& x \in \mathbb{Z}^n\end{aligned}$$其中,$c$、$x$、$b$ 分别为目标函数系数向量、决策变量向量和约束条件右端常数向量,$A$ 为约束条件系数矩阵,$x \in\mathbb{Z}^n$ 表示 $x$ 是一个整数向量。

### 整数规划的解法整数规划问题的求解相对复杂,因为整数约束使得问题的解空间不再是连续的,而是离散的。

针对整数规划问题,通常有以下几种解法:1. **穷举法**:穷举法是最直接的方法,即枚举所有可能的整数解,然后逐一计算目标函数值,找出最优解。

然而,穷举法在问题规模较大时会变得非常低效。

2. **分支定界法**:分支定界法是一种常用的整数规划求解方法。

它通过不断将整数规划问题分解为子问题,并对子问题进行求解,直到找到最优解为止。

3. **割平面法**:割平面法是一种基于线性规划的整数规划求解方法。

它通过不断添加线性不等式约束(割平面)来逼近整数解,直到找到最优解为止。

4. **分支定价法**:分支定价法是一种高级的整数规划求解方法,通常用于解决混合整数规划问题。

整数规划

整数规划

比如下面的例子:
例1.某厂拟用集装箱托运甲乙两种货物,每箱 的体积、重量、可获利润以及托运所受限制如 下表:
货物 体积(每 箱M3) 5 甲 4 乙 托运限制 24 重量(每箱 50kg) 2 5 13 利润(每 箱百元) 20 10
问两种货物各托运多少箱,可使利润最大?
为了满足整数解得要求,初看,似乎只要把已得到的分 数或小数, “舍入化整”就可以了。但是,这常常是不行的, 因为化整后,不一定是可行解,或者虽是可行解,但不一定 是最优解。
整数规划
§1 整数规划及其解法 §2 0-1型整数规划 §3 指派问题
整数规划
1、理解整数规划、0-1规划和指派问题的数学 模型 2、理解整数规划模型的类型 3、理解整数规划的求解方法:分支定界法和割 平面法、0-1规划的隐枚举法和指派问题的 匈牙利法的思想和步骤
求解方法
1、分支定界法 2、割平面法

a x
i 1 ij
n
j
bi yi M (i 1,, m)
y1 + y2 + „ + ym = m –1, yi = 0 或 1 (i=1,„,m)
3、关于固定费用问题
• 在讨论线性规划时,有些问题是要求使 成本最少的方案,那时总设固定成本为 常数,并在线性规划的模型中不必明显 列出。但有些固定成本的问题不能用一 般线性规划来描述,但可改为混合整数 规划来解决。
aj
值最大?
解:设 x j 为决策变量,且 x j 满足如下限制
xj {
1,携带第j件物品 0,不携带第j件物品
,j 1,2, n
则问题的数学模型为
x c j x j max
j 1
n

运筹学整数规划

运筹学整数规划

运筹学整数规划运筹学是研究在资源有限的条件下,如何进行决策和优化的一门学科。

整数规划是运筹学中的一个重要分支,它解决的是决策变量必须为整数的问题。

整数规划在实际问题中具有广泛的应用,如生产计划、设备配置、选址问题等。

整数规划问题的数学模型可以表示为:max/min c^T xs.t. Ax ≤ bx ≥ 0x ∈ Z其中,c是目标函数的系数矩阵,x是决策变量的向量,A是约束条件的系数矩阵,b是约束条件的向量,Z表示整数集合。

整数规划问题与线性规划问题相似,但整数规划问题的约束条件多了一个整数限制,使得问题的解空间变得更为复杂。

由于整数规划问题的NP-hard性质,求解整数规划问题是一项困难的任务。

求解整数规划问题的常用方法有分支定界法、割平面法和启发式算法等。

分支定界法是一种穷举搜索的方法,它通过将整数规划问题不断分割成更小的子问题,从而逐步搜索解空间,直到找到最优解。

分支定界法对于规模较小的问题比较有效,但对于大规模复杂问题,效率较低。

割平面法是一种通过添加新的约束条件来减少解空间的方法。

它利用线性松弛问题(将整数约束条件放宽为线性约束条件)的解来构造有效的割平面,从而逐步缩小解空间,找到最优解。

割平面法通常比分支定界法更有效,但对于某些问题,可能需要添加大量的割平面才能收敛到最优解。

启发式算法是一种基于经验和启发式搜索的方法。

它通过设置初始解、搜索策略和邻域搜索等步骤,来快速找到近似最优解。

常见的启发式算法有遗传算法、模拟退火算法和禁忌搜索算法等。

启发式算法虽然不能保证找到全局最优解,但能够在可接受的时间内找到较优解。

综上所述,整数规划作为运筹学中的重要分支,解决的是决策变量必须为整数的问题。

整数规划问题具有广泛的应用,但由于其NP-hard性质,求解过程较为困难。

常用的求解方法包括分支定界法、割平面法和启发式算法等。

这些方法各有优劣,根据具体问题的特点选择合适的方法进行求解。

整数规划求解题技巧

整数规划求解题技巧

整数规划求解题技巧整数规划(Integer Programming,IP)是线性规划(Linear Programming,LP)的扩展,它要求所有变量的取值必须是整数。

