化工原理图

合集下载

化工原理(第一章第三节)

化工原理(第一章第三节)

• 三、流动类型
• 1.层流 层流 • 流体质点作直线运动,即流体分层运动, 流体质点作直线运动,即流体分层运动,层 次分明,彼此互不混杂。 次分明,彼此互不混杂。 在总体上沿管道向前运动, 在总体上沿管道向前运动,同时还在各个方 向作随机的脉动。 向作随机的脉动。
• 2.湍流 湍流 •
• 四、影响流型的因素
• 二、粘度 • 衡量流体粘性大小的物理量叫粘度。 衡量流体粘性大小的物理量叫粘度。 • 粘度的物理意义是促使流体流动产生单位速 度梯度时剪应力的大小。 度梯度时剪应力的大小 。 粘度总是与速度梯度相 联系,只有在运动时才显现出来。 联系,只有在运动时才显现出来。 • 粘度是流体物理性质之一, 粘度是流体物理性质之一 , 其值一般由实验 测定。液体的粘度随温度升高而减小, 测定 。 液体的粘度随温度升高而减小 , 气体的粘 度则随温度升高而增大。 度则随温度升高而增大 。 压力对液体粘度的影响 很小,可忽略不计,气体的粘度, 很小 , 可忽略不计 , 气体的粘度 , 除非在极高或 极低的压力下,可以认为与压力无关。 极低的压力下,可以认为与压力无关。 • 粘度的单位, SI制中为 制中为: .s, 粘度的单位,在SI制中为:Pa .s,常用单位 还有: (P)、厘泊(cP) 它们之间的换算是: (cP), 还有:泊(P)、厘泊(cP),它们之间的换算是: • 1 Pa .s = 10 P = 1000 cP
1. 连续性方程
u1 d2 2 u2 =( d1 )
2. 柏努利方程
p2 1 2 p1 1 2 u2 +Wf u1 +We = gZ2 + ρ + gZ1 + ρ + 2 2 当能量用液柱高度表示时,上式可改写成 当能量用液柱高度表示时, p2 1 2 p1 1 2 u2 +hf u1 +he = Z2 + Z1 + + + ρg ρg 2g 2g 当能量用压力表示时, 当能量用压力表示时,柏氏方程可改写成

化工原理第四版

化工原理第四版

0.004 qv u1 A 0.785 ( 2.5 ) 2
例题:如下图的变径管路例题:
1 2 3
D1= 2.5cm D2=10cm D3= 5cm (1)当流量为4升/秒时, 各段流速? (2)当流量为8升/秒时, 各段流速?
d1 2 u3 u1 ( ) d3
=2.04 m/s qv’ = 2qv u’ = 2u u1 = 2u u1’= 16.3m/s
r=G/V kgf/m3
重度值=密度值 (值相同但意义不同)
三、流体静力学基本方程 1.相对静止状态流体受力情况
P1
G
Z1
Z2
P2
上表面作用力: F1= P1 A 下表面作用力: F2= P2 A 重力: G = g A (Z1 - Z2)
2. 静力学方程及巴斯葛定律
P1
G
Z1
P2
Z2
F1 + G = F2 P1 A + g A ( Z1 - Z2 ) = P2 A P2= P1 + g ( Z1 - Z2 ) 或 P2= P0+ g ( Z1 - Z2 ) = P0+ g h
实际流速为:
30 / 3600 u 1.62m / s 2 0.785 (0.081)
二. 稳定流动与不稳定流动 1.稳定流动—流体流动过程中,在任意 截面,流体的参数不随时间改变。
2.不稳定流动—流体流动过程中,在任 意截面,流体的任一参数随时间而改变。
B
A
三. 连续性方程
2’ 1’
2
P2 u22 ρg + 2g
P1 Z1+ ρg = Z2+
P2 ρg
各项单位为J/N(m):表示单位重量流体具 有的机械能,相当于把单位重量流体升举 的高度。 各项称为压头。表明我们可以用液柱的 高度描述能量值 6.亦可用单位体积的流体为基准:

