控制电机(2版)思考题与习题参考答案

合集下载

控制电机课后习题答案

控制电机课后习题答案

控制电机课后习题答案第2章直流测速发电机1. 为什么直流发电机电枢绕组元件的电势是交变电势而电刷电势是直流电势?答:电枢连续旋转,导体ab和cd轮流交替地切割N极和S极下的磁力线,因而ab和cd 中的电势及线圈电势是交变的。

由于通过换向器的作用,无论线圈转到什么位置,电刷通过换向片只与处于一定极性下的导体相连接,如电刷A始终与处在N极下的导体相连接,而处在一定极性下的导体电势方向是不变的,因而电刷两端得到的电势极性不变,为直流电势。

2. 如果图2 - 1 中的电枢反时针方向旋转,试问元件电势的方向和A、B电刷的极性如何? 答:在图示瞬时,N极下导体ab中电势的方向由b指向a,S极下导体cd中电势由d指向c。

电刷A通过换向片与线圈的a端相接触,电刷B与线圈的d端相接触,故此时A电刷为正,B电刷为负。

当电枢转过180°以后,导体cd处于N极下,导体ab处于S极下,这时它们的电势与前一时刻大小相等方向相反,于是线圈电势的方向也变为由a到d,此时d为正,a为负,仍然是A刷为正,B刷为负。

4. 为什么直流测速机的转速不得超过规定的最高转速? 负载电阻不能小于给定值?答:转速越高,负载电阻越小,电枢电流越大,电枢反应的去磁作用越强,磁通被削弱得越多,输出特性偏离直线越远,线性误差越大,为了减少电枢反应对输出特性的影响,直流测速发电机的转速不得超过规定的最高转速,负载电阻不能低于最小负载电阻值,以保证线性误差在限度的范围内。

而且换向周期与转速成反比,电机转速越高,元件的换向周期越短;eL正比于单位时间内换向元件电流的变化量。

基于上述分析,eL必正比转速的平方,即eL ∝n2。

同样可以证明ea∝n2。

因此,换向元件的附加电流及延迟换向去磁磁通与n2成正比,使输出特性呈现非线性。

所以,直流测速发电机的转速上限要受到延迟换向去磁效应的限制。

为了改善线性度,采用限制转速的措施来削弱延迟换向去磁作用,即规定了最高工作转速。

电机学第二版习题答案

电机学第二版习题答案

电机学第二版习题答案电机学是电气工程中的重要学科,它研究的是电动机的原理、设计和应用。

对于学习电机学的学生来说,理解和掌握习题的答案是非常重要的。

本文将为大家提供《电机学第二版》习题的答案,帮助大家更好地学习和应用电机学知识。

第一章:电动机基础知识1. 电动机是将电能转化为机械能的装置。

它由定子和转子两部分组成,其中定子是不动的,转子则可以旋转。

2. 电动机的分类有直流电动机和交流电动机两种。

直流电动机是通过直流电源供电,交流电动机则是通过交流电源供电。

3. 电动机的工作原理是根据洛伦兹力的作用,使得定子和转子之间产生力矩,从而实现转动。

4. 电动机的效率可以通过输入功率和输出功率的比值来计算。

效率越高,表示电动机的能量转化效率越高。

第二章:直流电动机1. 直流电动机的主要特点是转子上有一个或多个永磁体,通过改变电流的方向和大小来改变转子的转动方向和速度。

2. 直流电动机的转矩与电流成正比,转速与电压成正比。

根据这个特性,可以通过改变电流和电压来控制直流电动机的转速和转矩。

3. 直流电动机的速度调节方式有电枢电阻调速、电压调速和外加磁场调速等。

第三章:交流电动机1. 交流电动机的主要特点是转子上没有永磁体,而是通过定子上的电流产生的磁场来实现转动。

2. 交流电动机根据转子类型的不同,分为异步电动机和同步电动机两种。

3. 异步电动机的转速略低于同步速度,转速与电源频率成反比。

同步电动机的转速与电源频率成正比。

4. 交流电动机的启动方式有直接启动、星三角启动和自耦变压器启动等。

第四章:电动机的保护与控制1. 电动机的保护主要包括过载保护、短路保护和过热保护等。

这些保护装置可以保护电动机在工作过程中不受损坏。

2. 电动机的控制方式有手动控制、自动控制和远程控制等。

根据实际需要选择合适的控制方式。

第五章:电动机的应用1. 电动机广泛应用于各个领域,如工业生产、农业生产和家庭用电等。

它们在生产和生活中起着重要的作用。

电机学(II)部分思考题、习题-思路

电机学(II)部分思考题、习题-思路

第一篇思考题1-3直流电机电枢绕组只要一个线圈即可运行,为什么要用许多线圈串联组成?线圈越多越好吗?答:单个线圈的电动势、电磁转矩纹波太大,多个线圈串联可以对电动势、电磁转矩起平滑作用。