整数规划常用于求解实际问题中的最优决策,具有广泛的应用领域,如运输、生产、资源分配等。

下面我将介绍一些整数规划求解题的技巧。

1. 转化为纯整数规划:将实际问题转化为纯整数规划问题可以简化模型。

纯整数规划要求所有变量的取值都必须是整数,没有连续变量的限制。

通过建立合适的约束条件和目标函数,可以将问题转化为纯整数规划问题进行求解。

2. 松弛约束:对于某些约束条件,如果将其从等式形式变为不等式形式且松弛一些限制,可以增加问题的可行解空间。

这样可以使得模型具有更多的可行解,从而提高求解效率。

3. 分枝定界法:分枝定界法是一种常用的求解整数规划问题的方法。

它将整数规划问题划分为多个子问题,通过不断划分和求解这些子问题,逐步逼近最优解。

分枝定界法通常包括两个步骤:分枝和定界。

分枝是指将问题分解为多个子问题,每个子问题都是原问题的一个可能解。

定界是指通过对子问题的求解,确定上界和下界,从而缩小搜索范围。

4. 启发式算法:启发式算法是一种常用的求解整数规划问题的方法,它通过启发式规则和策略来指导搜索过程。

启发式算法不保证找到最优解,但可以在较短时间内找到近似最优解。

常见的启发式算法包括贪心算法、模拟退火算法、遗传算法等。

5. 接近最优策略:在实际问题中,有时求解整数规划问题的时间复杂度非常高,甚至是NP-hard难题。

面对这种情况,可以采取接近最优的策略。

即对于一个相对较大的整数规划问题,先求解一个近似最优解,然后逐步优化,以此来降低问题的复杂度。

6. 问题分解:对于大规模的整数规划问题,可以将问题分解成多个较小的子问题。

通过对这些子问题的求解,可以逐步逼近整体问题的最优解。

问题分解可以提高求解效率,同时可以充分利用问题的结构特点。

7. 约束松弛法:约束松弛法是一种将整数规划问题转化为线性规划问题进行求解的方法。

第4章 整数规划

第4章 整数规划
第四章
整数规划
整数规划问题的提出
整数规划模型与一般的线性规划模型 的区别仅在于: 的区别仅在于:整数规划的变量要求 部分的或全部的为整数。例如: 部分的或全部的为整数。例如:
m Z = x + x2 ax 1 14 1 x +9x2 ≤ 51 −6x +3x2 ≤1 1 x , x ≥ 0且 整 为 数 1 2
(纯整数规划问题) 纯整数规划问题)
解:设xi为第i天开始上班的人数: 为第i天开始上班的人数: Min: Min:z=x1+x2+x3+x4+x5+x6+x7 s.t. x1 +x4+x5+x6+x7≥17 +x5+x6+x7≥13 x1+x2 x1+x2+x3 +x6+x7≥15 x1+x2+x3+x4+ +x7≥19 x1+x2+x3+x4+x5 ≥14 x2+x3+x4+x5+x6 ≥16 x3+x4+x5+x6+x7≥11 xi≥0 ( i=1,2,…,7) i=1,2,…,7)
例:某市6 例:某市6个区,希望设 置最少消防站以便节省 费用。条件:
必须保证在城区任何地方发 生火警时,消防车能在15 生火警时,消防车能在15分 15分 钟之内赶到现场。各区之间 消防车行驶的时间见右表。
请确定设站方案。
布点问题的数学模型: 0-1规划 布点问题的数学模型:
设0−1为决策变量,当表示i地区设站,表示i 为决策变量,当表示i地区设站,表示i 地区不设站。这样根据消防车15分钟赶到现 地区不设站。这样根据消防车15分钟赶到现 场的限制,可得到如下模型