化工原理_32两组分连续精馏的计算之梯级图解法汇总

化工原理_32两组分连续精馏的计算之梯级图解法汇总
对于塔顶全凝器
yA y B xA x 1 B D
xA x 1 B D
第1层理论板的汽 液平衡关系为
第1层和第2层理论 板之间操作关系为
yA xA y 1 x B 1 B
(1) 1kmol 进料所需最少蒸汽量 当理论板为无穷多时,操作线的上端 yF=0.288 的平衡线上(对应 x=xF=0.036),如本例附图上的点a所 示,操作线的斜率为

(2) 蒸汽量为最小用量两倍时所需理论板 层数及两产品组成 由于 解得 釜残液组成仍为 操作线斜率为 过点 e(0.00072,0)作斜率为4.08的直线交q 线于点d,联点cd即为操作线。自点d开始 在平衡线与操作线之间绘阶梯,至跨过点 c为止,需理论板层数为4.6。图解过程见 本例附图。
非正常平衡曲线最小回流比的求法
一、全回流和最小回流比
② 解析法 泡点进料
R min
xq x F
1 x D (1 x D ) [ ] 1 xF 1 xF
露点进料
R min
yq y F
1 x D 1 x D [ ] 1 1 y F 1 y F
二、适宜回流比的选择
x y
0 0 0.0080 0.0750 0.020 0.175 0.0296 0.250 0.033 0.270 0.036 0.288
解:本例为直接蒸汽加热的提馏塔。由 于泡点进料,根据恒摩尔流假定,则有 全塔物料衡算 乙醇组分衡算 将 代入式b,得 (a) (b)
以 1kmol 进料为基准,则有 得
重复上述的计算过程,直至塔釜(塔釜视 作第 N+1 层理论板)为止,可得

化工原理 第六章 蒸馏(传质过程)

化工原理 第六章 蒸馏(传质过程)
X=0.894 78.15℃
t
121.9℃
X=0.383
负偏差
x y
x y
y
y
x
x
19
挥发度与相对挥发度
挥发度:表示某种溶液易挥发的程度。 若为纯组分液体时,通常用其当时温度下饱和蒸 气压PA°来表示。 若为混合溶液时,各组分的挥发度,则用它在一 定温度下蒸气中的分压和与之平衡的液相中该组 分的 摩尔分数之比来表示, vA = pA / xA vB = pB / xB
演示
37
xn
xn 1 yn 1 yn
第四节 双组分连续精馏计算
38
物料衡算
F—原料(液)摩尔流量,kmol/h; D—馏出液摩尔流量,kmol/h; W—釜残液摩尔流量,kmol/h; 总物料衡算 易挥发组分的物料衡算
D xD F xF
F D W
D F ( xF xW ) xD xW
xn 1
n 1
yn xn yn 1
n
n 1
T-x(y) 图
t 假设蒸汽和液体充分接触,并在离 n 1 开第 n 层板时达到相平衡,则 yn 与 xn t n t n 1 平衡,且yn>yn+1,xn<xn-1。
这说明塔板主要起到了传质作用, 使蒸汽中易挥发组分的浓度增加, 同时也使液体中易挥发组分的浓度 减少。
t5 t4 t3 t2 t1
E D
C
B A
x(y)
温度-组成图( t-x-y 图)
12
上述的两条曲线将tx-y图分成三个区域。
液相线以下的区域 代表未沸腾的液体, 称为液相区 气相线上方的区域 代表过热蒸气,称为 过热蒸气区; 二曲线包围的区域 表示气液同时存在, 称为气液共存区。