但也不是越多越好。

因为多到一定程度后,纹波已经很小,无必要再增加,另外空间也限制进一步紧夹。

1-6直流发电机中产生电磁转矩吗?直流电动机中产生感应电动势吗?答:都会。

1-9在换向器上,电枢正常应当放在什么位置上?为什么?物理中性线和几何中性线是一回事吗?答:正常放在几何中性线上。

因为空载时,换向器在几何中性线上的导体处的磁场为零,利于换向。

物理中性线和几何中性线不是一回事。

几何中性线是固定的,而物理中性线是指磁场为零的位置,是跟电枢反应有关的。

1-13直流电机的电磁功率是电功率还是机械功率?还称什么功率?答:电磁功率是发电机中转换成电功率的机械功率(但不是全部机械功率,是电动机中转换成机械功率的电功率(但不是全部的电功率,因此又称转换功率。

1-16一台复励直流发电机,在恒速条件下,分别将它作他励、并励、积复励时,比较电压调整率的大小。

为什么励磁方式不同时,电压调整率也不同?答:电压调整率是指在固定转速、固定励磁电阻下,端电压从空载到额定负载的变化百分比。

积复励的电压调整率<他励的<并励的。

不同励磁方式下,电枢电流(电枢反应、电枢电阻压降等对励磁磁场的影响不同,所以电压调整率也不同。

1-17正在运行的并励直流电动机为什么不能断开励磁回路?断开励磁回路后,磁通、电动势、电枢电流和转速将如何变化?起动时,励磁回路断了线,会有什么后果?答:运行中,励磁断开的话,靠一点点剩磁工作,若为轻载,则将飞车;若为重载,则电枢电流、电阻压降大增,将可能烧坏电机(若负载转矩低于此时电机能输出的最大转矩,则将继续运转,并可能烧坏;若负载转矩高于此时电机能输出的最大转矩,则直接停机,电枢处于短路状态,最后可能烧坏。

断开励磁后,磁通减为剩磁,电枢电流大增,电动势有较大幅减小(因电枢电阻压降大增;转速则要看负载情况:轻载转速上升飞车,重载则可能继续运行或停车、并可能烧毁。

控制电机与特种电机课后答案第4章

控制电机与特种电机课后答案第4章

控制电机与特种电机课后答案第4章思考题与习题1. 旋转变压器由_________两大部分组成。

( )A.定子和换向器B.集电环和转子C.定子和电刷D.定子和转子2. 与旋转变压器输出电压呈一定的函数关系的是转子( )。

A.电流B. 转角C.转矩D. 转速3(旋转变压器的原、副边绕组分别装在________上。

( )A(定子、转子 B.集电环、转子 C.定子、电刷 D. 定子、换向器4(线性旋转变压器正常工作时,其输出电压与转子转角在一定转角范围内成________。

5、试述旋转变压器变比的含义, 它与转角的关系怎样?6、旋转变应器有哪几种?其输出电压与转子转角的关系如何,7、旋转变压器在结构上有什么特点?有什么用途。

8、一台正弦旋转变压器,为什么在转子上安装一套余弦绕组?定子上的补偿绕组起什么作用? 9、说明二次侧完全补偿的正余弦旋转变压器条件,转子绕组产生的合成磁动势和转子转角α有何关系。

10、用来测量差角的旋转变压器是什么类型的旋转变压器?11、试述旋转变压器的三角运算和矢量运算方法.12、简要说明在旋转变压器中产生误差的原因和改进方法。

答案1. D2. B3. A4. 正比5.旋转变压器的工作原理和一般变压器基本相似,从物理本质来看,旋转变压器可以看成是一种能转动的变压器。

区别在于对于变压器来说,其原、副边绕组耦合位置固定,所以输出电压和输入电压之比是常数,而旋转变压器的原、副边绕组分别放置在定、转子上,由于原边、副边绕组间的相对位置可以改变,随着转子的转动,定、转子绕组间的电磁耦合程度将发生变化,电磁精确程度与转子的转角有关,因此,旋转变压器能将转角转换成与转角成某种函量关系的信号电压。

输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。

6.按着输出电压和转子转角间的函数关系,旋转变压器主要可以分:正、余弦旋转变压器(代号为XZ)和线性旋转变压器(代号为XX)、比例式旋转变压器(代号为XL),矢量旋转变压器(代号为XS)及特殊函数旋转变压器等。