3 整数规划

3 整数规划

x1 100 2 5 100 … 1 0 0
x2 x3 x4 160 0 0 2 1 0 9 0 1 160 0 0 … … … 0 9/8 -1/4 1 -5/8 1/4 0 -25/2 -15
b 12 45 … 9/4 15/4
θ

maxZ=100x1+160x2 是最优解,但不是整数最优解,引入割平面,在最终单 将该约束条件中的非整数系数均表示为: 2x1+2x2 +x3=12 纯形表中选一个约束条件进行分割。 a =[a]+a0 X*=(9/4,15/4)T 5x +9x +x =45 3x3+2x4 ≥6 4 1 2 Z*=825 x1, x2 x3, x4 ≥0
g2 =-7+5x1+3x2 +2x3+x4≤0
5x1+3x2 +2x3+x4≤7
x1, x2 , x3 , x4 =0,1
序号 1
解X T (0,0,0,0)
Z 0
g1≥0 1
g2≤0 -7
满足否 √
过滤条件 0
2
3 4 5 6
(0,0,0,1)
(0,0,1,0) (0,0,1,1) (0,1,0,0) (0,1,0,1)
货物 甲 乙 运输能力 体积 重量 利润 (m3/箱) (m3/箱) (m3/箱) 2 2 12 1 1.8 9 100 160
设:建甲宿舍x1幢,乙宿舍x2幢 maxZ=10x1+20x2 0.25x1+0.4x2 ≤3 x1 ≤8 x2 ≤4 x1, x2≥0且为整数
整数规划的数学模型的一般形式
x j bk akj
j m 1

整数规划的求解方法有哪些

整数规划的求解方法有哪些

整数规划的求解方法有哪些在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求某些变量的解必须是整数。

例如,当变量代表的是机器的台数,工作的人数或装货的车数等。

为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。

实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。

在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。

整数规划的一种特殊情形是01规划,它的变数仅限于0或1。

不同于线性规划问题,整数和01规划问题至今尚未找到一般的多项式解法。

组合最优化通常都可表述为整数规划问题。

两者都是在有限个可供选择的方案中,寻找满足一定约束的最好方案。

有许多典型的问题反映整数规划的广泛背景。

例如,背袋(或装载)问题、固定费用问题、和睦探险队问题(组合学的对集问题)、有效探险队问题(组合学的覆盖问题)、旅行推销员问题, 车辆路径问题等。

因此整数规划的应用范围也是极其广泛的。

它不仅在工业和工程设计和科学研究方面有许多应用,而且在计算机设计、系统可靠性、编码和经济分析等方面也有新的应用。

整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的,30多年来发展出很多方法解决各种问题。

解整数规划最典型的做法是逐步生成一个相关的问题,称它是原问题的衍生问题。

对每个衍生问题又伴随一个比它更易于求解的松弛问题(衍生问题称为松弛问题的源问题)。

通过松弛问题的解来确定它的源问题的归宿,即源问题应被舍弃,还是再生成一个或多个它本身的衍生问题来替代它。

随即,再选择一个尚未被舍弃的或替代的原问题的衍生问题,重复以上步骤直至不再剩有未解决的衍生问题为止。

目前比较成功又流行的方法是分支定界法和割平面法,它们都是在上述框架下形成的。

0-1规划在整数规划中占有重要地位,一方面因为许多实际问题,例如指派问题、选地问题、送货问题都可归结为此类规划,另一方面任何有界变量的整数规划都与0-1规划等价,用0-1规划方法还可以把多种非线性规划问题表示成整数规划问题,所以不少人致力于这个方向的研究。

