江苏省南京师范大学附属扬子中学2020届高三第二学期期初自测数学试题
江苏省南京师范大学附属扬子中学2020届高三下学期期初自测 英语试题

南师大附属扬子中学2020届高三第二学期期初自测英语试题第Ⅰ卷(三部分,85分)第一部分听力(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Why does the man need a map?A. To tour Manchester.B. To find a restaurant.C. To learn about China.2. What does the woman want to do for vacation?A. Go to the beach.B. Travel to Colorado.C. Learn to snowboard.3. What will the man probably do?A. Take the job.B. Refuse the offer.C. Change the working hours.4. What does the woman say about John?A. He won’t wait for her.B. He won't come home today.C. He won’t be on time for dinner.5. What will the speakers probably do next?A. Order some boxes.B. Go home and rest.C. Continue working.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2020届江苏省南京师大附中高三年级模拟数学试题(解析版)

点 N 在线段 OA 的延长线上,设 N (a, 2a), a 1 ,
当 a = 4 时, N (4,8), S = 16 ,
当 a 1,且 a 4 时,直线 MN 方程为
y − 2 = 2a − 2 (x − 4) ,令 y = 0, x = 4 − a − 4 = 3 + 3 ,
a−4
a −1 a −1
an = 3n−1, S3 = 1+ 3 + 9 = 13 .
故答案为:13. 【点睛】
本题考查等比数列通项基本量的运算,数基础题.
9.已知 F1, F2
是椭圆 C :
x2 a2
+
y2 b2
= 1(a
0,b
0) 的左,右焦点, A
是C
的左顶点,点 P
在过 A 且斜率为 3 的直线上,PF1F2 为等腰三角形,F1F2 P = 1200 ,则 C 的离心 6
____________. 【答ቤተ መጻሕፍቲ ባይዱ】12
【解析】求出直线 OA 方程,设点 N 坐标,求出直线 MN 的方程,进而求出直线 MN 与 x 轴交点的坐标,将所求三角形的面积 S 表示成 N 点坐标的函数,根据函数特征,利
用基本不等式求出最小值. 【详解】
点 A(1, 2) ,直线 OA 方程为 y = 2x ,
所以 sin C 的最大值为 34 . 6
故答案为: 34 . 6
【点睛】
本题考查三角函数的最值,考查正、余弦定理解三角形,应用基本不等式求最值,属于
中档题.
4x −1 , x 1
14.已知函数
f
(x)
=
6
,若方程 f ( f ( x)) = a 恰有 5 个不同的实数根,
2020年江苏省南京师大附属扬子中学高考数学模拟试卷(2)(2月份)(有解析)

2020年江苏省南京师大附属扬子中学高考数学模拟试卷(2)(2月份)一、填空题(本大题共14小题,共70.0分)1.已知集合A={1,3,a},B={4,5}.若A∩B={4},则实数a的值为________.2.复数z=3−i的共轭复数是______.1−2i3.为了解某商场某日旅游鞋的销售情况,抽取了部分顾客购鞋的尺寸,将所得的数据整理后,画出频率分布直方图(如图所示),已知图中从左到右前三个小组的频率之比为1:2:3,第4小组与第5小组的频率分别为0.175和0.075,第二小组的频数为10,则抽取的顾客人数是___________.4.运行如图的伪代码,输出的结果是______.5.从2个黄球,2个红球,一个白球中随机取出两个球,则两球颜色不同的概率是______.6.如图,半径为4的球O中有一内接圆往,则圆柱的侧面积最大值是______ .7.已知{a n}为等差数列,2a3+a9=33,则{a n}的前9项和S9=__________.8. 已知f(x)={3−x +1,x ≤0x 2+log a x,x >0.若f[f(−1)]=14,那么实数a 的值为______. 9. 直线l 过点(−1,0),且与直线3x +y −1=0垂直,直线l 与圆C :(x −2)2+y 2=1交于M 、N两点,则MN =_______.10. 设a ,b ∈R ,a 2+3b 2=4,则a +√3b 的最小值是______.11. 已知F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,A 是椭圆短轴的一个端点,直线AF 与椭圆另一交点为B ,且AF ⃗⃗⃗⃗⃗ =−2BF ⃗⃗⃗⃗⃗ ,则椭圆的离心率为_______12. 在△ABC 中,已知AB =AC =3,BC =4,P 为BC 边上的动点,则AP ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ )的值为______ . 13. 设定点A(a,a),P 是函数y =1x (x >0)图象上的一动点,若点P,A 之间的最短距离为2√2,则a =_________.14. 若△ABC 的内角A,B,C 满足sinA +√2sinB =2sinC ,则cosC 的最小值是_.二、解答题(本大题共10小题,共130.0分)15. 已知向量m⃗⃗⃗ =(−sinαcosβ,2cosα),n ⃗ =(2cos(−π),sin(π−β)),其中0<α<π2,π2<β<π,且m⃗⃗⃗ ⋅n ⃗ =65,求tan(α+β).16. 如图,在直三棱柱ABC −A 1B 1C 1中,AC =BC ,F 为A 1B 1的中点.求证:(1)B 1C//平面FAC 1;(2)平面FAC 1⊥平面ABB 1A 1.17.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=√55,直线l交椭圆于M,N两点.(1)求椭圆方程;(2)若直线l的方程为y=x−4,求弦MN的长.18.“精卫填海”的故事家喻户晓,随着我国工程技术的蓬勃发展,填海造陆已不再是神话,如图,是一个圆形为O,半径为100m的圆形岛屿,点P为海上一点,点M,N为圆形岛屿边界上两点,线段PM,PN及劣弧MN围成的曲边三角形PMN为填海造陆区,其中PM,PN与圆形岛屿边界相切.(假设点P,M,O,N在同一平面内,且锐角∠MPO=θ)(1)若θ=π,求填海造陆区的面积;(取π=3.14,√3=1.73,结果精确到0.1)3(2)填海造陆后,欲修建一条环海快速公路PMN(由PM段、优弧MN段及NP段连接而成,且宽度不计),已知修建单位长度的PM段、PN段与优弧MN段公路的费用之比为1:2,问:应如何设计θ的大小,可使修建环海快速公路PMN的总费用最小.19.已知等差数列{a n}的公差为2,其前n项和为S n=pn2+2n,n∈N∗.(1)求p值及a n;}(2)在等比数列{b n}中,b3=a1,b4=a2+4,若等比数列{b n}的前n项和为T n.求证:数列{T n+16为等比数列.20.已知函数f(x)=12x2−alnx.(1)若函数f(x)有两个不同的零点,求实数a的取值范围;(2)求当x>1时,f(x)>0恒成立的a的取值范围,并证明ln2+ln3+ln4+⋯+lnn<n2+n−24(n≥2,n∈N∗).21.已知矩阵A=[a21b ]的逆矩阵A−1=[1c−121],求a+b+c的值.22.平面直角坐标系xOy中,圆C的参数方程为{x=√3+2cosαy=1+2sinα(α为参数),在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,点P在射线l:θ=π3上,且点P到极点O的距离为4.(1)求圆C的普通方程与点P的直角坐标;(2)求△OCP的面积.23.某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.求:(1)在选派的3人中恰有2人会法语的概率;(2)求在选派的3人中既会法语又会英语的人数X的概率分布及其数学期望.24.(1)求2P2−Q2的值;(2)化简nP n−Q n.【答案与解析】1.答案:4解析:本题考查集合的交集运算.利用交集的定义直接求解即可.解:因为A∩B={4},所以4属于集合A,可得a=4.故答案为42.答案:1−i解析:解:z=3−i1−2i =(3−i)(1+2i)(1−2i)(1+2i)=5+5i5=1+i的共轭复数为1−i.故答案为:1−i.利用复数的运算法则、共轭复数的定义即可得出.本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.3.答案:40解析:本题主要考查频率分布直方图的应用.首先计算出第二小组的频率,根据频数,即可得.解:由条件可得,第二小组的频率为2×1−0.175−0.0751+2+3=0.25,因为第二小组的频数为10,所以抽取的顾客人数是100.25=40.4.答案:120解析:解:模拟程序的运行,可得i =1,S =1满足条件i ≤5,执行循环体,S =1,i =2满足条件i ≤5,执行循环体,S =2,i =3满足条件i ≤5,执行循环体,S =6,i =4满足条件i ≤5,执行循环体,S =24,i =5满足条件i ≤5,执行循环体,S =120,i =6不满足条件i ≤5,退出循环,输出S 的值为120.故答案为:120.根据伪代码所示的顺序,分析程序中各变量、各语句的作用,一直求出不满足循环条件时S 的值. 本题主要考查了循环结构,该题是当型循环结构,解题的关键是弄清推出循环的条件,属于基础题. 5.答案:45解析:本题考查了概率的基本性质和等可能事件的概率,求解方法采用了正难则反的原则,解答的关键是求出基本事件总数和发生事件的个数,属于基础题.用1减去两个球颜色相同的概率,即可得结果. 解:设从2个黄球,2个红球,一个白球中随机取出两个球,则两球颜色不同为事件A ,即P(A)=1−C 22+C 22C 52=45. 故答案为45. 6.答案:32π解析:解:∵设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则r =4cosα,圆柱的高为8sinα, ∴圆柱的侧面积为:32πsin2α,当且仅当α=π4时,sin2α=1,圆柱的侧面积最大,∴圆柱的侧面积的最大值为:32π.故答案为:32π.设出圆柱的上底面半径为r ,球的半径与上底面夹角为α,求出圆柱的侧面积表达式,求出最大值 本题是基础题,考查球的内接圆柱的知识,圆柱的侧面积的最大值的求法,考查计算能力,常考题型.7.答案:99解析:本题主要考查等差数列的定义和性质,等差数列的前n 项和公式的应用,属于中档题. 解:解:在等差数列{a n }中,设公差为d ,∵2a 3+a 9=33,∴3a 1+12d =33,即a 1+4d =11,则其前9项和S 9=9(a 1+a 9)2=9(2a 1+8d)2=18(a 1+4d)2=9(a 1+4d)=9×11=99.故答案 99. 8.答案:12解析:本题考查分段函数的函数值,考查函数性质等基础知识,考查运算求解能力,是基础题. 先求f(−1)=4,再求f(4)=14,得a 的方程求解即可.解:∵f(x)={3−x +1,x ≤0x 2+log a x,x >0,f[f(−1)]=14, ∴f(−1)=4,则f[f(−1)]=f(4)=16+log a 4=14,解得a =12.故答案为:12.9.答案:√105解析:本题考查两直线的位置关系及直线与圆所截弦长求解,属于中档题目.先求出直线l 的方程,由圆C 圆心到直线l 的距离,利用弦心距求出弦长MN .解:由题意设所求直线l 的方程为x −3y +m =0,则−1+m =0,∴m=1,即直线l的方程为x−3y+1=0,圆C圆心为(2,0),半径为1,∴圆心(2,0)到直线l的距离d=10=3√1010,∴MN=2√12−(3√1010)=2×√1010=√105.故答案为√105.10.答案:−2√2解析:本题考查了利用参数法求最值的问题,是基础题.方程a2+3b2=4化为a 24+b243=1,设a2=cosθ,b2√3=sinθ,利用三角函数求a+√3b的最小值.解:a,b∈R,a2+3b2=4,则a24+b243=1;设a2=cosθ,b23=sinθ,其中θ∈[0,2π);则a=2cosθ,b=√3,所以a+√3b=2cosθ+2sinθ=2√2sin(θ+π4),当θ+π4=3π2+2kπ,k∈Z,即θ=5π4+2kπ,k∈Z时,a+√3b取得最小值是−2√2.故答案为:−2√2.11.答案:√33解析:本题考查椭圆的几何意义,属中档题.根据已知中比例关系求出B,代入椭圆方程得到离心率.