化工原理 第9章-54

化工原理 第9章-54

思考题•精馏过程设计时,P增大,泡点,α,对分离。

P增大塔顶温度上升,塔釜温度上升。

若要降低塔釜温度,则可降低塔釜。

•精馏与蒸馏的区别——精馏有,蒸馏无。

平衡蒸馏与简单蒸馏的区别——前者,后者。

•摩尔流假定,主要依据各组分的。

但精馏段与提馏段的摩尔流量由于由于的不同而不一定相等。

•精馏过程设计时,P增大,泡点升高,α减小,对分离不利。

P增大塔顶温度上升,塔釜温度上升。

若要降低塔釜温度,则可降低塔釜压力。

•精馏与蒸馏的区别——精馏有回流,蒸——前者是连续过程,后者是间歇过程馏无回流。

平衡蒸馏与简单蒸馏的区别。

•摩尔流假定,主要依据各组分的摩尔潜热相等。

但精馏段与提馏段的摩尔流量由于由于进料状态q的不同而不一定相等。

9.5.4.2 多股加料浓度不同的料液在同一塔内分离。

回流比减小时,三操作线均向平衡线靠拢。

挟点位置有多种可能。

混合加料不利,能耗增加。

线与平衡线交点处。

例:图示为双组分混合液精馏塔。

塔顶采用全凝器, 泡点回流, 回流比为8。

系统相对挥发度α=2.5。

由塔上部抽出的侧线液相产品量为θ kmol/s, 其组成x θ= 0.9 。

进料F=10kmol/s, x f =0.5, 进料状态系饱和液体。

塔顶馏出液D=2kmol/s, x D =0.98,塔底残液组=0.05。

试求:成x w =0.05。

试求:(1)抽出液量θ;(2)由第三块理论板下降液体组成。

解:(1) F =D +θ+WF x f =Dx D +θx θ+W x w代入数据: 10=2+θ+W……(1)10×0.5=2×0.98+θ×0.9+W ×0.053.04=0.9θ+0.05W ……(2)联解(1)、(2), θ=3.106 kmol/s无回流的回收塔操作线x D 为max例如图所示的回收塔。

F=100kmol/h ,x f =0.4 (摩尔分率,下同),泡点进料,要求塔顶轻组分回收率为0.955,x W =0.05,系统的α=3。

化工原理

化工原理

化工原理绪论部分1. 单元操作:根据化工生产的操作原理,可将其归纳为应用较广的数个基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、蒸发、结晶、吸收、蒸馏、萃取、吸附及干燥等,这些基本操作过程称为单元操作。

任何一种化工产品的生产过程都是由若干单元操作及化学反应过程组合而成的。

2.单元操作与“三传”过程:①动量传递过程。

③质量传递过程。

②热量传递过程。

3.单元操作计算:(1)物料衡算:它是以质量守恒定律为基础的计算:用来确定进、出单元设备(过程)的物料量和组成间的相互数量关系,了解过程中物料的分布与损耗情况,是进行单元设备的其它计算的依据。

(2)能量衡算:它是以热力学第一定律即能量守恒定律为基础的计算,用来确定进、出单元设备(过程)的各项能量间的相互数量关系,包括各种机械能形式的相互转化关系,为完成指定任务需要加入或移走的功量和热量、设备的热量损失、各项物流的焓值等。

第一章 流体流动1.流体:是由许多离散的彼此间有一定间隙的、作随机热运动的单个分子构成的。

通常是气体和液体的统称2.密度:单位体积流体所具有的质量称为流体的密度,单位为kg ,其表示式为 ρ=V/m 比容:单位质量流体所具有的体积,其单位为m 3/kg ,在数值上等于密度的倒数。

v=1/ρ 压强:垂直作用于单位面积上且方向指向此面积的力,称为压强,其表示式为 P=F/A3.等压面:在静止的、连续的同一液体内,处于同一水平面上的各点,因其深度相同,其压力亦相等。

4.流量与流速:(一)流量<1>.体积流量:单位时间内流经通道某一截面的流体体积,用V s ,表示,其单位为m 3/s(或 m 3/h)。

<2>.质量流量:单位时间内流经通道某一截面的流体质量,用W s 表示,其单位为kg/s(或 kg/h)。

当流体密度为ρ时,体积流量y ,与质量流量W s 的关系为: Ws =V s ρ(二) 流速:单位时间内流体微团在流动方向上流过的距离,其单位为m/s 。

化工原理

百科名片化工原理化学工程学及其进展化学工程学,以化学、物理和数学原理为基础,研究物料在工业规模条件下,它所发生物理或化学点击此处添加图片说明状态变化的工业过程及这类工业过程所用装置的设计和操作的一门技术学科。

