九年级数学上册《图形的旋转》教案

合集下载

《图形的旋转》教案14篇

《图形的旋转》教案14篇

《图形的旋转》教案14篇《图形的旋转》教案篇1一、游戏创设情景,导入新课。

幸运大转盘:转一转转盘上的指针,你想玩哪一种,看看你幸运吗?师:盼望每个同学都能拥有健康的身体,学会聪慧地思索,在学习数学的过程中体验胜利的欢乐。

转盘上指针的运动方式,在三班级我们已经有肯定了解,叫旋转。

请看大屏幕〔转杆的关和合〕,在小区门口看过这个转杆吗?转杆的运动方式是〔同学一起说〕师:对了,转杆的打开和关闭也是旋转。

今日我们一起来讨论旋转。

〔揭示课题:旋转〕二、探究线段旋转,体会旋转三要素1、对比讨论转杆的运动〔1〕用手势来比划转杆的运动转杆的打开、关闭是旋转运动,今日我们就以这个为例来讨论。

举起右手,用手臂来表示转杆,一起来做做打开、关闭的运动。

〔2〕争论:转杆的打开与关闭这两次旋转运动的相同点与不同点。

你们觉的打开、关闭的运动完全一样吗?想想有哪些地方是相同的。

哪些地方是不同的?同桌沟通。

不同点:这两次旋转的方向不同。

你们知道转杆关闭的方向叫〔顺时针方向〕为什么叫顺时针方向呢?〔显示钟面是时针的运动〕那和钟面上相反呢?叫逆时针方向,这里转杆的打开是什么方向啊?伸出手一起来表示这两个方向。

相同点:都围着一个点在旋转,这个点就是旋转的中心点。

都旋转了90度。

〔3〕小结刚才我们学了旋转重要的三个特点:中心、方向、角度。

其实全部的物体的旋转都是这样围绕中心不是顺时针就是逆时针旋转的,都转有肯定的角度,角度有大有小〔显示旋转的图片时钟、折扇、风车〕2.巩固练习刚才我们认识了顺时针或逆时针旋转90度,你们能利用这些知识解决下面的问题吗?a、:多重的物品可以使台称上的指针按顺时针方向旋转90度。

〔演示将一袋盐放入盘中〕取出物品指针又是怎样旋转的呢?b、请看,老师这里还有一个转盘呢!谁情愿和老师合作玩“我说你转”的游戏:〔老师提要求,同学转动转盘〕请把指针从A点顺时针旋转90,转到〔〕,再把指针从B点逆时针旋转90,转到〔〕。

要想清晰地知道一个物体是怎样旋转的,就得把这三方面说清晰。

人教版九年级数学上册23.1:图形的旋转(教案)

人教版九年级数学上册23.1:图形的旋转(教案)
五、教学反思
在今天的课堂中,我们探讨了图形的旋转,这是一个既有趣又富有挑战性的课题。我发现,学生们对旋转的概念接受度很高,他们能够很快地理解旋转的基本性质和三要素。在讲授过程中,我尽量用生动的例子和实际操作来解释抽象的几何概念,这样做的效果似乎不错,学生们能够积极参与并有所收获。
让我印象深刻的是,在实践活动环节,学生们分组讨论并操作旋转实验时,他们表现出了极大的兴趣和热情。通过亲自动手,他们不仅加深了对旋转原理的理解,还学会了如何将理论知识应用到解决实际问题中。尤其是在成果展示环节,每个小组都能够清晰地表达他们的思考过程和解决方案,这让我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行转动,这个点称为旋转中心。旋转可以是顺时针或逆时针方向,转动的角度可以是任意度数。图形旋转是几何变换的一种,它在艺术、工程等多个领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个三角形绕着某个点旋转一定角度,以及这个过程在建筑设计中的应用。
-创设情境,让学生运用旋转知识解决实际问题,如设计图案、计算工程量等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,门的开合、风车的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(3)运用旋转解决实际问题,如计算旋转后的图形的面积、周长等。
2.教学难点
(1)旋转中心的确定:帮助学生理解旋转中心对图形旋转效果的影响,掌握如何准确找出旋转中心。

人教版数学九年级上册23.1.1《图形的旋转》教学设计

人教版数学九年级上册23.1.1《图形的旋转》教学设计

人教版数学九年级上册23.1.1《图形的旋转》教学设计一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第五章第二节的内容。