解:设A为椭圆上顶点,过B作x轴的垂线BD,垂足为D,则OABD =OFDF=AFBF=2,∴DF =12OF =c 2,BD =12OA =b2,∴B(3c2,−b2),代入椭圆方程可得:9c 24a 2+b 24b 2=1, ∴c a=√33. 故答案为√33.12.答案:10解析:解:如图所示,△ABC 中,AB =AC =3,BC =4,P 为BC 边上的动点, ∴AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +λBC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +λ(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =(1−λ)AB⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ , ∴AP ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=(1−λ)AB ⃗⃗⃗⃗⃗ 2+λAC ⃗⃗⃗⃗⃗ 2+AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =(1−λ)×32+λ×32+3×3×32+32−422×3×3=10. 故答案为:10.根据题意画出图形,结合图形用AB ⃗⃗⃗⃗⃗ 、AC ⃗⃗⃗⃗⃗ 表示出向量AP ⃗⃗⃗⃗⃗ ,求AP ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )即可. 本题考查了平面向量的线性运算与数量积运算问题,是基础题.13.答案:−1或√10解析:本题综合考查了两点间的距离公式、基本不等式的性质、二次函数的单调性等基础知识和基本技能,考查了分类讨论的思想方法、推理能力和计算能力.设点P(x,1x)(x>0),利用两点间的距离公式可得|PA|,利用基本不等式和二次函数的单调性即可得出a的值.解:设点P(x,1x )(x>0),则|PA|=√(x−a)2+(1x−a)2=√x2+1x2−2a(x+1x)+2a2=√(x+1x )2−2a(x+1x)+2a2−2,令t=x+1x,∵x>0,∴t≥2,令g(t)=t2−2at+2a2−2=(t−a)2+a2−2,①当a≤2时,t=2时g(t)取得最小值g(2)=2−4a+2a2=(2√2)2,解得a=−1;②当a>2时,g(t)在区间[2,a)上单调递减,在(a,+∞)单调递增,∴t=a,g(t)取得最小值g(a)= a2−2,∴a2−2=(2√2)2,解得a=√10.综上可知:a=−1或√10.故答案为−1或√10.14.答案:√6−√24解析:解:由正弦定理得a+√2b=2c,得c=12(a+√2b),由余弦定理得cosC=a2+b2−c22ab =a2+b2−14(a+√2b)22ab=34a2+12b2−√22ab2ab=34a2+12b22ab−√24≥2⋅√32a⋅√22b2ab−√24=√6−√24,当且仅当√32a=√22b时,取等号,故cos C的最小值是√6−√24.故答案为:√6−√24.根据正弦定理和余弦定理,利用基本不等式即可得到结论.本题主要考查正弦定理和余弦定理的应用,结合基本不等式的性质是解决本题的关键.15.答案:解:∵m⃗⃗⃗ ·n⃗=−sinαcosβ⋅2cos(−π)+2cosα⋅sin(π−β)=2sinαcosβ+2cosαsinβ=2sin(α+β)=65, ∴sin(α+β)=35. 又0<α<π2,π2<β<π,∴π2<α+β<3π2,又sin(α+β)=35>0, ∴π2<α+β<π,cos(α+β)=−45, ∴tan(α+β)=−34.解析:本题考查两角和与差的三角函数公式和同角三角函数的关系,向量的数量积,属于中档题.由m ⃗⃗⃗ ·n ⃗ =65,可求出sin(α+β)=35,根据0<α<π2,π2<β<π,可知π2<α+β<3π2,又sin(α+β)=35>0,所以π2<α+β<π,计算可知cos(α+β)=−45,tan(α+β)=−34.16.答案:解:(1)证明:如图所示取AB 的中点E ,连接CE ,EB 1,∵F 为A 1B 1的中点,∴C 1F//CE ,AF//B 1E ,且C 1F ∩AF =F ,CE ∩B 1E =E , ∴面B 1CE//平面FAC 1,∵B 1C ⊂B 1CE , ∴B 1C//平面FAC 1(2)证明:直三棱柱ABC−A1B1C1中,A1A⊥面A1C1B1,∵C1F⊂面A1C1B1,∴A1A⊥C1F,∵AC=BC,F为A1B1的中点,∴A1B1⊥C1F,且AA1∩A1B1,∴C1F⊥面AA1C1B1B,C1F⊂面A1C1B1,∴平面FAC1⊥平面ABB1A1.解析:(1)如图所示取AB的中点E,连接CE,EB1,可得面B1CE//平面FAC1,即B1C//平面FAC1 (2)只需证明C1F⊥面AA1C1B1B,即可得平面FAC1⊥平面ABB1A1.本题考查了线面平行、面面垂直的判定,关键是空间位置关系的判定与性质的应用,属于中档题.17.答案:解:(1)由已知得b=4,且ca =√55,即c2a2=15,∴a2−b2a =15,解得a2=20,∴椭圆方程为x220+y216=1.(2)由(1)得4x2+5y2=80与y=x−4联立,消去y得9x2−40x=0,∴x1=0,x2=409,∴所求弦长MN=√1+12|x2−x1|=40√29.解析:本题考查了椭圆的标准方程及性质,直线与椭圆的位置关系,弦长的求法,属于基础题.(1)由椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=√55,可直接求出a,b,c得椭圆的方程.(2)联立4x2+5y2=80与y=x−4,求出交点的横坐标,再求弦长.18.答案:解:(1)在Rt△PMO中,OM=100,因为,S△MPO=12 OM·PM=12×100×100√33=5000√33,所以,因为∠MPO=60°,∠MOP=90°−60°=30°,则∠MON=2∠MOP=60°,且60°360°=16,则,所以造路区面积为;(2)由(1)知,,由已知易得优弧MN的长度,设PM段的费用为a,则优弧MN的费用为2a,设总费用为y,所以,所以设计角θ的大小,保证使最小即可.设,所以,令g′(θ)=0,即1−1tan2θ=0,tan2θ=1,因为,则tanθ=1,则,令t=tanθ,则t∈(0,1),因为函数y=1−1t2在(0,1)上单调递增,又因为tanθ在上单调递增,根据复合函数单调性得到y=1−1tan2θ在上单调递增,所以函数g(θ)在上为减函数,在上为增函数,所以当时,函数g(θ)取得最小值,即当时,可使修建环海公路PMN的总费用最小.解析:本题考查三角形的实际应用,扇形的面积,弧长,利用导数得到函数最值,正切函数的性质,属中档题.(1)根据题意求出S△MPO=12OM·PM=12×100×100√33=5000√33,,利用大减小的方法得到要求的面积;(2)根据已知列式,利用导数研究函数的单调性求最小值.19.答案:解:(1)∵等差数列{a n}的公差为2,其前n项和为S n=pn2+2n,n∈N∗.∴a1=S1=p+2,S2=4p+4,即a1+a2=4p+4,∴a2=3p+2,则a2−a1=2p=2,即p=1.∴a n=2n+1.n∈N∗.(2)在等比数列{b n}中,b3=a1=3,b4=a2+4=9,则公比q=b4b3=93=3,则b3=b1⋅32=3,解得b1=13,∴T n=13(1−3n)1−3=16(3n−1),即T n+16=16⋅3n,∴T n+1 6T n−1+16=16⋅3n16⋅3n−1=3为常数,∴数列{T n+16}为等比数列.解析:(1)根据等差数列的通项公式,建立方程关系即可求p值及a n;(2)根据等比数列的定义建立方程求出通项公式,利用等比数列的定义进行证明即可.本题主要考查等差数列和等比数列的通项公式的计算,利用等差数列和等比数列的定义,建立方程组是解决本题的关键.综合性较强.20.答案:解:(1)f(x)有两个零点,12x2−alnx=0在(0,+∞)上有两实根,显然a≠0,即12a =lnxx2,令g(x)=lnxx2,g′(x)=1−2lnxx3,令g′(x)=0,得x=√e,∴g(x)在(0,√e)单调递增,在(√e,+∞)单调递减,又g(√e)=12e,x>1时,g(x)>0,且x→+∞时g(x)→0,∴12a =lnxx2有两根,须0<12a<12e,∴a>e;(2)12x2−alnx>0恒成立,即x2>2alnx对x>1恒成立,当a≤0时,显然满足;当a>0时,12a >lnxx,由(1)知,[g(x)]max=12e ,12a>12e,∴0<a<e,综上12x2−alnx>0对x>1恒成立的a的范围为a<e.令a=2,则12x2−2lnx>0对x>1恒成立,即lnx<14x2,令x=√k,k=2,3,4,…,n,则lnk<12k,ln2<22,ln3<32,ln4<42,…,lnn<12n,∴ln2+ln3+ln4+⋯+lnn<2+3+4+⋯+n2=n2+n−24.解析:本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.(1)根据12a =lnxx2,令g(x)=lnxx2,根据函数的单调性求出g(x)的最大值,求出a的范围即可;(2)求出函数的导数,通过讨论a的范围结合函数的单调性求出a的具体范围即可,根据lnx<14x2,令x =√k ,k =2,3,4,…,n ,累加即可.21.答案: 解:因为AA −1=[a 21n ][1c −121]=[a −1ac +21−b 2b +c ]=[1001], 所以{ a −1=1b +c =1ac +2=01−b2=0,解得a =2,b =2,c =−1,所以a +b +c =3.解析:本题考查逆矩阵,属于基础题.利用AA−1=[a 21n ][1c −121]=[a −1ac +21−b 2b +c ]=[1001],得出关于a ,b ,c ,n 的方程,即可求出结果.22.答案:解:(1)曲线C 的普通方程为(x −√3)2+(y −1)2=4,点P 的极坐标为(4,π3),直角坐标为(2,2√3). (2)(方法一)圆心C(√3,1),直线OC 的方程为:y =√33x ⇒x −√3y =0,点P 到直线OC 的距离d =|2−√3⋅2√3|2=2,且|OC|=2,所以 S △OCP =12|OC|⋅d =2.(方法二)圆心C(√3,1),其极坐标为(2,π6),而P(4,π3),结合图形利用极坐标的几何含义,可得∠COP =π3−π6=π6,|OC|=2,|OP|=4,所以S △OCP =12|OC|⋅|OP|sin∠COP =12⋅2⋅4⋅sin π6=2.解析:本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间的进行转换. (2)利用点到直线的距离公式的应用和三角形的面积公式的应用求出结果.23.答案: 解:(1)事件A “选派的三人中恰有2人会法语的概率为:P(A)=C 52C 21C 73=47;(2)x 的取值为0、1、2、3,则P(x =0)=C 43C 73=435,P(x =1)=C 42C 31C 73=1835,P(x =2)=C 41C 32C 73=1235,P(x =3)=C 33C 73=135;分布列为:E(X)=1×1835+2×1235+3×135=4535=97.解析:本题考查离散型随机变量的分布列的应用,期望的求法,考查计算能力. (1)直接利用古典概型的概率计算方法求解即可.(2)x 的取值为0、1、2、3,求出对应的概率,得到分布列然后求解期望.24.答案:解:(1)由题可知P 2=1C 40−1C 41+1C 42−1C 43+1C 44=53, Q 2=−1C 41+2C 42−3C 43+4C 44=103,所以2P 2−Q 2=0; (2)设T =nP n −Q n ,则T =(n C 2n0−n C 2n1+n C 2n2−⋯+n C 2n2n )−(−1C 2n1+2C 2n2−3C 2n3+ (2)C 2n2n )=n C 2n0−n−1C 2n1+n−2C 2n2−n−3C 2n3+…+−nC 2n2n ,①因为C2nk=C2n 2n−k, 所以T =n C 2n2n −n−1C 2n2n−1+n−2C 2n2n−2−n−3C 2n2n−3+…+−nC 2n=−nC2n0−1−nC2n1+2−nC2n2−3−nC2n3+⋯+nC2n2n,②①+②,得2T=0,即T=nP n−Q n=0,所以nP n−Q n=0.解析:本题考查组合数的计算,以及求和符号的表达,难度较难,关键在于计算的准确性.(1)分别求出P2,Q2的值,再计算2P2−Q2的值即可.(2)设T=nP n−Q n,可得T=nC2n0−n−1C2n1+n−2C2n2−n−3C2n3+…+−nC2n2n①,由C2nk=C2n2n−k可得T=−nC2n0−1−n C2n1+2−nC2n2−3−nC2n3+⋯+nC2n2n②,由①+②可得答案.。
南师附中2020届高三年级第二学期期初检测试卷 数学(含附加题)数学参考答案及评分标准