化学工程学的进展:三阶段:单元操作:20世纪初期。

单元操作的物理化学原理及定量计算方法,奠定了化学工程做为一门独立工程学科的基础。

“三传一反”概念:20世纪60年代多分支:20世纪60年代末。

形成了单元操作、传递过程、反应工程、化工热力学、化工系统工程、过程动态学及控制等完整体系。

目录英文名称0.1 化学工程学科的进展单元操作图书信息内容简介图书目录绪论第1章流体流动原理及应用第2章传热及传热设备第3章传质原理及应用第4章固体颗粒流体力学基础与机械分离第5章固体干燥第6章其他单元附录化工原理(第三版上册)化工原理(第三版)(下册)内容简介目录一、上册二、下册英文名称0.1 化学工程学科的进展单元操作图书信息图书目录绪论第1章流体流动原理及应用第2章传热及传热设备第3章传质原理及应用第4章固体颗粒流体力学基础与机械分离第5章固体干燥第6章其他单元附录化工原理(第三版上册)化工原理(第三版)(下册)内容简介目录一、上册二、下册展开编辑本段英文名称Chemical Engineering Principles编辑本段0.1 化学工程学科的进展单元操作化工生产是以化学变化或化学处理为主要特征的工业生产过程。

在化学工业中,对原料进行大规模的加工处理,使其不仅在状态与物理性质上发生变化,而且在化学性质生也发生变化,成为合乎要求的产品,这个过程即叫化工生产过程。

以氯碱生产为例说明化工生产过程的基本步骤。

可见,虽然电解反应为核心过程,但大量的物理操作占有很大比重。

另外象传热过程,不仅在制碱中,在制糖、制药、化肥中都需要,在传热过程物料的化学性质不变,遵循热量传递规律,通过热量交换的方式实现,所用设备均为换热器,作用都是提高或降低物料温度,为一普遍采用的操作方式。

化工原理下册第三章-填料塔-本科

25
二、填料的性能及其评价
(2)空隙率 单位体积填料层的空隙体积称为空隙率,以 表示,其单位为 m3/m3,或以%表示。 分析

~ 流动阻力 ~ 塔压降 ~ 生产能力 ~ 流动阻力 ~ 传质效率
26
二、填料的性能及其评价
(3)填料因子 填料的比表面积与空隙率三次方的比值称为填 料因子,以 表示,其单位为1/m。
60
二、填料塔工艺尺寸的计算
2.填料层高度的计算 (1)传质单元高度法
Z H OG NOG
(2)等板高度法
Z NT HETP
注意问题: ①填料层的分段; ②设计填料层高度 Z 1.3 ~ 1.5 Z。
61
三、填料层压降的计算
1.散装填料压降的计算
计算方法:由埃克特通用关联图计算。 2.规整填料压降的计算 计算方法: ①由压降关联式计算; ②由实验曲线计算。
2.填料规格的选择 (1)散装填料规格的选择 散装填料常用的规格(公称直径)有 DN16 DN25 DN38 DN50 DN76 填料规格
~ 传质效率 ~ 填料层压降
填料 公称 直径
54
选择原则:D/d ≥ 8
塔 径
一、填料的选择
(2)规整填料规格的选择 规整填料常用的规格(比表面积)有 125 150 250 350 500 700 同种类型的规整填料,其比表面积越大,传 质效率越高,但阻力增加,通量减少,填料费用 也明显增加。故选用时,应从分离要求、通量要 求、场地条件、物料性质以及设备投资、操作费 用等方面综合考虑。
经验值
39
第3章 蒸馏和吸收塔设备
3.2 填料塔 3.2.4 填料塔的内件
40
一、填料支承装置

化工原理第一章_2..


滞流: 粗糙度对λ无影响
湍流:当δb> ε,粗糙度对λ影响
与滞流相近; 当δb< ε,粗糙度对λ的影响 显著。
δb-滞流内层厚度
28
§1-15 层流时的摩擦损失
u p1 p2 R2 p1 p2 d 2
8l
32l
pf 32lu / d 2
hf 32lu/ d 2 ——泊谡叶方程
dy
dy
单位体积 流体计的 动量梯度
剪应力即动量通量等于运动粘度γ与单位体积动 量的梯度之积 。
2
§1-9 流动类型和雷诺数
一、雷诺实验
层流(滞流) 过渡流
湍流(紊流)
雷诺实验
层流:其质点作有规则的平行运 动,各质点互不碰撞,互不混合 湍流:其质点作不规则的杂乱运 动,并相互碰撞,产生大大小小 的旋涡。

d Re
柯尔布鲁克公式
Moody图ຫໍສະໝຸດ 34Moody图0.10 0.09 0.08 0.07 0.06 0.05
0.04
hf


l d
u2 2g
——范宁公式
64 64 du Re
λ与Re成反比 λ与τw无关
29
§1-16 湍流时的直管阻力损失 及因次分析法
Wf

l d
u2 2
要计算Wf 关键是找出λ值
湍流
( ) du
dy
ε涡流粘度
情况复杂得多,尚未
能得出λ的理论计算式
通过实验建立经验关系式 因次分析法
17
边界层分离 →大量旋涡 →消耗能量 →增大阻力
由于边界层分离造成的能量损失,称为形体阻力损失
边界层分离使系统阻力增大