本节内容是在学生已经掌握了图形的平移、缩放、轴对称等基本变换的基础上进行学习的,是进一步培养学生的空间想象能力和抽象思维能力的重要内容。

图形旋转的概念和性质在日常生活和生产实践中有着广泛的应用,如地图的绘制、机械设计等。

通过本节课的学习,让学生了解图形的旋转概念,理解旋转的性质,学会用旋转来解决实际问题。

二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,对于图形的平移、缩放、轴对称等基本变换已经有了一定的了解。

但是,学生在学习过程中可能对旋转的概念和性质理解不深,不易掌握旋转的计算方法。

因此,在教学过程中,教师需要通过大量的实例和练习,帮助学生理解和掌握旋转的相关知识。

三. 教学目标1.知识与技能:使学生掌握图形旋转的概念,理解旋转的性质,学会用旋转来解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.教学重点:图形旋转的概念,旋转的性质。

2.教学难点:旋转的计算方法,旋转在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例和数学故事,引发学生的兴趣,激发学生的学习欲望。

2.探究式教学法:引导学生观察、操作、猜想、验证,培养学生的自主学习能力。

3.合作学习法:学生进行小组讨论和合作交流,提高学生的团队协作能力。

六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和性质。

2.教学素材:准备一些图形,如正方形、三角形等,用于讲解和练习。

3.计算器:为学生提供计算器,便于进行旋转的计算练习。

七. 教学过程1.导入(5分钟)教师通过一个有趣的数学故事引入本节课的内容,引发学生的兴趣。

2.呈现(10分钟)教师通过课件展示一些图形旋转的实例,如地球的自转、钟表的指针等,引导学生观察和思考。

九年级数学《图形的旋转》教案北师大版

九年级数学《图形的旋转》教案北师大版

九年级数学《图形的旋转》教案北师大版第一章:图形的旋转概念1.1 学习目标1. 了解旋转的定义及性质;2. 掌握图形旋转的表示方法;3. 能够运用旋转性质解决实际问题。

1.2 教学重点与难点1. 重点:旋转的定义及性质;2. 难点:旋转性质的应用。

1.3 教学过程1.4 教学方法1. 采用问题驱动法引导学生探究;2. 利用几何画板展示图形旋转过程,增强直观感受;3. 通过实际例子,培养学生的应用能力。

1.5 教学内容1. 引入旋转概念,讲解旋转的定义及性质;2. 引导学生探究图形旋转的表示方法;3. 利用几何画板展示图形旋转过程,让学生体会旋转性质;4. 举例说明旋转性质在实际问题中的应用。

1.6 课后作业1. 复习旋转的定义及性质,总结表示方法;2. 运用旋转性质解决实际问题;第二章:图形的旋转对称性2.1 学习目标1. 了解旋转对称性的概念;2. 掌握旋转对称性的性质及判定方法;3. 能够运用旋转对称性解决实际问题。

2.2 教学重点与难点1. 重点:旋转对称性的概念及性质;2. 难点:旋转对称性的判定方法。

2.3 教学过程2.4 教学方法1. 采用问题驱动法引导学生探究;2. 利用几何画板展示图形旋转对称性,增强直观感受;3. 通过实际例子,培养学生的应用能力。

2.5 教学内容1. 引入旋转对称性概念,讲解旋转对称性的定义及性质;2. 引导学生探究旋转对称性的判定方法;3. 利用几何画板展示图形旋转对称性,让学生体会旋转对称性;4. 举例说明旋转对称性在实际问题中的应用。

2.6 课后作业1. 复习旋转对称性的概念及性质,总结判定方法;2. 运用旋转对称性解决实际问题;第三章:图形的旋转作图3.1 学习目标1. 掌握旋转作图的方法及技巧;2. 能够运用旋转作图解决实际问题。