南师附中2020届高三年级第二学期期初检测试卷数学试题参考答案及评分标准第Ⅰ卷(必做题,160分)一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.[]2,4- 2.二 3.6 4.55.()2,0 6.58 7.38.252 9.12 10.120,5⎡⎤⎢⎥⎣⎦11.[)4,+∞ 12.19 13.[]1,11- 14.3ln 2,02⎛⎫-- ⎪⎝⎭二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分) 解:(1)由正弦定理a sin A =b sin B =c sin C=2R ,得a =2R sin A ,b =2R sin B ,c =2R sin C , 代入a cos B +b cos A =c cos Acos C ,得 (sin A cos B +sin B cos A ) cos C =sin C cos A ,…………2分即sin(A +B )cos C =sin C cos A .因为A +B =π-C ,所以sin(A +B )=sin C , 所以sin C cos C =sin C cos A ,…………4分因为C 是ⅠABC 的内角,所以sin C ≠0,所以cos C =cos A .又因为A ,C 是ⅠABC 的内角,所以A =C .…………6分(2)由(1)知,因为A =C ,所以a =c ,所以cos B =a 2+c 2-b 22ac =a 2-2a 2.…………8分因为BA →·BC →=1,所以a 2cos B =a 2-2=1,所以a 2=3.…………10分 所以cos B =13.…………12分因为B Ⅰ(0,π),所以sin B =1-cos 2B =223.…………14分16.(本小题满分14分)解:(1)因为AD Ⅰ平面BCC 1B 1,AD ⊂平面ABCD ,平面BCC 1B 1∩平面ABCD =BC , 所以AD ⅠBC .…………4分又因为BC ⊄平面ADD 1A 1,AD ⊂平面ADD 1A 1, 所以BC Ⅰ平面ADD 1A 1.…………6分(2)由(1)知AD ⅠBC ,因为AD ⅠDB ,所以BC ⅠDB ,…………8分 在直四棱柱ABCD -A 1B 1C 1D 1中DD 1Ⅰ平面ABCD ,BC ⊂底面ABCD , 所以DD 1ⅠBC ,…………10分又因为DD 1⊂平面BDD 1B 1,DB ⊂平面BDD 1B 1,DD 1∩DB =D , 所以BC Ⅰ平面BDD 1B 1,…………12分 因为BC ⊂平面BCC 1B 1,所以平面BCC 1B 1Ⅰ平面BDD 1B 1.…………14分 17.(本小题满分14分)解:(1)连接AB ,因为正方形边长为10米,所以10OA OB AB ===,则3AOB π∠=,所以»103AB π=,…………2分所以广场的面积为2211050(1010)10100233ππ⋅⋅+=+-答:广场的面积为501003π+-6分 (2)作OG CD ⊥于G ,OK AD ⊥于K G ,记OAK α∠=, 则2220sin AD DG OK α===,…………8分 由余弦定理得2222cos OD OA AD OA AD α=+-⋅221cos 210(20sin )21020sin cos 100400200sin 22ααααα-=+-⨯⨯=+⨯-230045)1)α=-+≥o ,…………12分所以1)OD ≥,当且仅当22.5α=o时取等号,所以201)OA OB OC OD +++≤+=因此求4条小路的总长度的最小值为答:4条小路的总长度的最小值为14分 18.(本小题满分14分)解:(1)设椭圆的焦距为2c (c >0). 依题意,c a =12,且a 2c =4,解得a =2,c =1.故b 2=a 2-c 2=3.所以椭圆C 的标准方程为x 24+y 23=1.…………4分(2)设点M (x 1,y 1),N (x 2,y 2),则x 124+y 123=1,x 224+y 223=1.两式相减,得(x 1-x 2)(x 1+x 2)4+(y 1-y 2)(y 1+y 2)3=0,14+13·y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=0,所以14+13·k ·(-12)=0,得k =32. …………8分(3)由题意,S 1S 2=32,即12·|AF |·|y 1| 12·|BF |·|y 2|=32,整理可得|y 1||y 2|=12,…………10分所以→NF =2→FM .代入坐标,可得⎩⎨⎧1-x 2=2(x 1-1)-y 2=2y 1,即⎩⎨⎧x 2=3-2x 1y 2=-2y 1.…………12分又点M ,N 在椭圆C 上,所以⎩⎨⎧x 124+y 123=1 (3-2x 1)24+(-2y 1)23=1,解得⎩⎨⎧x 1=74y =38 5.所以M 的坐标为(74,358).…………16分19.(本小题满分16分)解:(1)f ′(x )=1x -a x 2,则f ′(1)=1-a =2,解得a =-1,则f (x )=ln x -1x +1,此时f (1)=ln1-1+1=0,则切点坐标为(1,0), 代入切线方程,得b =-2, 所以a =-1,b =-2.…………2分(2)g (x )=f (x )+ax =ln x +a x +ax +1,g ′(x )=1x -ax 2+a =ax 2+x -a x 2.Ⅰ当a =0时,g ′(x )=1x >0,则g (x )在区间(0,12)上为增函数,则g (x )在区间(0,12)上无最小值.…………4分Ⅰ当a ≠0时,方程ax 2+x -a =0的判别式Δ=1+4a 2>0, 则方程有两个不相等的实数根,设为x 1,x 2,由韦达定理得x 1x 2=-1,则两根一正一负,不妨设x 1<0<x 2. 设函数m (x )=ax 2+x -a (x >0), (i )若a >0,若x 2Ⅰ(0,12) ,则m (0)=-a <0 ,m (12)=a 4+12-a >0 ,解得0<a <23.此时x Ⅰ(0,x 2)时,m (x )<0,则g (x )递减;x Ⅰ(x 2,12)时,m (x )>0,则g (x )递增,当x =x 2时,g (x )取极小值,即为最小值.若x 2≥12,则x Ⅰ(0,12),m (x )<0,g (x )在(0,12)单调减,无最小值.…………6分(ii )若a <0,此时x Ⅰ(0,x 2)时,m (x )>0,则g (x )递增;x Ⅰ(x 2,+∞)时,m (x )<0,则g (x )递减, 在区间(0,12)上,g (x )不会有最小值.所以a <0不满足条件.综上,当0<a <23时,g (x )在区间(0,12)上有最小值.…………8分(3)当a =0时,由方程f (x )=bx 2,得ln x +1-bx 2=0,记h (x )=ln x +1-bx 2,x >0,则h ′(x )=1x -2bx =-2bx 2+1x.Ⅰ当b ≤0时,h ′(x )>0恒成立,即h (x )在(0,+∞)上为增函数, 则函数h (x )至多只有一个零点,即方程f (x )=bx 2至多只有一个实数根, 所以b ≤0不符合题意.…………10分Ⅰ当b >0时,当x Ⅰ(0,12b)时,h ′(x )>0,所以函数h (x )递增; 当x Ⅰ(12b,+∞)时,h ′(x )<0,所以函数h (x )递减, 则h (x )max =h (12b)=ln 12b +12. 要使方程f (x )=bx 2有两个不相等的实数根,则h (12b)=ln 12b +12>0,解得0<b <e2.…………12分 (i )当0<b <e 2时,h (1e )=-be 2<0.又(1e)2-(12b )2=2b -e 22b e 2<0,则1e<12b, 所以存在唯一的x 1Ⅰ(1e ,12b),使得h (x 1)=0.…………14分 (ii )h (1b )=ln 1b +1-1b =-ln b +1-1b ,记k (b )=-ln b +1-1b ,0<b <e2,因为k ′(b )=-1b +1b 2=1-b b 2,则k (b )在(0,1)上为增函数,在(1,e2)上为减函数,则k (b )max =k (1)=0,则h (1b )≤0.又(1b)2-(12b )2=2-b 2b 2>0,即1b>12b, 所以存在唯一的x 2Ⅰ(12b ,1b],使得h (x 2)=0, 综上,当0<b <e2时,方程f (x )=bx 2有两个不相等的实数根.…………16分20.(本小题满分16分)解:(1)Ⅰ若1λ=,因为111n n n n n n a S a S a a λ+++-=-,则()()1111n n n n S a S a +++=+,111a S ==. 又Ⅰ0n a >,0n S >,Ⅰ1111n n n nS a S a +++=+,Ⅰ3131221212111111n n n nS S a a S a S S S a a a +++++⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅+++, 化简,得1112n n S a +++=.Ⅰ Ⅰ当2n ≥时,12n n S a +=.ⅠⅠ-Ⅰ,得12n n a a +=,即()122n na n a +=≥. Ⅰ当1n =时,22a =,1n =时上式也成立,Ⅰ数列{}n a 是首项为1,公比为2的等比数列,12n n a -=.…………4分Ⅰ因为()1n n b n a =+,Ⅰ()112n n b n -=+⋅.所以012212232422(1)2n n n T n n --=⨯+⨯+⨯++⨯++⨯L ,所以123122232422(1)2n nn T n n -=⨯+⨯+⨯++⨯++⨯L ,所以1212222(1)2n nn T n --=++++-+⨯L 12(12)2(1)2212n n n n n --=+-+⨯=-⨯-,所以2nn T n =⋅.…………8分(2)令1n =,得21a λ=+.令2n =,得()231a λ=+.要使数列{}n a 是等差数列,必须有2132a a a =+,解得0λ=. 当0λ=时,()111n n n n S a S a ++=+,且211a a ==.…………10分 当2n ≥时,()()()1111n n n n n n S S S S S S +-+-=+-,整理,得2111n n n n n S S S S S +-++=+,1111n n n nS S S S +-+=+,从而3312412123111111n n n nS S S S S S S S S S S S +-+++⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅+++, 化简,得11n n S S ++=,所以11n a +=.…………14分综上所述,()*1Nn a n =∈,所以0λ=时,数列{}n a 是等差数列.…………16分第Ⅰ卷(选做题,40分)21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—2:矩阵与变换解:(1) M 2=⎣⎡⎦⎤ 2 1 1 2 ⎣⎡⎦⎤ 2 1 1 2 =⎣⎡⎦⎤5445 .…………4分 (2)矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -1-1 λ-2=(λ-1)(λ-3).令f (λ)=0,解得M 的特征值为λ1=1,λ2=3.…………6分 Ⅰ当λ=1时,⎣⎡⎦⎤ 2 1 1 2 ⎣⎡⎦⎤x y =⎣⎡⎦⎤xy ,得⎩⎨⎧x +y =0,x +y =0.令x =1,则y =-1,于是矩阵M 的一个特征向量为⎣⎡⎦⎤1-1.…………8分Ⅰ当λ=3时,⎣⎡⎦⎤ 2 1 1 2 ⎣⎡⎦⎤x y =3⎣⎡⎦⎤xy ,得⎩⎨⎧x -y =0,x -y =0.令x =1,则y =1,于是矩阵M 的一个特征向量为⎣⎡⎦⎤11. 因此,矩阵M 的特征值为1,3,分别对应一个特征向量为⎣⎡⎦⎤1-1,⎣⎡⎦⎤11.…………10分 B .选修4—4:坐标系与参数方程解:分别化为普通方程得直线1x =与圆22(1)1x y +-=,…………4分易得直线1x =与圆22(1)1x y +-=切于点Q ()1 1,,…………6分 所以交点Q 的极坐标是)π4,.…………10分【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)解:(1)因为l 过M (2,0),且当l 垂直于x 轴时,AB =4, 所以抛物线经过点(2,2),代入抛物线方程,得4=2p ×2,解得p =1.…………2分 (2)设直线l 方程为:y =k (x -2)(k ≠0),A (x 1,y 1),B (x 2,y 2).联立⎩⎨⎧y 2=2x ,y =k (x -2),消去x ,得ky 2-2y -4k =0,则y 1+y 2=2k ,y 1y 2=-4.…………4分因为C 为AB 中点,所以y C =y 1+y 22=1k ,则直线l 1方程为:y =1k.…………6分因为直线l 2过点M 且与l 垂直,则l 2方程为:y =-1k(x -2),联立⎩⎨⎧y =1k ,y =-1k (x -2),…………8分解得⎩⎪⎨⎪⎧x =1,y =1k ,即P (1,1k),所以,点P 在定直线x =1上.…………10分 23.(本小题满分10分) 解:(1)0111111101=-=+=a a S ;231121111112102=+-=++=a a a S ;011313111111132103=-+-=+++=a a a a S ;35114161411111111432104=+-+-=++++=a a a a a S .…………4分(2)由二项式定理得,(1),,k kk na k n k =-∈C N ≤, 因为!()!1!C k nk n k n -=)!1(])!(!)][1()1[(21+-+++-⋅++=n k n k k k n n n )!1()!()!1()!1(!21+-+++-⋅++=n k n k k n k n n ⎥⎦⎤⎢⎣⎡+-++++-⋅++=)!1()!()!1()!1()!1(!21n k n k n k n k n n ⎥⎦⎤⎢⎣⎡+⋅++=+++111C 1C 121k n k n n n ,…………8分 所以∑==nk kn a S 01011211111111111111(1)2C C C C C C n n n n n n n n n n n +++++++⎡⎤⎛⎫⎛⎫⎛⎫+=⋅+-+++-+⎢⎥ ⎪ ⎪ ⎪+⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦L高三数学参考答案 第 11 页 共 11 页 0111111(1)2C C n n n n n n +++⎛⎫+=⋅+- ⎪+⎝⎭()n n n )1(121-+⋅++=.…………10分。