化工原理第二版(下册)夏清贾绍义课后习题解答带图

化工原理第二版夏清,贾绍义课后习题解答(夏清、贾绍义主编.化工原理第二版(下册).天津大学出版)社,.)第1章蒸馏1.已知含苯(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。

苯和甲苯的饱和蒸汽压数据见例1-1附表。

t(℃) 85 90 95 100 105x解:利用拉乌尔定律计算气液平衡数据查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压PB *,PA*,由于总压P = 99kPa,则由x = (P-PB *)/(PA*-PB*)可得出液相组成,这样就可以得到一组绘平衡t-x图数据。

以t = ℃为例 x =(99-40)/()=同理得到其他温度下液相组成如下表根据表中数据绘出饱和液体线即泡点线由图可得出当x = 时,相应的温度为92℃2.正戊烷(C5H12)和正己烷(C6H14)的饱和蒸汽压数据列于本题附表,试求P = 下该溶液的平衡数据。

温度 C5H 12K C6H 14饱和蒸汽压(kPa)解:根据附表数据得出相同温度下C5H12(A)和C6H14(B)的饱和蒸汽压以t = ℃时为例,当t = ℃时 PB* =查得PA*=得到其他温度下A¸B的饱和蒸汽压如下表t(℃) 248 251 279 289PA*(kPa)利用拉乌尔定律计算平衡数据平衡液相组成以℃时为例当t= ℃时 x = (P-PB *)/(PA*-PB*)=()/()= 1平衡气相组成以℃为例当t= ℃时 y = PA*x/P = ×1/ = 1同理得出其他温度下平衡气液相组成列表如下t(℃) 279 289x 1 0y 1 0根据平衡数据绘出t-x-y曲线3.利用习题2的数据,计算:⑴相对挥发度;⑵在平均相对挥发度下的x-y数据,并与习题2 的结果相比较。

解:①计算平均相对挥发度理想溶液相对挥发度α= PA */PB*计算出各温度下的相对挥发度:t(℃)α - - - - - - - -取℃和279℃时的α值做平均αm= (+)/2 =②按习题2的x数据计算平衡气相组成y的值当x = 时,y = ×[1+×]=同理得到其他y值列表如下t(℃) 279 289αx 1 0y 1 0③作出新的t-x-y'曲线和原先的t-x-y曲线如图4.在常压下将某原料液组成为(易挥发组分的摩尔)的两组溶液分别进行简单蒸馏和平衡蒸馏,若汽化率为1/3,试求两种情况下的斧液和馏出液组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

lgRe4.724.684.534.394.264.2
lgλ-1.738-1.752-1.728-1.699-1.688-1.668

Q(m³/h)13.611.39.67.43.40
H(m)9.213.116.12021.322.4

Q(m³/h)13.611.39.67.43.40
η(%)22.528.331.934.721.80

-1.76
-1.74
-1.72
-1.7
-1.68
-1.66
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

l
g
λ

lgRe

光滑管lgλ-lgRe曲线
lgλ
线性 (lgλ)

0
5
10
15
20
25
0 5 10 15
H

Q

扬程H与流量Q的关系
H(m)

20
30
40
η

效率η与流量Q的关系

η(%)
0
10
20
0 5 10 15
η

Q
η(%)
lgRe4.724.674.524.44.254.19

lgλ-1.721-1.678-1.682-1.69-1.69-1.658

Q(m³/h)13.611.39.67.43.40
N(J)1514142513211160906831

-1.73
-1.72
-1.71
-1.7
-1.69
-1.68
-1.67
-1.66
-1.65
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

l
g
λ

lgRe

粗糙管lgλ-lgRe曲线
lgλ
线性 (lgλ)

0
500
1000
1500
2000
0 5 10 15
N

Q

轴功率N与流量Q的关系
N(J)

相关文档
最新文档