3.2 教学重点与难点1. 重点:旋转作图的方法及技巧;2. 难点:复杂图形旋转作图。

3.3 教学过程3.4 教学方法1. 采用问题驱动法引导学生探究;2. 利用几何画板展示图形旋转作图过程,增强直观感受;3. 通过实际例子,培养学生的应用能力。

人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例

人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例
人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例
一、案例背景
本节课为人教版数学九年级上册第23章旋转23.1图形的旋转。旋转是几何中的基本变换之一,是学生在之前的学习过程中已经接触过的内容,但九年级的学习要求更深入、更系统地掌握旋转的性质和应用。通过本节课的学习,学生需要理解旋转的定义、掌握旋转的性质、了解旋转在实际生活中的应用。
(四)总结归纳
1.教师引导学生总结本节课所学内容,如旋转的定义、性质及应用等。
2.学生分享小组讨论的成果,让大家共同学习,提高理解程度。
3.教师对学生的总结进行点评,指出优点和不足,给予改进建议。
(五)作业小结
1.布置作业:设计一道有关旋转的实际问题,让学生运用所学知识解决。
2.要求学生在作业中运用旋转的性质,表述清晰、步骤简洁。
3.通过具体例子,讲解旋在实际生活中的应用,如设计图案、制作模型等。
4.强调旋转的性质,让学生理解旋转的本质,提高空间想象能力。
(三)学生小组讨论
1.布置讨论任务:以小组为单位,探讨图形旋转的性质,并举例说明。
2.引导学生运用合作交流的方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
2.引导学生运用讨论、交流、总结等方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如“我在学习中遇到了哪些问题?是如何解决的?”等,培养学生自我评价和反思的能力。
3.小组合作:本节课采用小组合作的学习方式,让学生在合作中探讨旋转的性质。这种方式培养了学生的合作意识和团队精神,提高了学生的沟通能力和协作能力。同时,小组合作也使得课堂氛围更加活跃,激发了学生的学习兴趣。

九年级上册《图形的旋转》教案范文

九年级上册《图形的旋转》教案范文

九年级上册《图形的旋转》教案范文一、教学目标:知识与技能:让学生理解旋转的定义,掌握旋转变换的性质和规律,能够运用旋转变换解决实际问题。

过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和创新能力。

情感态度与价值观:激发学生对几何图形的兴趣,培养学生的合作意识,使学生感受到数学与生活实际的联系。

二、教学重点与难点:重点:旋转变换的定义及其性质。

难点:旋转变换在实际问题中的应用。

三、教学过程:1. 导入新课:利用多媒体展示生活中常见的旋转现象,如车轮转动、风扇旋转等,引导学生关注旋转变换在现实生活中的应用。

2. 探究新知:(1)引导学生观察、分析旋转现象,总结旋转变换的定义。

(2)讲解旋转变换的性质和规律,如旋转变换不改变图形的大小和形状,只改变图形的位置。

(3)通过实例演示,让学生理解旋转变换在实际问题中的应用。

3. 巩固练习:(1)设计一些有关旋转变换的练习题,让学生独立完成,检验对旋转变换的理解和掌握程度。

(2)引导学生运用旋转变换解决实际问题,如计算旋转后的图形面积、位置等。

四、课堂小结:本节课通过观察、操作、思考、交流等活动,使学生掌握了旋转变换的定义、性质和规律,并能够运用旋转变换解决实际问题。

培养了学生的空间想象能力、逻辑思维能力和创新能力。

五、课后作业:1. 完成练习册中有关旋转变换的练习题。

2. 结合生活实际,找一些旋转变换的应用实例,下节课分享给大家。

六、教学反思:1. 强调旋转变换的定义和性质,让学生清晰地理解旋转变换的概念。

2. 注重培养学生的空间想象能力,通过直观的演示和实例,帮助学生建立旋转变换的形象。

3. 鼓励学生积极参与课堂讨论,提高学生的逻辑思维能力和创新能力。

4. 关注学生的个体差异,针对不同程度的学生给予适当的指导和支持。

七、教学评价:本节课结束后,对学生进行旋转变换的知识点测试,了解学生对旋转变换的掌握程度。

观察学生在课堂上的表现,如参与程度、思考能力和合作意识等,全面评价学生的学习效果。

人教版数学九年级上册教学设计23.1《图形的旋转》

人教版数学九年级上册教学设计23.1《图形的旋转》

人教版数学九年级上册教学设计23.1《图形的旋转》一. 教材分析《图形的旋转》是人教版数学九年级上册第23.1节的内容,本节课主要让学生了解图形的旋转概念,掌握图形旋转的性质和运用。

通过本节课的学习,学生能够理解图形旋转的定义,掌握旋转中心、旋转方向和旋转角等基本概念,并能够运用旋转性质解决实际问题。

二. 学情分析学生在之前的学习中已经掌握了图形的平移、翻转等变换知识,具备一定的几何图形基础。

但图形旋转与平移、翻转存在一定的区别,学生可能对旋转概念和性质的理解存在一定的困难。

因此,在教学过程中,教师需要通过具体实例和实际操作,帮助学生理解和掌握图形旋转的性质。

三. 教学目标1.知识与技能:学生能够理解图形旋转的概念,掌握图形旋转的性质,并能够运用旋转性质解决实际问题。

2.过程与方法:学生通过观察、操作、思考等活动,培养空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生感受数学与生活的紧密联系,增强学习数学的兴趣和信心。