江苏省扬州市2020届高三第二次模拟考试(5月) 数学 Word版含答案

2020届高三模拟考试试卷数 学(满分160分,考试时间120分钟)2020.5一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={x|-1<x <2},B ={x|x >0},则A ∩B =________.2. 已知(1-i)z =2+i ,其中i 是虚数单位,则复数z 的模为________.3. 已知某校高一、高二、高三年级分别有1 000,800,600名学生,现计划用分层抽样的方法抽取120名学生去参加社会实践,则在高三年级需抽取________名学生.S ←0For I From 1 To 5 S ←S +I End For Print S4. 如图伪代码的输出结果为________.5. 若实数x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≥-1,x +y -1≤0,则2x -y 的最小值为________.6. 已知a ∈{-1,1},b ={-3,1,2},则直线ax +by -1=0不经过第二象限的概率为________.7. 已知双曲线x 24-y 2b 2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的虚轴长为________.8. 已知α为锐角,且cos(α+π6)=13,则cos α=________.9. 等比数列{a n }的前n 项和为S n ,已知a 1a 6=3a 3,且a 4与a 5的等差中项为2,则S 5=________.10. 在正四棱柱ABCDA 1B 1C 1D 1中,AB =2,AA 1=3,O 为上底面ABCD 的中心.设正四棱柱ABCDA 1B 1C 1D 1与正四棱锥OA 1B 1C 1D 1的侧面积分别为S 1,S 2,则S 1S 2=________.11. 已知曲线C :f(x)=x 3-x ,直线l :y =ax -a ,则“a =-14”是“直线l 与曲线C 相切”的____________条件.(选填“充分不必要”“必要不充分”“充分必要”或“既不充分又不必要”)12. 已知x >0,y >0,则x +y x +16xy的最小值为________.13. 已知点D 为圆O :x 2+y 2=4的弦MN 的中点,点A 的坐标为(1,0),且AM →·AN →=1,则OA →·OD →的最小值为________.14. 在数列{a n }中,a 1=1,a n +1=⎩⎨⎧a n +1,n4∉N *,a n ,n4∈N *.设{a n }的前n 项和为S n ,若S 4n ≤λ·2n-1恒成立,则实数λ的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,已知2S =bccos A ,其中S 为△ABC 的面积,a ,b ,c 分别为角A ,B ,C 的对边.(1) 求角A 的值;(2) 若tan B =65,求sin 2C 的值.16.(本小题满分14分)如图,在三棱柱ABCA 1B 1C 1中,BC =B 1C ,O 为四边形ACC 1A 1对角线的交点,F 为棱BB 1的中点,且AF ⊥平面BCC 1B 1.求证:(1) OF ∥平面ABC ;(2) 四边形ACC 1A 1为矩形.17. (本小题满分14分)某厂根据市场需求开发三角花篮支架(如图),上面为花篮,支架由三根细钢管组成.考虑到钢管的受力和花篮质量等因素,设计支架应满足:① 三根细钢管长均为1米(粗细忽略不计),且与地面所成的角均为θ(π6≤θ≤π3);② 架面与架底平行,且架面三角形ABC 与架底三角形A 1B 1C 1均为等边三角形;③ 三根细钢管相交处的节点O 分三根细钢管上、下两段之比均为2∶3.定义:架面与架底的距离为“支架高度”,架底三角形A 1B 1C 1的面积与“支架高度”的乘积为“支架需要空间”.(1) 当θ=π3时,求“支架高度”;(2) 求“支架需要空间”的最大值.18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(1,22),且椭圆的离心率为22.直线l :y =x +t 与椭圆E 相交于A ,B 两点,线段AB 的中垂线交椭圆E 于C ,D 两点.(1) 求椭圆E 的标准方程; (2) 求线段CD 长的最大值;(3) 求AC →·AD →的值.19. (本小题满分16分)已知函数f(x)=a(x -1x)(a ∈R ),g(x)=ln x.(1) 当a =1时,解不等式:f(x)-g(x)≤0; (2) 设u(x)=xf(x)-g(x).①当a <0时,若存在m ,n ∈(0,+∞)(m ≠n),使得u(m)+u(n)=0,求证:mn <1; ②当a >0时,讨论u(x)的零点个数.20. (本小题满分16分) 对数列{a n },规定{Δa n }为数列{a n }的一阶差分数列,其中Δa n =a n +1-a n (n ∈N *).规定{Δ2a n }为{a n }的二阶差分数列,其中Δ2a n =Δa n +1-Δa n (n ∈N *).(1) 已知数列{a n }的通项公式a n =n 2(n ∈N *),试判断{Δa n },{Δ2a n }是否为等差数列,请说明理由;(2) 若数列{b n }是公比为q 的正项等比数列,且q ≥2,对于任意的n ∈N *,都存在m ∈N *,使得Δ2b n =b m ,求q 所有可能的取值构成的集合;(3) 设各项均为正数的数列{c n }的前n 项和为S n ,且Δ2c n =0.对满足m +n =2k ,m ≠n 的任意正整数m ,n ,k ,都有c m ≠c n ,且不等式S m +S n >tS k 恒成立,求实数t 的最大值.2020届高三模拟考试试卷(十五)数学附加题(满分40分,考试时间30分钟)21. (本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤a 22b ,M =⎣⎢⎡⎦⎥⎤1223,且MN =⎣⎢⎡⎦⎥⎤1001. (1) 求矩阵M ;(2) 若直线l 在矩阵M 对应的变换作用下变为直线x +3y =0,求直线l 的方程.22.(本小题满分10分)在平面直角坐标系中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t ,y =1-3t (t 为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C :ρ=22sin (θ-π4),求直线l 被曲线C 截得的弦长.23. (本小题满分10分)某商场举行元旦促销回馈活动,凡购物满1 000元,即可参与抽奖活动,抽奖规则如下:在一个不透明的口袋中装有编号为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次(每次摸出的小球均不放回口袋),编号依次作为一个三位数的个位、十位、百位,若三位数是奇数,则奖励50元,若三位数是偶数,则奖励100m 元(m 为三位数的百位上的数字,如三位数为234,则奖励100×2=200元).(1) 求抽奖者在一次抽奖中所得三位数是奇数的概率;(2) 求抽奖者在一次抽奖中获奖金额X 的概率分布与数学期望E(X).24.(本小题满分10分)(1) 求证:1k +1C k n =1n +1C k +1n +1(n ∈N *,k ∈N );(2) 计算:(-1)0C 02 020+(-1)112C 12 020+(-1)213C 22 020+…+(-1)2 02012 021C 2 0202 020; (3) 计算:∑2 020k =0(-1)k C k 2 0202k +2.2020届高三模拟考试试卷(扬州) 数学参考答案及评分标准1. {x|0<x <2}2. 1023. 304. 155. -16. 16 7. 25 8. 3+2269. 121 10.3105 11. 充分不必要 12. 42 13. -1 14. λ≥33215. 解:(1) 因为2S =bccos A ,所以2×12bcsin A =bccos A ,则sin A =cos A .(3分)在△ABC 中,因为A ∈(0,π),所以sin A =cos A >0, 所以tan A =1,(5分) 所以A =π4.(7分)(2) 由(1)知A =π4,又tan B =65,所以tan(A +B)=tan(π4+B)=1+tan B1-tan B=1+651-65=-11.(9分)在△ABC 中,因为A +B +C =π,所以tan C =-tan(A +B)=11,所以sin 2C =2sin Ccos C =2sin Ccos C sin 2C +cos 2C =2tan C1+tan 2C =2×111+112=22122=1161.(14分)16. 证明:(1) 取AC 中点D ,连结OD.在三棱柱ABCA 1B 1C 1中,四边形ACC 1A 1为平行四边形,BB 1∥CC 1∥AA 1,且BB 1=AA 1.因为O 为平行四边形ACC 1A 1对角线的交点,所以O 为A 1C 的中点.又D 为AC 的中点,所以OD ∥AA 1,且OD =12AA 1.(2分)又BB 1∥AA 1,BB 1=AA 1,所以OD ∥BB 1,且OD =12BB 1.又F 为BB 1的中点,所以OD ∥BF ,且OD =BF ,所以四边形ODBF 为平行四边形,所以OF ∥BD.(5分)因为BD ⊂平面ABC ,OF ⊄平面ABC , 所以OF ∥平面ABC.(7分)(2) 因为BC =B 1C ,F 为BB 1的中点,所以CF ⊥BB 1.因为AF ⊥平面BCC 1B 1,BB 1⊂平面BCC 1B 1,所以AF ⊥BB 1.(9分)因为CF ⊥BB 1,AF ⊥BB 1,CF ⊂平面AFC ,AF ⊂平面AFC ,CF ∩AF =F , 所以BB 1⊥平面AFC.(11分)又AC ⊂平面AFC ,所以BB 1⊥AC. 又由(1)知BB 1∥CC 1,所以AC ⊥CC 1.在三棱柱ABCA 1B 1C 1中,四边形ACC 1A 1为平行四边形, 所以四边形ACC 1A 1为矩形.(14分)17. 解:(1) 因为架面与架底平行,且AA 1与地面所成的角为π3,AA 1=1米,所以“支架高度” h =1×sinπ3=32(米).(4分) (2) 过O 作OO 1⊥平面A 1B 1C 1,垂足为O 1.又O 1A 1⊂平面A 1B 1C 1,所以OO 1⊥O 1A 1.又AA 1与地面所成的角为θ,所以O 1A 1=35cos θ.同理O 1C 1=O 1B 1=35cos θ,所以O 1为等边三角形A 1B 1C 1的外心,也为其重心, 所以B 1C 1=A 1O 1·32×23=35cos θ·3=335cos θ,S △A 1B 1C 1=34×(335cos θ)2=273100cos 2θ. 记“支架需要空间”为V ,则V =273100cos 2θ·sin θ,θ∈[π6,π3].(8分)令t =sin θ,则t ∈⎣⎡⎦⎤12,32.所以V =273100(1-t 2)t =273100(t -t 3),t ∈⎣⎡⎦⎤12,32.又V′=273100(1-3t 2)=-813100(t 2-13)=-813100(t +33)(t -33),则当t ∈(12,33)时,V ′>0,V 单调递增;当t ∈(33,32)时,V ′<0,V 单调递减,所以当t =33时,V max =273100[33-(33)3]=273100×33×23=950(立方米).