机电传动控制 2习题与思考题答案

机电传动控制 2习题与思考题答案

习题与思考题第二章机电传动系统的动力学基础2.1 说明机电传动系统运动方程中的拖动转矩,静态转矩和动态转矩。

拖动转矩是有电动机产生用来克服负载转矩,以带动生产机械运动的。

静态转矩就是由生产机械产生的负载转矩。

动态转矩是拖动转矩减去静态转矩。

2.2 从运动方程式怎样看出系统是处于加速,减速,稳态的和静态的工作状态。

T M-T L>0说明系统处于加速,T M-T L<0 说明系统处于减速,T M-T L=0说明系统处于稳态(即静态)的工作状态。

2.3 试列出以下几种情况下(见题2.3图)系统的运动方程式,并说明系统的运动状态是加速,减速,还是匀速?(图中箭头方向表示转矩的实际作用方向)T M TT M=T L T M< T LT M-T L>0说明系统处于加速。

T M-T L<0 说明系统处于减速T M T L T M T LT M> T L T M> T L系统的运动状态是减速系统的运动状态是加速T M T L T T LT M= T L T M= T L系统的运动状态是减速系统的运动状态是匀速2.4 多轴拖动系统为什么要折算成单轴拖动系统?转矩折算为什么依据折算前后功率不变的原则?转动惯量折算为什么依据折算前后动能不变的原则?因为许多生产机械要求低转速运行,而电动机一般具有较高的额定转速。

这样,电动机与生产机械之间就得装设减速机构,如减速齿轮箱或蜗轮蜗杆,皮带等减速装置。

所以为了列出系统运动方程,必须先将各转动部分的转矩和转动惯量或直线运动部分的质量这算到一根轴上。

转矩折算前后功率不变的原则是P=Tω,p不变。

转动惯量折算前后动能不变原则是能量守恒MV=0.5Jω22.5为什么低速轴转矩大,高速轴转矩小?因为P= Tω,P不变ω越小T越大,ω越大T 越小。

2.6为什么机电传动系统中低速轴的GD2逼高速轴的GD2大得多?因为P=Tω,T=G∂D2/375. P=ωG∂D2/375. ,P不变转速越小GD2越大,转速越大GD2越小。

最新电机与运动控制系统(第二版)罗应立课后答案

最新电机与运动控制系统(第二版)罗应立课后答案

2-1安培环路定律P11,磁路的欧姆定律P12,电磁感应定律P19不一定可以,因为磁路是非线性的,存在饱和现象。

2-2磁阻和磁导与磁路的磁导率、长度和截面积有关,其中磁导率取决于磁路的饱和程度,即磁通密度的大小。

2-3Φ2>Φ1 B2=B1Φ2=Φ1 B1>B22-4 (1)如果工作时进入磁饱和区,设备发热加剧,影响设备正常运行。

P15 P16(2)2-5 P242-6(1)P23(2)2-7 P242-8 (1)瞬态值(2)平均值2-9无功功率铁心损耗P372-10(1)P35 P39(2)P422-11 P39 重置前后磁动势不变P402-12 P37 大好2-13 因素:①铁芯材质,磁路结构②磁感应强度③原边和副边的绕线方式,顺序④线圈结构2-142-15 增大2-16 P422-172-18E1=-j4*44fW1ΦmE2 =-j4*44fW2Φm2-192-20 N1=W1 N2=W23-1(1)换向器在直流电机中起什么作用?答:在直流发电机中, 换向器起整流作用, 即把电枢绕组里的交流电整流为直流电, 在正、负电刷两端输出。

在直流电动机中,换向器起逆变作用, 即把电刷外电路中的直流电经换向器逆变为交流电输入电枢元件中。

(2)直流电机的主磁路由哪几部分组成?磁路未饱和时,励磁磁通势主要消耗在哪一部分上?答:直流电机的主磁路由以下路径构成: 主磁极N 经定、转子间的空气隙进入电枢铁心, 再从电枢铁心出来经定、转子间的空气隙进入相邻的主磁极S, 经定子铁心磁轭到达主磁极N, 构成闭合路径。

励磁磁通势主要消耗在空气隙上。

3-2直流电机的铭牌上的额定功率是指什么功率?答:对于直流发电机,是指输出的电功率;对于直流电动机,是指输出的机械功率。

3-33-4直流发电机的损耗主要有哪些? 铁损耗存在于哪一部分, 它随负载变化吗? 电枢铜损耗随负载变化吗?答:直流发电机的损耗主要有: (1 ) 励磁绕组铜损耗; ( 2 ) 机械摩擦损耗; ( 3) 铁损耗; ( 4 )电枢铜损耗; ( 5 ) 电刷损耗; ( 6 ) 附加损耗。