四. 教学重难点1.重点:图形旋转的概念和性质。

2.难点:图形旋转的性质运用。

五. 教学方法1.情境教学法:通过生活实例和实际操作,引发学生对图形旋转的思考,提高学生的学习兴趣。

2.问题驱动法:教师提出问题,引导学生思考和探索,培养学生的问题解决能力。

3.合作学习法:学生分组讨论和操作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和操作过程。

2.学具:准备一些图形卡片和模型,供学生操作和观察。

3.教学视频:准备一些关于图形旋转的实际操作视频,供学生观看和分析。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生关注图形旋转,激发学生的学习兴趣。

2.呈现(10分钟)教师通过课件呈现图形旋转的实例,引导学生观察和思考,引出图形旋转的概念。

同时,教师讲解图形旋转的性质,如旋转中心、旋转方向和旋转角等。

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转图形的旋转 (第2课时)教案

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转图形的旋转 (第2课时)教案

23.1图形的旋转(第2课时)一、教学目标【知识与技能】进一步加深对旋转性质的理解,能用旋转的性质解决具体问题及进行图案设计.【过程与方法】经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光看待生活中的有关问题,体验数学与现实生活的密切联系.【情感态度与价值观】进一步培养学生学习数学的兴趣和热爱生活的情感,体会生活的旋转美,发展学生的美感,增强学生的艺术创作能力和艺术欣赏能力.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】利用旋转的性质设计简单的图案.【教学难点】利用旋转性质进行旋转作图.五、课前准备课件、直尺、圆规、铅笔、图片等.六、教学过程(一)导入新课教师问:1.平移的特征有哪些.(出示课件2)2.旋转的特征有哪些.(出示课件3)3.如何做出符合要求的旋转后的图形呢?学生回顾前面所学过知识,巩固旋转的性质.(二)探索新知探究一简单的旋转作图画一画:如图,画出线段AB绕点A按顺时针方向旋转60°后的线段.(出示课件5)学生回顾前面所学过知识,并完成画图.作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°.(2)在射线AX上取点C,使得AC=AB,线段AC为所求.画出下图所示的四边形ABCD以O为中心,旋转角都为60°的旋转图形.(出示课件6)学生画图,教师加以巡视并订正.师生共同总结:平移与旋转的异同(出示课件7)2同:都是一种运动;运动前后不改变图形的形状和大小.②不同:出示课件8:例如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.图形变换运动方向运动量的衡量平移直线移动一定距离旋转顺时针或逆时针转动一定的角度教师问:本题中作图的关键是什么?学生答:作图关键-确定点E的对应点E′.师生共同解答如下:(出示课件9)解:∵点A是旋转中心,∴它的对应点是点A.正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与点B重合.设点E的对应点为E′.∵△ADE≌△ABE′∴∠ABE′=∠ADE=90°,BE′=DE,因此在CB的延长线上截取点E′,使BE′=DE.则△ABE′为旋转后的图形.教师问:还有其他方法确定点E的对应点E′吗?(出示课件10)学生答:延长CB,以点A为圆心,AE的长为半径画弧,交CB的延长线于E',连接AE',则△ABE'为旋转后的图形.教师归纳:旋转作图的基本步骤:(出示课件11)(1)明确旋转三要素:旋转中心、旋转方向和旋转角度;(2)找出关键点;(3)作出关键点的对应点;(4)作出新图形;(5)写出结论.巩固练习:1.如何确定它们的旋转中心位置?(出示课件12,13)学生自主解答:找到两条对应点所连线段的垂直平分线的交点.2.下图为4×4的正方形网格,每个小正方形的边长均为1,将△OAB绕点O逆时针旋转90°,你能画出△OAB旋转后的图形△O'A'B'吗?学生自主操作:如图所示.探究二利用多种图形变化的方法进行图形变化教师问:下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?还有其他方式吗?(出示课件14)学生1:仅靠平移无法得到.学生2:整个图形可以看作是右边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.(出示课件15)学生3:整个图形可以看作是右边的两个小“十字”先通过一次平移成图形左侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.(出示课件16)出示课件17:例怎样将甲图案变成乙图案?学生通过观察,感受图案的形成过程,然后师生共同解答.可以先将甲图案绕图上的A点旋转,使得图案被“扶直”,然后,再沿AB 方向将所得图案平移到B点位置,即可得到乙图案.巩固练习:如图,怎样将右边的图案变成左边的图案?(出示课件18)学生观察后自主解答.答:以右边图案的中心为旋转中心,将图案按逆时针方向旋转90°,然后平移,即可得到左边的图案探究三利用旋转设计图案选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.(出示课件19)教师利用课件19,20,21进一步展示“月芽”的旋转效果.思考:(1)在旋转过程中,产生了不同旋转效果,这是什么原因造成的呢?(2)你能仿照上述图示方法进行图案设计吗?与同伴交流.(三)课堂练习(出示课件22-28)1.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O、A1、B为顶点的三角形的形状.(无须说明理由)2.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A. B. C. D.3.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A.甲B.乙C.丙D.丁4.如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?5.如图,△ABC中,∠C=90°,∠B=40°,点D在边BC上,BD=2CD.△ABC绕着点D顺时针旋转一定角度后,点B恰好落在初始△ABC的边上.求旋转角α(0°<α<180°)的度数.参考答案:1.解:(1)如图所示,△A1B1C1即为所求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O
图形的旋转
教学目标
1、经历对生活中旋转现象的观察、分析过程,引导学生用数学的眼光看待生活中的有关问题。