(13分) 答:(1) 当θ=π3时,“支架高度”为32米;(2) “支架需要空间”的最大值为950立方米.(14分)18. 解:(1) 设椭圆E 的焦距为2c(c >0),则e =c a =a 2-b 2a =22,可知a 2=2b 2.(2分)因为椭圆E 过点(1,22), 所以1a 2+12b 2=1,解得a 2=2,b 2=1,所以椭圆的标准方程为x 22+y 2=1.(4分)(2) 设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).由⎩⎪⎨⎪⎧y =x +t ,x 2+2y 2=2得3x 2+4tx +2t 2-2=0. 又直线l :y =x +t 与椭圆E 相交于A ,B 两点,所以⎩⎨⎧x 1+x 2=-43t ,x 1x 2=2t 2-23,且Δ=(4t)2-4×3×(2t 2-2)>0,则-3<t < 3.(6分)设AB 的中点为M(x M ,y M ),则x M =x 1+x 22=-23t ,y M =x M +t =13t ,所以AB 的中垂线的方程为y =-x -13t ,即直线CD 的方程为y =-x -13t.由⎩⎪⎨⎪⎧y =-x -13t ,x 2+2y 2=2得27x 2+12tx +2t 2-18=0,则⎩⎨⎧x 3+x 4=-49t ,x 3x 4=2t 2-1827,(8分) 所以CD =(x 4-x 3)2+(y 4-y 3)2=1+(-1)2·(x 3+x 4)2-4x 3x 4 =2·(-49t )2-4×2t 2-1827=2·-881t 2+83. 又t ∈(-3,3),所以当t =0时,CD max =2×83=433.(10分) (3) 由(2)知AC →·AD →=(x 3-x 1,y 3-y 1)·(x 4-x 1,y 4-y 1) =(x 3-x 1)(x 4-x 1)+(y 3-y 1)(y 4-y 1)=(x 3-x 1)(x 4-x 1)+(-x 3-x 1-43t)(-x 4-x 1-43t)=x 3x 4-(x 3+x 4)x 1+x 21+x 3x 4+(x 1+43t)(x 3+x 4)+x 21+83tx 1+169t 2=2x 3x 4+43t(x 3+x 4)+2x 21+83tx 1+169t 2.(13分) 又⎩⎨⎧x 3+x 4=-49t ,x 3x 4=2t 2-1827,3x 21+4tx 1+2t 2-2=0,所以AC →·AD →=2x 3x 4+43t(x 3+x 4)+23(3x 21+4tx 1)+169t 2 =2×2t 2-1827+43t ×(-49t)+23(2-2t 2)+169t 2=(427-1627-3627+4827)t 2=0.(16分) 19. (1) 解:设h(x)=f(x)-g(x)=x -1x -ln x ,则h′(x)=1+1x 2-1x =x 2-x +1x 2=(x -12)2+34x 2>0,所以h(x)在(0,+∞)上递增.又h(1)=0,所以0<x <1,所以f(x)-g(x)≤0的解集为(0,1).(4分) (2) ①证明:由u(m)+u(n)=0得a(m 2-1)-ln m +a(n 2-1)-ln n =0, 即a(m 2+n 2-2)-ln m -ln n =0,又a <0,所以a(m 2+n 2-2)-ln m -ln n =0≤a(2mn -2)-ln(mn). 因为m ≠n ,所以“=”不成立.(7分) 思路一:设mn =t ,v(t)=a(2t -2)-ln t(t >0),则v′(t)=2a -1t<0,所以v(t)在(0,+∞)上单调递减.又v(1)=0,所以t <1,即mn <1.(10分) 思路二:假设mn ≥1,则2mn -2≥0,ln(mn)≥0,所以a(2mn -2)-ln(mn)≤0, 这与a(2mn -2)-ln(mn)>0矛盾,故mn <1.(10分) ②解:u(x)=xf(x)-g(x)=a(x 2-1)-ln x ,当a >0时,u ′(x)=2ax -1x =2ax 2-1x .令u′(x)=0得x =±12a(负值舍去). 所以当x ∈(0,12a)时,u ′(x)<0,u(x)为减函数; 当x ∈(12a,+∞)时,u ′(x)>0,u(x)为增函数. 又u(1)=0, 1° 当12a =1,即a =12时,u(x)有1个零点;(12分) 2° 当12a <1,即a >12时,由u(1)=0可知u(12a)<u(1)=0, 又u(e -a )>0,且e -a <1,所以u(x)在(0,1)上有1个零点,故此时u(x)有2个零点;(14分) 3° 当12a >1,即0<a <12时,由u(1)=0可知u(12a)<u(1)=0, 令φ(x)=ln x -(x -1),则φ′(x)=1x -1=1-x x,所以当x ∈(0,1)时,φ′(x)>0,φ(x)单调递增;当x ∈(1,+∞)时,φ′(x)<0,φ(x)单调递减,所以φ(x)max =φ(1)=0,故ln x ≤x -1,则-ln x ≥-(x -1).所以u(x)>a(x 2-1)-(x -1),所以u(1a -1)>0,且1a -1>1,所以u(x)在(1,+∞)上有1个零点,故此时u(x)有2个零点.综上,当a =12时,u(x)有1个零点;当a >0时a ≠12时,u(x)有2个零点.(16分)20. 解:(1) 因为a n =n 2,所以Δa n =a n +1-a n =(n +1)2-n 2=2n +1,则Δa n +1-Δa n =2.又Δa 1=3,所以{Δa n }是首项为3,公差为2的等差数列.因为Δ2a n =Δa n +1-Δa n =2,则{Δ2a n }是首项为2,公差为0的等差数列.(2分)(2) 因为数列{b n }是公比为q 的正项等比数列,所以b n =b 1q n -1.又Δ2b n =Δb n +1-Δb n =b n +2-b n +1-(b n +1-b n )=b n +2-2b n +1+b n ,且对任意的n ∈N *,都存在m ∈N *,使得Δ2b n =b m ,所以对任意的n ∈N *,都存在m ∈N *,使得b 1q n +1-2b 1q n +b 1q n -1=b 1q m -1,即(q -1)2=q m -n .因为q ≥2,所以m -n ≥0. 1° 若m -n =0,则q 2-2q +1=1,解得q =0(舍)或q =2,即当q =2时,对任意的n ∈N *,都有Δ2b n =b n .2° 若m -n =1,则q 2-3q +1=0,解得q =3-52(舍)或q =3+52,即当q =3+52时,对任意的n ∈N *,都有Δ2b n =b n +1.3° 若m -n ≥2,则q m -n ≥q 2>(q -1)2,故对任意的n ∈N *,不存在m ∈N *,使得Δ2b n=b m .综上所述,q 所有可能的取值构成的集合为⎩⎨⎧⎭⎬⎫2,3+52.(8分) (3) 因为Δ2c n =0,所以Δ2c n =Δc n +1-Δc n =c n +2-c n +1-(c n +1-c n )=c n +2-2c n +1+c n =0,所以c n +2-c n +1=c n +1-c n ,所以{c n }是等差数列.设{c n }的公差为d ,则c n =c 1+(n -1)d. 若d =0,则c m =c n ;若d <0,则当n >1-c 1d 时,c n <0,与数列{c n }的各项均为正数矛盾,故d >0.(10分)由等差数列前n 项和公式可得S n =d 2n 2+(c 1-d2)n ,所以S n +S m =d 2n 2+(c 1-d 2)n +d 2m 2+(c 1-d 2)m =d 2(n 2+m 2)+(c 1-d2)(m +n),S k =d 2(m +n 2)2+(c 1-d 2)·m +n2.又m ≠n ,m 2+n 22>(m +n )24,所以S n +S m =d 2(n 2+m 2)+(c 1-d 2)(m +n)>d 2·(m +n )22+(c 1-d 2)(m +n)=2S k , 则当t ≤2时,不等式S m +S n >tS k 都成立.(12分)另一方面,当t >2时,令m =k +1,n =k -1(k ∈N *,k ≥2),则S m +S n =d 2[(k +1)2+(k -1)2+(c 1-d 2)·2k]=d 2(2k 2+2)+2k(c 1-d 2), S k =d 2k 2+(c 1-d 2)k , 则tS k -(S m +S n )=d 2tk 2+(c 1-d 2)tk -d 2(2k 2+2)-2k(c 1-d 2) =(d 2t -d)(k 2-k)+(t -2)c 1k -d. 因为d 2t -d >0,k 2-k ≥0,所以当k >d (t -2)c 1,tS k -(S n +S m )>0,即S m +S n <tS k . 综上,t 的最大值为2.(16分)2020届高三模拟考试试卷(扬州)数学附加题参考答案及评分标准21. 解:(1) 用待定系数或公式可求得M =⎣⎢⎡⎦⎥⎤-3 2 2-1.(5分) (2) 设直线l 上任一点(x ,y)在矩阵M 对应的变换作用下为(x′,y ′),即⎣⎢⎡⎦⎥⎤-3 2 2-1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-3x +2y 2x -y =⎣⎢⎡⎦⎥⎤x′y′在x +3y =0上,(8分) 则-3x +2y +6x -3y =0,即3x -y =0,所以直线l 的方程为3x -y =0.(10分)22. 解:把直线的方程l :⎩⎪⎨⎪⎧x =3t ,y =1-3t (t 为参数)化为普通方程为x +y =1.(3分) 圆ρ=22sin (θ-π4)化为普通方程为x 2+2x +y 2-2y =0, 即(x +1)2+(y -1)2=2.(6分) 圆心C 到直线l 的距离d =12=22.(8分) 所以直线l 被圆C 截得的弦长为2(2)2-(22)2= 6.(10分)23. 解:(1) 因为n =A 35=60,m =A 13A 24=36,所以P 1=3660=35. 答:摸到三位数是奇数的概率是35.(4分) (2) 获奖金额X 的可能取值为50,100,200,300,400,500,则P(X =50)=35,P(X =100)=1×3×260=110,P(X =200)=1×3×160=120, P(X =300)=1×3×260=110,P(X =400)=1×3×160=120,P(X =500)=1×3×260=110,(7分) 获奖金额X 的概率分布为数学期望E(X)=50×35+100×110+200×120+300×110+400×120+500×110=150元. 答:期望是150元.24. 解:(1)1k +1C k n =1k +1·n !k !(n -k )!=1n +1·(n +1)!(k +1)!(n -k )!=1n +1C k +1n +1.(2分)(2) (-1)0C 02 020+(-1)112C 12 020+(-1)213C 22 020+…+(-1)2 02012 021C 2 0202 020=∑2 020k =0(-1)k 1k +1C k 2 020=12 021∑2 020k =0(-1)k C k +12 021=12 021.(4分) (3) (解法1)设a n =∑n k =0(-1)k C k n 2k +2, 则a n =1+∑n -1k =1(-1)k (C k n -1+C k -1n -1)2k +2+(-1)n 2n +2=a n -1+∑n k =1(-1)k C k -1n -12k +2=a n -1+2n ∑n k =1(-1)k C k n k k +2=a n -1+2n ⎣⎡⎦⎤∑n k =0 (-1)k C k n -∑n k =0 (-1)k C k n 2k +2=a n -1+2n(0-a n ),(7分) 所以a n =n n +2a n -1⇒a n =n n +2·n -1n +1a n -2=…=n (n -1)·…·3·2(n +2)(n +1)·…·5·4a 1. 又a 1=13,所以a n =n !2!(n +2)!=1C n n +2. 所以∑2 020k =0(-1)k C k 2 0202k +2=a 2 020=1C 2 0202 022=1C 22 022=11 011×2 021=12 043 231.(结果没化简,不扣分)(10分)(解法2)∑2 020k =0(-1)k C k 2 0202k +2=∑2 020k =0(-1)k · 2 020!k !(2 020-k )!·2(k +1)(k +2)(k +1) =∑2 020k =0(-1)k · 2 022!(k +2)!(2 020-k )!·2(k +1)2 022×2 021=22 022×2 021·∑2 020k =0(-1)k ·(k -1)·C k +22 022 =22 022×2 021·∑2 020k =0(-1)k ·(k +2-1)·C k +22 022 =22 022×2 021·⎣⎡⎦⎤∑2 020k =0 (-1)k ·(k +2)·C k +22 022-∑2 020k =0 (-1)k ·C k +22 022 =22 022×2 021·⎣⎡⎦⎤∑2 020k =0(-1)k ·2 022·C k +12 021-∑2 020k =0 (-1)k +2·C k +22 022 =22 022×2 021·⎩⎨⎧⎭⎬⎫-2 022∑2 020k =0 (-1)k +1·C k +12 021-[(1-1)2 022-1-C 22 022(-1)1] =22 022×2 021·{-2 022·[(1-1)2 021-1]+1-2 022} =22 022×2 021=11 011×2 021=12 043 231.(结果没化简,不扣分)(10分)。