整数规划方法

整数规划方法

割平面法是R.E.Gomory于1958年提出的一种方法,它主要 用于求解纯ILP。 割平面法是用增加新的约束来切割可行域,增加的新约束 称为割平面方程或切割方程。其基本思路为: 若其松弛问题的最优解X*不满足整数约束,则从X*的 非整分量中选取一个,用以构造一个线性约束条件,将其 加入原松弛问题中,形成一个新的线性规划,然后求解之 。若新的最优解满足整数要求,则它就是整数规划的最优 解;否则重复上述步骤,直到获得整数最优解为止。
用割平面法求整数规划问题最优解的步骤: 1. 求整数规划问题所对应的线性规划问题的最优 解。如果是整数解,则停止计算,否则,进行下一步。 2. 由最终单纯形表得到:
xi aik xk bi
k
xi 是基变量
将a ik,bi 都分解为整数部分 和非负真分数之和, N f 即:
aik N ik f ik bi N i f i 0 f ik 1 0 fi 1
为最终获得整数最优解,每次增加的线性约束条件应当两 个基本性质: (1)已获得的不符合整数要求的LP最优解不满足该线性 约束条件,从而不可能在以后的解中出现; (2)凡整数可行解均满足该线性约束条件,因而整数最优 解始终被保留在每次剩余的线性规划可行域中。
例1 用割平面法求解整数规划问题
max z x1 x 2 x1 x 2 1 3 x x 4 1 2 s.t. x1 , x 2 0 x1 , x 2是整数
继续求解定界,重复下去,直到得到最优解为 止。
7
二、整数规划求解方法
2. 分枝定界法一般步骤
1)将原整数规划问题(A)去掉所有的整数约束变为线 性规划问题(B) ,用线性规划的方法求解问题(B):
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定界:对每一子问题的求解结果,找出最优值
最小者为新的上界 z ,从所有符合整数约束条 件的分枝中找出目标函数值最大的为新下界 z
10
二、整数规划求解方法
2.分枝定界法一般步骤
4)比较与剪枝:各分枝问题的最优值同 z 比较,如果其值 小于 z ,则这个分枝可以剪掉,以后不再考虑。
如果其值大于 z ,且又不是(A)的可行解,则继续分 枝 , 返 回 ( 3 ), 直 到 最 后 得 到 最 优 解 使 z* z , 即 x*j ( j 1,2,,n) 为最优解。
解就是(A)的最优解,计算结束;
问题(B)有最优解 X * ,但不是(A)的可行解,转下一步。
8
二、整数规划求解方法
2. 分枝定界法一般步骤
2)将 X * 代入目标函数,其值记为 z ,并用观察
法找出(A)的一个可行解(整数解,不妨可取
x j 0( j 1,2, , n) ),求得目标函数值(下界 值),记为 z ,则(A)的最优值记为 z * ,即有 z z * z ,转下一步;
整数规划中如果所有的变量都限制为(非负) 整数,称为纯整数规划;如果仅一部分变量限制 为整数,称为混合整数规划;整数规划一种特殊 的情形是0-1规划,它的变量取值仅限于0和1。
4
一、整数规划的一般模型
2. 整数规划模型的一般形式
n
max(min)z c j x j j 1
(A)
n
aij x j
若其松弛问题的最优解X*不满足整数约束,则从X*的 非整分量中选取一个,用以构造一个线性约束条件,将其 加入原松弛问题中,形成一个新的线性规划,然后求解之 。若新的最优解满足整数要求,则它就是整数规划的最优 解;否则重复上述步骤,直到获得整数最优解为止。
为最终获得整数最优解,每次增加的线性约束条件应当两 个基本性质:
利用线性规划的求解方法逐步缩小可行域,最后 找到整数规划的最优解。
12
考虑纯整数规划问题:
n
max z c j x j j 1
n
aij x j bi
i 1, , m
j 1
xj
0
j 1,2, , n
x
j
取整