2、通过具体实例认识旋转,研究、发现旋转的性质。

3、经历对具有旋转特征的图形的观察、作图、操作等过程,掌握和熟悉作图的技能。

教学重点
探索发现旋转图形的定义以及性质,并能熟练的掌握
教学难点
怎么样利用旋转的性质作一个图形的旋转图形
教学过程
一、认识图形的旋转
活动一:感悟图形的旋转
问题1:欣赏下列几幅图,说出每幅图都是什么运动?
问题2:你能具体的描述一下时钟的指针和电扇的叶片都是如何旋转的吗?
活动二:归纳旋转的特征
问题1:分别观察图1、图2:△ABC做了什么运动?请你具体描述一下△ABC是怎样运动的?
问题2:这两幅图在旋转过程中有哪些共同点?哪些不同点?
图1 图2
问题3:你能归纳图形的旋转的定义吗?
活动三:通过练习理解旋转中的一些概念
如图,将△ABC绕点C逆时针方向旋转,请说出:
●旋转中心是点____;
●点B的对应点是点____;
●CA的对应边是______;
●∠A的对应角是_______;
●点A的旋转角是∠_______,
点B的旋转角是∠_______
问题1:如何找旋转角?
问题2:如果我们在AB的
1/4
处取一点
P
,它的对应点P’在哪里?连接PO和P’O后,图中哪个角也是旋转角?
二、探究图形旋转的性质
活动四:探索图形旋转的性质
问题1:图形平移和翻折时,变的是什么?不变的是什么?
问题2:那么旋转前后的两个图形呢?
问题3:图形中有哪些相等的线段?相等的角?
问题4:如图,若点O在△ABC外部,将△ABC绕点O顺时针方向旋转,则上述性质还成立吗?
三、利用图形旋转的性质作图
活动五:点绕点转
问题1:已知点A和点O,请画出点A绕点O按顺时针方向旋转90°后的图形.
问题2:如果我们在原图上再增加一点B,连接AB,得到一条线段AB,你能画出线段AB绕点O按顺时针方向旋转90°后的图形吗?请同学们试一试。

问题3:如果我们在原图上再增加一点C,连接AC,BC,得到一个△ABC,你能画出△ABC 绕点O按顺时针方向旋转90°后的图形吗?请同学们试一试。

小结:图形的旋转可以转化为的旋转,关键:作确定图形点的对应点。

四、利用图形的旋转巩固练习
1、已知正方形ABCD边长为1,E是BA延长线上的点,连接AC。

现将△ADE绕点A顺时针方向旋转到△AMN的位置(M在AC上)。

(1)△ADE旋转了多少度?
(2)求CM的长度。

2、已知正方形ABCD中,E是BA延长线上的点,现将△ADE绕点A顺时针方向旋转到△ABP
的位置。

(1)△ADE旋转了多少度?
(2)若连接EP,试分析△AEP的形状.
五、课堂回顾:
1、这节课你学到了什么?
2、本节课我们用了哪些研究数学问题的方法呢?
六、延伸拓展
原题:将等边△ABC绕着点A按逆时针方向旋转40°后得△ADE (点B与点D是对应点),则∠BAE的度数为_____.
变式:将等边△ABC绕着点A旋转40°后得到△ADE (点B与点D是对应点),则∠BAE的度数为_________________.。

相关文档
最新文档