【2020扬州二模】江苏省扬州市2020届高三第二次模拟考试(5月) 数学 Word版含答案

2020届高三模拟考试试卷数 学(满分160分,考试时间120分钟)2020.5一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={x|-1<x <2},B ={x|x >0},则A ∩B =________.2. 已知(1-i)z =2+i ,其中i 是虚数单位,则复数z 的模为________.3. 已知某校高一、高二、高三年级分别有1 000,800,600名学生,现计划用分层抽样的方法抽取120名学生去参加社会实践,则在高三年级需抽取________名学生.S ←0For I From 1 To 5 S ←S +I End For Print S4. 如图伪代码的输出结果为________.5. 若实数x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≥-1,x +y -1≤0,则2x -y 的最小值为________.6. 已知a ∈{-1,1},b ={-3,1,2},则直线ax +by -1=0不经过第二象限的概率为________.7. 已知双曲线x 24-y 2b 2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的虚轴长为________.8. 已知α为锐角,且cos(α+π6)=13,则cos α=________.9. 等比数列{a n }的前n 项和为S n ,已知a 1a 6=3a 3,且a 4与a 5的等差中项为2,则S 5=________.10. 在正四棱柱ABCDA 1B 1C 1D 1中,AB =2,AA 1=3,O 为上底面ABCD 的中心.设正四棱柱ABCDA 1B 1C 1D 1与正四棱锥OA 1B 1C 1D 1的侧面积分别为S 1,S 2,则S 1S 2=________.11. 已知曲线C :f(x)=x 3-x ,直线l :y =ax -a ,则“a =-14”是“直线l 与曲线C 相切”的____________条件.(选填“充分不必要”“必要不充分”“充分必要”或“既不充分又不必要”)12. 已知x >0,y >0,则x +y x +16xy的最小值为________.13. 已知点D 为圆O :x 2+y 2=4的弦MN 的中点,点A 的坐标为(1,0),且AM →·AN →=1,则OA →·OD →的最小值为________.14. 在数列{a n }中,a 1=1,a n +1=⎩⎨⎧a n +1,n4∉N *,a n ,n4∈N *.设{a n }的前n 项和为S n ,若S 4n ≤λ·2n-1恒成立,则实数λ的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,已知2S =bccos A ,其中S 为△ABC 的面积,a ,b ,c 分别为角A ,B ,C 的对边.(1) 求角A 的值;(2) 若tan B =65,求sin 2C 的值.16.(本小题满分14分)如图,在三棱柱ABCA 1B 1C 1中,BC =B 1C ,O 为四边形ACC 1A 1对角线的交点,F 为棱BB 1的中点,且AF ⊥平面BCC 1B 1.求证:(1) OF ∥平面ABC ;(2) 四边形ACC 1A 1为矩形.17. (本小题满分14分)某厂根据市场需求开发三角花篮支架(如图),上面为花篮,支架由三根细钢管组成.考虑到钢管的受力和花篮质量等因素,设计支架应满足:① 三根细钢管长均为1米(粗细忽略不计),且与地面所成的角均为θ(π6≤θ≤π3);② 架面与架底平行,且架面三角形ABC 与架底三角形A 1B 1C 1均为等边三角形;③ 三根细钢管相交处的节点O 分三根细钢管上、下两段之比均为2∶3.定义:架面与架底的距离为“支架高度”,架底三角形A 1B 1C 1的面积与“支架高度”的乘积为“支架需要空间”.(1) 当θ=π3时,求“支架高度”;(2) 求“支架需要空间”的最大值.18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(1,22),且椭圆的离心率为22.直线l :y =x +t 与椭圆E 相交于A ,B 两点,线段AB 的中垂线交椭圆E 于C ,D 两点.(1) 求椭圆E 的标准方程; (2) 求线段CD 长的最大值;(3) 求AC →·AD →的值.19. (本小题满分16分)已知函数f(x)=a(x -1x)(a ∈R ),g(x)=ln x.(1) 当a =1时,解不等式:f(x)-g(x)≤0; (2) 设u(x)=xf(x)-g(x).①当a <0时,若存在m ,n ∈(0,+∞)(m ≠n),使得u(m)+u(n)=0,求证:mn <1; ②当a >0时,讨论u(x)的零点个数.20. (本小题满分16分) 对数列{a n },规定{Δa n }为数列{a n }的一阶差分数列,其中Δa n =a n +1-a n (n ∈N *).规定{Δ2a n }为{a n }的二阶差分数列,其中Δ2a n =Δa n +1-Δa n (n ∈N *).(1) 已知数列{a n }的通项公式a n =n 2(n ∈N *),试判断{Δa n },{Δ2a n }是否为等差数列,请说明理由;(2) 若数列{b n }是公比为q 的正项等比数列,且q ≥2,对于任意的n ∈N *,都存在m ∈N *,使得Δ2b n =b m ,求q 所有可能的取值构成的集合;(3) 设各项均为正数的数列{c n }的前n 项和为S n ,且Δ2c n =0.对满足m +n =2k ,m ≠n 的任意正整数m ,n ,k ,都有c m ≠c n ,且不等式S m +S n >tS k 恒成立,求实数t 的最大值.2020届高三模拟考试试卷(十五)数学附加题(满分40分,考试时间30分钟)21. (本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤a 22b ,M =⎣⎢⎡⎦⎥⎤1223,且MN =⎣⎢⎡⎦⎥⎤1001.(1) 求矩阵M ;(2) 若直线l 在矩阵M 对应的变换作用下变为直线x +3y =0,求直线l 的方程.22.(本小题满分10分)在平面直角坐标系中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t ,y =1-3t(t 为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C :ρ=22sin (θ-π4),求直线l 被曲线C 截得的弦长.23. (本小题满分10分)某商场举行元旦促销回馈活动,凡购物满1 000元,即可参与抽奖活动,抽奖规则如下:在一个不透明的口袋中装有编号为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次(每次摸出的小球均不放回口袋),编号依次作为一个三位数的个位、十位、百位,若三位数是奇数,则奖励50元,若三位数是偶数,则奖励100m 元(m 为三位数的百位上的数字,如三位数为234,则奖励100×2=200元).(1) 求抽奖者在一次抽奖中所得三位数是奇数的概率;(2) 求抽奖者在一次抽奖中获奖金额X 的概率分布与数学期望E(X).24.(本小题满分10分)(1) 求证:1k +1C k n =1n +1C k +1n +1(n ∈N *,k ∈N );(2) 计算:(-1)0C 02 020+(-1)112C 12 020+(-1)213C 22 020+…+(-1)2 02012 021C 2 0202 020; (3) 计算:∑2 020k =0(-1)k C k 2 0202k +2.2020届高三模拟考试试卷(扬州)数学参考答案及评分标准1. {x|0<x <2}2. 1023. 304. 155. -16. 16 7. 25 8. 3+2269. 121 10.3105 11. 充分不必要 12. 42 13. -1 14. λ≥33215. 解:(1) 因为2S =bccos A ,所以2×12bcsin A =bccos A ,则sin A =cos A .(3分)在△ABC 中,因为A ∈(0,π),所以sin A =cos A >0, 所以tan A =1,(5分) 所以A =π4.(7分)(2) 由(1)知A =π4,又tan B =65,所以tan(A +B)=tan(π4+B)=1+tan B1-tan B=1+651-65=-11.(9分)在△ABC 中,因为A +B +C =π,所以tan C =-tan(A +B)=11,所以sin 2C =2sin Ccos C =2sin Ccos C sin 2C +cos 2C =2tan C1+tan 2C =2×111+112=22122=1161.(14分)16. 证明:(1) 取AC 中点D ,连结OD.在三棱柱ABCA 1B 1C 1中,四边形ACC 1A 1为平行四边形,BB 1∥CC 1∥AA 1,且BB 1=AA 1.因为O 为平行四边形ACC 1A 1对角线的交点,所以O 为A 1C 的中点.又D 为AC 的中点,所以OD ∥AA 1,且OD =12AA 1.(2分)又BB 1∥AA 1,BB 1=AA 1,所以OD ∥BB 1,且OD =12BB 1.又F 为BB 1的中点,所以OD ∥BF ,且OD =BF ,所以四边形ODBF 为平行四边形,所以OF ∥BD.(5分)因为BD ⊂平面ABC ,OF ⊄平面ABC , 所以OF ∥平面ABC.(7分)(2) 因为BC =B 1C ,F 为BB 1的中点,所以CF ⊥BB 1.因为AF ⊥平面BCC 1B 1,BB 1⊂平面BCC 1B 1,所以AF ⊥BB 1.(9分)因为CF ⊥BB 1,AF ⊥BB 1,CF ⊂平面AFC ,AF ⊂平面AFC ,CF ∩AF =F , 所以BB 1⊥平面AFC.(11分)又AC ⊂平面AFC ,所以BB 1⊥AC. 又由(1)知BB 1∥CC 1,所以AC ⊥CC 1.在三棱柱ABCA 1B 1C 1中,四边形ACC 1A 1为平行四边形, 所以四边形ACC 1A 1为矩形.(14分)17. 解:(1) 因为架面与架底平行,且AA 1与地面所成的角为π3,AA 1=1米,所以“支架高度” h =1×sinπ3=32(米).(4分) (2) 过O 作OO 1⊥平面A 1B 1C 1,垂足为O 1.又O 1A 1⊂平面A 1B 1C 1,所以OO 1⊥O 1A 1.又AA 1与地面所成的角为θ,所以O 1A 1=35cos θ.同理O 1C 1=O 1B 1=35cos θ,所以O 1为等边三角形A 1B 1C 1的外心,也为其重心, 所以B 1C 1=A 1O 1·32×23=35cos θ·3=335cos θ,S △A 1B 1C 1=34×(335cos θ)2=273100cos 2θ. 记“支架需要空间”为V ,则V =273100cos 2θ·sin θ,θ∈[π6,π3].(8分)令t =sin θ,则t ∈⎣⎡⎦⎤12,32.所以V =273100(1-t 2)t =273100(t -t 3),t ∈⎣⎡⎦⎤12,32.又V′=273100(1-3t 2)=-813100(t 2-13)=-813100(t +33)(t -33),则当t ∈(12,33)时,V ′>0,V 单调递增;当t ∈(33,32)时,V ′<0,V 单调递减,所以当t =33时,V max =273100[33-(33)3]=273100×33×23=950(立方米).(13分) 答:(1) 当θ=π3时,“支架高度”为32米;(2) “支架需要空间”的最大值为950立方米.(14分)18. 解:(1) 设椭圆E 的焦距为2c(c >0),则e =c a =a 2-b 2a =22,可知a 2=2b 2.(2分)因为椭圆E 过点(1,22), 所以1a 2+12b 2=1,解得a 2=2,b 2=1,所以椭圆的标准方程为x 22+y 2=1.(4分)(2) 设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).由⎩⎪⎨⎪⎧y =x +t ,x 2+2y 2=2得3x 2+4tx +2t 2-2=0. 又直线l :y =x +t 与椭圆E 相交于A ,B 两点,所以⎩⎨⎧x 1+x 2=-43t ,x 1x 2=2t 2-23,且Δ=(4t)2-4×3×(2t 2-2)>0,则-3<t < 3.