设其中aij和bi皆为整数(若不为整数时,可乘上一个倍数化 为整数)。
割平面法是R.E.Gomory于1958年提出的一种方法,它主要 用于求解纯ILP。 割平面法是用增加新的约束来切割可行域,增加的新约束 称为割平面方程或切割方程。其基本思路为:
将原问题(A)中整数约束去掉变为问题(B), 求出(B)的最优解.
6
二、整数规划求解方法
1 .分枝定界法的基本思想
如果不是原问题(A)的可行解,则通过附加线性不 等式约束(整数),将问题(B)分枝变为若干子问题
(Bi )(i 1,2, , I ) ,即对每一个非整变量附加两个互
相排斥(不交叉)的整型约束,就得两个子问题.
分枝定界法.ppt
11
二、整数规划求解方法
3. 割平面法的思想
将原整数规划问题(A)去掉整数约束变为线性规 划问题(B),引入线性约束条件(称为Gomory约束 ,几何术语割平面)使问题(B)的可行域逐步缩小.
每次切割掉的是问题非整数解的一部分,不切掉 任何整数解,直到最后使目标函数达到最优的整数 解成为可行域的一个顶点时,即问题最优解。
4
x1, x2是整数
步骤1:标准化其松弛问题B0
max z x1 x2
x1 x2 x3 1 s.t.3x1 x2 x4 4
x1, x2 , x3 , x4 0
Cj
1
CB XB b
x1
1 x2 7/4
0
1 x1 3/4
1
cj-zj
0
1
0
0
x2
x3
x4
1
3/4 1/4
0 -1/4 1/4
k
k
令上式的右边小于等于零,得到切割方程。即:
fi fik xk 0
k
3. 将切割方程化为下列形式:
fik xk xni fi
k
xni是松驰变量
4. 将切割方程加到最终单纯形表,用对偶单纯形法 继续求解。
5. 如果求得整数解,停止计算,否则重复2—5步。
注 : 1. 切 割 方 程 真 正 进 行 了 切 割 , 至 少 将 非 整 数 最
(1)已获得的不符合整数要求的LP最优解不满足该线性约 束条件,从而不可能在以后的解中出现;
(2)凡整数可行解均满足该线性约束条件,因而整数最优 解始终被保留在每次剩余的线性规划可行域中。
例1 用割平面法求解整数规划问题
max z x1 x2
x1 x2 1
s.t.3x1x,1x2
x2
0
源的单位价格为 aj ( j 1, 2,L , m) ,该企业现有资金 M 元.
试问该企业应购买多少第 j 种资源(总量为 X j ),又
如何分配给所属的 n 个生产车间,使得总利润最大?
2
固定资源分配问题
解 设决策变量为 xij (i 1, 2,L , n; j 1, 2,L , m) 表示分
0 -1/2 -1/2
引进一个割平面来缩小可行域,割平面要切去松弛问题的非整 数最优解而又不要切去问题的的任一个整数可行解。
步骤2:求一个割平面方程
(1)在最终表上任选一个含有不满足整数条件基变量的 约束方程。如选x1,则含x1的约束方程为
11 3
x1 4 x3 4 x4 4
(3)
(2)将所选择的约束方程中非基变量的系数及常数项进行拆 分处理。具体规则是:将上述系数和常数项均拆分成一个整 数加上一个非负真分数(纯小数)之和。则(3)式变为:
a(m,1),a(m,2),…,a(m,n);
enddata
[OBJ] min=@sum(arrange(j):c(j)*x(j));
@for(row(i):@sum(arrange(j):a(i,j)*x(j))>=b(i););
@for(arrange(j):x(j)>=0;);
第十一章 整数规划方法
整数规划的一般模型; 整数规划解的求解方法; 整数规划的软件求解方法; 0-1规划的模型与求解方法; 整数规划的应用案例分析。
1
一、整数规划的一般模型
1. 问题的提出:固定资源分配问题
设某企业有 n 个生产车间需要 m 种资源,对于第 i 个 生产车间分别利用第 j 种资源 xij 进行生产,单位资源可 以获得利润为 rij (i 1,2,L ,n; j 1,2,L ,m) .若第 j 种资
很明显,(5)左端为整数,右端<1,则有其右端0,即
31
3
4 x3 4 x4 4
(6)
(4)将割平面方程加到松弛问题的约束方程中,构成新的松弛问题并求 解(对偶单纯形法)。
max z x1 x2 0x3 0x4
x1 x2 x3 1
s.t.3x431
x2 x3
1 4
x4 x4
配给第 i 个生产车间的第 j 种资源的资源量,均为非负整 数,第 j 种资源的需求总量 X j ( j 1, 2,L , m) 也都为整数.问题的目标函数为总利润求 Nhomakorabeanm
z
rij xij
i1 j1
的最大值.
nm
max z
rij xij ,
i1 j 1
n
xij X j ( j 1, 2,L
继续求解定界,重复下去,直到得到最优解为
止。
7
二、整数规划求解方法
2. 分枝定界法一般步骤
1)将原整数规划问题(A)去掉所有的整数约束变为线 性规划问题(B),用线性规划的方法求解问题(B):
• 问题(B)无可行解,则(A)也无可行解,停止;
问题(B)有最优解 X * ,并是(A)的可行解,则此
4 x5
3 4
x1, x2 , x3 , x4 , x5 0
Cj
CB XB b
1 x2 7/4 1 x1 3/4 0 x5 -3/4
cj-zj
1 x2
1
1 x1
1
0 x3
1
cj-zj
11
x1
x2
01
10
00
00
01 10 00
00
割平面方程
0 x3 3/4 -1/4 -3/4
-1/2 0 0 1
优解割掉了;(非整数最优解不满足切割方程)
2. 没有x割i 掉k整N数ik解x。k (所N有i 整f数i 解k都满fik 足xk切割方程)
二、整数规划的求解方法
4、整数规划的LINGO解法
MODEL: sets: row/1..m/:b; arrange/1..n/:c,x; link(row,arrange):a; endsets data:
n
min z c j x j j 1
n
aij x j bi (i 1, 2,, m)
j1
x
j
0,
x j为整数(
j
1, 2,, n)
b=b(1),b(2),…,b(m); c=c(1),c(2),…,c(n);
a=a(1,1),a(1,2),…,a(1,n),
... ... ... ...
n
max(min)z c j x j j 1
(A)
n
aij x j (, )bi (i 1,2,, m)
j1
x
j
0, x j为整数(
j
1,2,, n)
n
max(min)z cj xj j 1
(B)
n
aij x j
(, )bi (i 1, 2,, m)
相关文档
最新文档