(6分) 设AB 的中点为M(x M ,y M ),则x M =x 1+x 22=-23t ,y M =x M +t =13t ,所以AB 的中垂线的方程为y =-x -13t ,即直线CD 的方程为y =-x -13t.由⎩⎪⎨⎪⎧y =-x -13t ,x 2+2y 2=2得27x 2+12tx +2t 2-18=0,则⎩⎨⎧x 3+x 4=-49t ,x 3x 4=2t 2-1827,(8分) 所以CD =(x 4-x 3)2+(y 4-y 3)2=1+(-1)2·(x 3+x 4)2-4x 3x 4 =2·(-49t )2-4×2t 2-1827=2·-881t 2+83. 又t ∈(-3,3),所以当t =0时,CD max =2×83=433.(10分) (3) 由(2)知AC →·AD →=(x 3-x 1,y 3-y 1)·(x 4-x 1,y 4-y 1) =(x 3-x 1)(x 4-x 1)+(y 3-y 1)(y 4-y 1)=(x 3-x 1)(x 4-x 1)+(-x 3-x 1-43t)(-x 4-x 1-43t)=x 3x 4-(x 3+x 4)x 1+x 21+x 3x 4+(x 1+43t)(x 3+x 4)+x 21+83tx 1+169t 2=2x 3x 4+43t(x 3+x 4)+2x 21+83tx 1+169t 2.(13分) 又⎩⎨⎧x 3+x 4=-49t ,x 3x 4=2t 2-1827,3x 21+4tx 1+2t 2-2=0,所以AC →·AD →=2x 3x 4+43t(x 3+x 4)+23(3x 21+4tx 1)+169t 2 =2×2t 2-1827+43t ×(-49t)+23(2-2t 2)+169t 2=(427-1627-3627+4827)t 2=0.(16分) 19. (1) 解:设h(x)=f(x)-g(x)=x -1x -ln x ,则h′(x)=1+1x 2-1x =x 2-x +1x 2=(x -12)2+34x 2>0,所以h(x)在(0,+∞)上递增.又h(1)=0,所以0<x <1,所以f(x)-g(x)≤0的解集为(0,1).(4分) (2) ①证明:由u(m)+u(n)=0得a(m 2-1)-ln m +a(n 2-1)-ln n =0, 即a(m 2+n 2-2)-ln m -ln n =0,又a <0,所以a(m 2+n 2-2)-ln m -ln n =0≤a(2mn -2)-ln(mn). 因为m ≠n ,所以“=”不成立.(7分) 思路一:设mn =t ,v(t)=a(2t -2)-ln t(t >0),则v′(t)=2a -1t<0,所以v(t)在(0,+∞)上单调递减.又v(1)=0,所以t <1,即mn <1.(10分) 思路二:假设mn ≥1,则2mn -2≥0,ln(mn)≥0,所以a(2mn -2)-ln(mn)≤0, 这与a(2mn -2)-ln(mn)>0矛盾,故mn <1.(10分) ②解:u(x)=xf(x)-g(x)=a(x 2-1)-ln x ,当a >0时,u ′(x)=2ax -1x =2ax 2-1x .令u′(x)=0得x =±12a(负值舍去). 所以当x ∈(0,12a)时,u ′(x)<0,u(x)为减函数; 当x ∈(12a,+∞)时,u ′(x)>0,u(x)为增函数. 又u(1)=0, 1° 当12a =1,即a =12时,u(x)有1个零点;(12分) 2° 当12a <1,即a >12时,由u(1)=0可知u(12a)<u(1)=0, 又u(e -a )>0,且e -a <1,所以u(x)在(0,1)上有1个零点,故此时u(x)有2个零点;(14分) 3° 当12a >1,即0<a <12时,由u(1)=0可知u(12a)<u(1)=0, 令φ(x)=ln x -(x -1),则φ′(x)=1x -1=1-x x,所以当x ∈(0,1)时,φ′(x)>0,φ(x)单调递增;当x ∈(1,+∞)时,φ′(x)<0,φ(x)单调递减,所以φ(x)max =φ(1)=0,故ln x ≤x -1,则-ln x ≥-(x -1).所以u(x)>a(x 2-1)-(x -1),所以u(1a -1)>0,且1a -1>1,所以u(x)在(1,+∞)上有1个零点,故此时u(x)有2个零点.综上,当a =12时,u(x)有1个零点;当a >0时a ≠12时,u(x)有2个零点.(16分)20. 解:(1) 因为a n =n 2,所以Δa n =a n +1-a n =(n +1)2-n 2=2n +1,则Δa n +1-Δa n =2.又Δa 1=3,所以{Δa n }是首项为3,公差为2的等差数列.因为Δ2a n =Δa n +1-Δa n =2,则{Δ2a n }是首项为2,公差为0的等差数列.(2分)(2) 因为数列{b n }是公比为q 的正项等比数列,所以b n =b 1q n -1.又Δ2b n =Δb n +1-Δb n =b n +2-b n +1-(b n +1-b n )=b n +2-2b n +1+b n ,且对任意的n ∈N *,都存在m ∈N *,使得Δ2b n =b m ,所以对任意的n ∈N *,都存在m ∈N *,使得b 1q n +1-2b 1q n +b 1q n -1=b 1q m -1,即(q -1)2=q m -n .因为q ≥2,所以m -n ≥0. 1° 若m -n =0,则q 2-2q +1=1,解得q =0(舍)或q =2,即当q =2时,对任意的n ∈N *,都有Δ2b n =b n .2° 若m -n =1,则q 2-3q +1=0,解得q =3-52(舍)或q =3+52,即当q =3+52时,对任意的n ∈N *,都有Δ2b n =b n +1.3° 若m -n ≥2,则q m -n ≥q 2>(q -1)2,故对任意的n ∈N *,不存在m ∈N *,使得Δ2b n=b m .综上所述,q 所有可能的取值构成的集合为⎩⎨⎧⎭⎬⎫2,3+52.(8分) (3) 因为Δ2c n =0,所以Δ2c n =Δc n +1-Δc n =c n +2-c n +1-(c n +1-c n )=c n +2-2c n +1+c n =0,所以c n +2-c n +1=c n +1-c n ,所以{c n }是等差数列. 设{c n }的公差为d ,则c n =c 1+(n -1)d. 若d =0,则c m =c n ;若d <0,则当n >1-c 1d 时,c n <0,与数列{c n }的各项均为正数矛盾,故d >0.(10分)由等差数列前n 项和公式可得S n =d 2n 2+(c 1-d2)n ,所以S n +S m =d 2n 2+(c 1-d 2)n +d 2m 2+(c 1-d 2)m =d 2(n 2+m 2)+(c 1-d2)(m +n),S k =d 2(m +n 2)2+(c 1-d 2)·m +n2.又m ≠n ,m 2+n 22>(m +n )24,所以S n +S m =d 2(n 2+m 2)+(c 1-d 2)(m +n)>d 2·(m +n )22+(c 1-d 2)(m +n)=2S k ,则当t ≤2时,不等式S m +S n >tS k 都成立.(12分)另一方面,当t >2时,令m =k +1,n =k -1(k ∈N *,k ≥2), 则S m +S n =d 2[(k +1)2+(k -1)2+(c 1-d 2)·2k]=d 2(2k 2+2)+2k(c 1-d2),S k =d 2k 2+(c 1-d 2)k , 则tS k -(S m +S n )=d 2tk 2+(c 1-d 2)tk -d 2(2k 2+2)-2k(c 1-d 2) =(d 2t -d)(k 2-k)+(t -2)c 1k -d. 因为d 2t -d >0,k 2-k ≥0,所以当k >d (t -2)c 1,tS k -(S n +S m )>0,即S m +S n <tS k . 综上,t 的最大值为2.(16分)2020届高三模拟考试试卷(扬州)数学附加题参考答案及评分标准21. 解:(1) 用待定系数或公式可求得M =⎣⎢⎡⎦⎥⎤-3 2 2-1.(5分) (2) 设直线l 上任一点(x ,y)在矩阵M 对应的变换作用下为(x′,y ′),即⎣⎢⎡⎦⎥⎤-3 2 2-1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-3x +2y 2x -y =⎣⎢⎡⎦⎥⎤x′y′在x +3y =0上,(8分) 则-3x +2y +6x -3y =0,即3x -y =0,所以直线l 的方程为3x -y =0.(10分)22. 解:把直线的方程l :⎩⎪⎨⎪⎧x =3t ,y =1-3t (t 为参数)化为普通方程为x +y =1.(3分) 圆ρ=22sin (θ-π4)化为普通方程为x 2+2x +y 2-2y =0, 即(x +1)2+(y -1)2=2.(6分) 圆心C 到直线l 的距离d =12=22.(8分) 所以直线l 被圆C 截得的弦长为2(2)2-(22)2= 6.(10分) 23. 解:(1) 因为n =A 35=60,m =A 13A 24=36,所以P 1=3660=35. 答:摸到三位数是奇数的概率是35.(4分) (2) 获奖金额X 的可能取值为50,100,200,300,400,500,则P(X =50)=35,P(X =100)=1×3×260=110,P(X =200)=1×3×160=120, P(X =300)=1×3×260=110,P(X =400)=1×3×160=120,P(X =500)=1×3×260=110,(7分) 获奖金额X 的概率分布为数学期望E(X)=50×35+100×110+200×120+300×110+400×120+500×110=150元. 答:期望是150元.24. 解:(1)1k +1C k n =1k +1·n !k !(n -k )!=1n +1·(n +1)!(k +1)!(n -k )!=1n +1C k +1n +1.(2分)(2) (-1)0C 02 020+(-1)112C 12 020+(-1)213C 22 020+…+(-1)2 02012 021C 2 0202 020=∑2 020k =0(-1)k 1k +1C k 2 020=12 021∑2 020k =0(-1)k C k +12 021=12 021.(4分) (3) (解法1)设a n =∑n k =0(-1)k C k n 2k +2, 则a n =1+∑n -1k =1(-1)k (C k n -1+C k -1n -1)2k +2+(-1)n 2n +2=a n -1+∑nk =1(-1)k C k -1n -12k +2=a n -1+2n ∑n k =1(-1)k C k n k k +2 =a n -1+2n ⎣⎡⎦⎤∑n k =0 (-1)k C k n -∑n k =0 (-1)k C k n 2k +2=a n -1+2n(0-a n ),(7分) 所以a n =n n +2a n -1⇒a n =n n +2·n -1n +1a n -2=…=n (n -1)·…·3·2(n +2)(n +1)·…·5·4a 1. 又a 1=13,所以a n =n !2!(n +2)!=1C n n +2. 所以∑2 020k =0(-1)k C k 2 0202k +2=a 2 020=1C 2 0202 022=1C 22 022=11 011×2 021=12 043 231.(结果没化简,不扣分)(10分)(解法2)∑2 020k =0(-1)k C k 2 0202k +2=∑2 020k =0(-1)k · 2 020!k !(2 020-k )!·2(k +1)(k +2)(k +1) =∑2 020k =0(-1)k · 2 022!(k +2)!(2 020-k )!·2(k +1)2 022×2 021=22 022×2 021·∑2 020k =0(-1)k ·(k -1)·C k +22 022 =22 022×2 021·∑2 020k =0(-1)k ·(k +2-1)·C k +22 022 =22 022×2 021·⎣⎡⎦⎤∑2 020k =0 (-1)k ·(k +2)·C k +22 022-∑2 020k =0 (-1)k ·C k +22 022 =22 022×2 021·⎣⎡⎦⎤∑2 020k =0(-1)k ·2 022·C k +12 021-∑2 020k =0 (-1)k +2·C k +22 022 =22 022×2 021·⎩⎨⎧⎭⎬⎫-2 022∑2 020k =0 (-1)k +1·C k +12 021-[(1-1)2 022-1-C 22 022(-1)1] =22 022×2 021·{-2 022·[(1-1)2 021-1]+1-2 022}=22 022×2 021=11 011×2 021=12 043 231.(结果没化简,不扣分)(10分)。
南师附中2020届高三年级第二学期期初检测试卷及答案(含附加题)

第 卷(选做题,40 分)
21.【选做题】在 A、B、C 三小题中只能选做 2 题,每小题 10 分,共计 20 分.请在答卷 卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修 4—2:矩阵与变换
已知矩阵 M=
2 1
1 2
.
(1)求 M2;
(2)求矩阵 M 的特征值和特征向量.
(1)求椭圆 C 的标准方程;
(2)设线段
MN
的中点为
D,若直线
OD
的斜率为-1,求 2
k
的值;
(3)记 AFM, BFN 的面积分别为 S1,S2,若SS12=32,求 M 的坐标.
y
x=4
l
M
FB
A
O
x
N (第 18 题)
19.(本小题满分 16 分) 已知函数 f(x)=lnx+ax+1,a R. (1)若函数 f(x)在 x=1 处的切线为 y=2x+b,求 a,b 的值; (2)记 g(x)=f(x)+ax,若函数 g(x)在区间(0,12)上有最小值,求实数 a 的取值范围;
高三数学试卷 第 4 页 共 5 页
(3)若当 a=0 时,关于 x 的方程 f(x)=bx2 有两个不相等的实数根,求实数 b 的取值 范围.
20.(本小题满分 16 分)
设各项均为正数的数列{an} 的前 n 项和为 Sn ,已知 a1 = 1 ,且 an Sn+1 − an+1Sn = an+1 − λan
D1
C1
A1 B1
D
C
A B
(第 16 题)
17.(本小题满分 14 分)
如图,圆 O 是一半径为10 米的圆形草坪,为了满足周边市民跳广场舞的需要,现规划 在草坪上建一个广场,广场形状如图中虚线部分所示的曲边四边形,其中 A, B 两点在 O 上, A, B,C, D 恰是一个正方形的四个顶点.根据规划要求,在 A, B, C, D 四点处安装四 盏照明设备,从圆心 O 点出发,在地下铺设 4 条到 A, B,C, D 四点线路 OA,OB, OC, OD .
2020届江苏省南师附中高三下学期数学第一次模拟考试II卷

2020届江苏省南师附中高三年级第一次模拟考试数学II(附加题) 2020.03.1921.【选做题】本题包括A、B、C三小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵1A⎡=⎢⎣2⎤⎥⎦,2B⎡=⎢⎣1a⎤⎥⎦,且AB BA=(1)求实数a;(2)求矩阵B的特征值.B.[选修4—4:坐标系与参数方程](本小题满分10分)在平面直角坐标系中,已知直线35:{(45x tl t y t==为参数). 现以坐标原点为极点,以轴非负半轴为极轴建立极坐标系,设圆C 的极坐标方程为2cos ρθ=,直线l 与圆C 交于,A B 两点,求弦AB 的长.C .[选修4—5:不等式选讲]已知()123,,0,x x x ∈+∞,且满足1231233x x x x x x ++=,证明:1223313x x x x x x ++≥【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在四棱锥P ABCD -中,已知棱AB ,AD ,AP 两两垂直,长度分别为1,2,2.若DC AB λ=u u u v u u u v (R λ∈),且向量PC uuu v 与BD uuu v夹角的余弦值为15. (1)求λ的值;(2)求直线PB 与平面PCD 所成角的正弦值.23.已知()2120121n x a a x a x ++=+++ (21)21n n a x+++, *n N ∈.记()021k n n k nT k a =-=∑+.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n N ∈, n T 都能被42n +整除.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南师大附属扬子中学2020届高三第二学期期初自测
数学Ⅰ
一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)
1.已知集合A ={1,2,4},B ={a,4},若A ∪B ={1,2,3,4},则A ∩B =.
2.若复数()()23z i ai =++为纯虚数(i 为虚数单位),则实数a =______.
3.一组数据4,5,6,8,n 的平均数为7,则该组数据的方差s 2为______.
4.袋中装有大小相同且形状一样的四个球,四个球上分别标有“1”、“2”、“3”、“4”这四
个数.现从中随机选取两个球,则所选的两个球上的数字之和恰好为偶数的概率是
______.
5.执行如图所示的伪代码,输出的结果是.
6.已知双曲线22221(0,0)x y a b a b
-=>>的离心率为3,则该双曲线的渐近线方程为_______. 7.在等比数列{}n a 中,11a =,528a a =,n S 为{}n a 的前n 项和.若1023n S =,则n =__________.
8. 若函数)2,0(),cos()sin()(π
ϕϕϕ∈+++=x x x f 为偶函数,则ϕ的值为________.
9.如图,在正四棱柱1111ABCD A B C D -中,P 是侧棱1CC 上一点,且12C P PC =.设三棱锥1P D DB -的体积为1V ,正四棱柱1111ABCD A B C D -的体积为V ,则1V V
的值为________. 10.已知函数()2sin x x f x e e x -=--,则不等式2(21)()0f x f x -+≤的解集为_________.
11.如图,在长方形ABCD 中,M ,N 分别为线段BC ,CD 的中点,若12MN λAM λBN =+u u u u r u u u u r u u u r ,1λ,2λR ∈,
则12λλ+的值为______.
12.若C 为半圆直径AB 延长线上的一点,且2AB BC ==,过动点P 作半圆的切线,切点为Q ,若3PC PQ =,则PAC ∆面积的最大值为____.
13.已知ABC ∆的三个角,,A B C 所对的边为,,a b c .若60BAC ︒∠=,D 为边BC 上一点,且1,:2:3AD BD DC c b ==,则23b c +的最小值为_________.
14.已知函数22ln 3()x x f x m x
++=+,若01,4x ⎡⎫∃∈+∞⎪⎢⎣⎭,使得00(())f f x x =,则m 的取值范围是______
二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)
15.(本小题满分14分)
已知1cos()43πβ-=,4sin()5βα+=,其中π0π2
αβ<<<<. (1)求tan β的值;
(2)求cos()4πα+
的值.
16.(本小题满分14分)
如图,在直四棱柱ABCD-A1B1C1D1中,AD∥平面BCC1B1,AD⊥DB.求证:(1)BC∥平面ADD1A1;
(2)平面BCC1B1⊥平面BDD1B1.
(第16题) B
A
C
D
D 1 B 1
A 1 C 1
17.(本小题满分14分)
如图,在南北方向有一条公路,一半径为100m 的圆形广场(圆心为O )与此公路所在直线l 相切于点A ,点P 为北半圆弧(弧APB )上的一点,过点P 作直线l 的垂线,垂足为Q ,计划在PAQ ∆内(图中阴影部分)进行绿化,设PAQ ∆的面积为S (单位:2m ),
(1)设()BOP rad α∠=,将S 表示为α的函数;
(2)确定点P 的位置,使绿化面积最大,并求出最大面积.
18.(本小题满分16分) 已知椭圆22221x y a b +=(0a b >>)的离心率为3,椭圆C 上一点P 到椭圆C 两焦点距离之和为42,如图,O 为坐标原点,平行与OP 的直线l 交椭圆C 于不同的两点A 、B .
(1)求椭圆方程;
(2)当P 在第一象限时,直线PA ,PB 交x 轴于E ,F ,若PE =PF ,求点P 的坐标.
19.(本小题满分16分)
已知函数()2ln h x ax x =-+.
(1)当1a =时,求()h x 在()()
2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >, ①求实数a 的取值范围;
②若存在021,22x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()
()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围.
20.(本小题满分16分)
已知等差数列{a n}的前n项和为S n,若{√S n}为等差数列,且a1=1.
(1)求数列{a n}的通项公式;
(2)是否存在正整数n,使1+a n+S n, 2+a2n+S2n, 4+a4n+S4n成等比数列?若存在,请求出这个等比数列;若不存在,请说明理由;
(3)若数列{b n}满足b n+1−b n=b n2
S n ,b1=1
k
,且对任意的n∈N∗,都有b n<1,求正整数k的最小值.
数 学Ⅱ(附加题)
21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A .选修4—2:矩阵与变换
已知矩阵M =⎣⎡
⎦⎤ 2 1 1 2.
(1)求M 2; (2)求矩阵M 的特征值和特征向量.
B .选修4—4:坐标系与参数方程
在极坐标系() (02π)ρθθ<≤, 中,求曲线2sin ρθ=与cos 1ρθ=的交点Q 的极坐标.
【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
22.(本小题满分10分)
现有4个旅游团队,3条旅游线路.
(1)求恰有2条线路被选择的概率;
(2)设被选中旅游线路条数为X,求X的分布列和数学期望.
23.(本小题满分10分)
已知2018220180122018(1).x a a x a x a x -=++++L (1)求122018a a a +++L 的值;
(2)求2018
01k k a =∑的值.。