大学控制电机重点总结及课后习题答案

大学控制电机重点总结及课后习题答案

直流测速发电机(电磁感应):1、当原动机拖动电枢旋转时,电枢线圈边切割磁场,产生交变的感应电动势,通过换向器与电刷的“换向”作用,使电刷间能够获得方向不变的直流电动势和电流。

2、在发电机工作时,电机外电路中负载电阻上的电压、和电流为直流性质,而电枢线圈中的电流和电动势却是交流性质。

3、在发电机运行时,换向器与电刷的作用是将电枢线圈中的交变电动势和电流进行“换向”,变换为电刷间的直流电动势和电流。

直流电势的形成:由电磁感应定律,一根导体切割磁场产生的感应电势为:e=Bxlv,在电机中,当转速一定时,切割线速度为常数V=πDan/60因此,感应电势正比于磁通密度e正比于Bx .一个线圈产生的感应电势应为导体电势的两倍。

电刷间的电势为随时间大小变化的脉动电势。

直流电机的基本结构可分为定子和转子两大部分定子部分1)主磁极:包括主磁极铁心和励磁绕组。

作用:主磁极用于产生电机内部的磁场。

2)换向极:包括换向极铁心和换向极绕组。

作用:用于改善换向。

位置:安装在两个相邻的主磁极之间。

其中换向极绕组与转子的电枢绕组串联。

3)机座:由钢板焊接而成。

作用:一是起机械支撑、固定作用;二是作为主磁路的一部分。

(该部分通常称为磁轭。

)4)电刷装置:作用:将电流引入或引出电机。

转子部分1)电枢铁心作用:作为主磁路的一部分,同时用于嵌放电枢绕组。

组成:由0.35~0.5mm厚的硅钢冲片叠装组成。

采用冲片。

叠装的目的是为了减小铁心损耗。

2、电枢绕组作用:构成电机的主要电路部分,是实现机电能量转换的关键结构部件。

组成:由许多按一定规律连接的单匝或多匝线圈组成的转子绕组。

每一个线圈是用带绝缘的圆形或矩形截面铜导线绕成。

3、换向器作用:在电动机中,将电刷上通过的直流电流转换为绕组内的交变电流;而在发电机中,将绕组内的交流电动势转变为电刷上的直流电动势。

组成:由许多一定形状的换向片组成,换向片与换向片之间用云母绝缘。

每一个线圈的两个出线端分别焊接在两个换向片上。

控制电机课后答案

控制电机课后答案

控制电机课后答案1-3 异步伺服电动机的两相绕组匝数不同时,若外施两相对称电压,电机气隙中能否得到圆形旋转磁场,如要得到圆形旋转磁场,两相绕组的外施电压要满足什么条件, 答:不能。

如要得到圆形旋转磁场,两相绕组的外施电压应与绕组匝数成正比。

1-4异步伺服电动机在幅值控制时,有效信号系数由0变化到1,电动机中的正序、负序磁势的大小将怎样变化,答:异步伺服电动机在幅值控制时,有效信号系数越接近1,负序磁势越小,而正序磁势越大;反之若有效信号系数接近0,负序磁势越大,正序磁势就越小,但无论有效信号系数多大,负序磁势幅值总是小于正序磁势幅值,只有当有效信号系数为0时,正序、负序磁势幅值才相等。

1-5幅值控制异步伺服电动机,当有效信号系数α?1时,理想空载转速为何低于同步转速,当控制电压发生变化时,电动机的理想空载转速为什么会发生改变, 答:当有效信号系数αe?1,即椭圆形旋转磁场时,电动机的理想空载转速将低于同步转速。

这是因为在椭圆形旋转磁场中,存在的反向旋转磁场产生了附加制动转矩T2,使电动机输出转矩减小。

同时在理想空载情况下,转子转速已不能达到同步转速ns,只能是小于ns的n0。

正向转矩T1与反向转矩T2正好相等,合成转矩Te,T1- T2=0,转速n0为椭圆形旋转磁场时的理想空载转速。

有效信号系数αe 越小,磁场椭圆度越大,反向转矩越大,理想空载转速就越低。

1-6为什么异步伺服电动机的转子电阻要设计得相当大,若转子电阻过大对电动机的性能会产生哪些不利影响,答:为了得到更接近于直线的机械特性,但不能过分增加。

当最大转差率大于1后,若继续增加转子电阻,堵转转矩将随转子电阻增加而减小,这将使时间常数增大,影响电机的快速性能。

同时由于转矩的变化对转速的影响增大,电机运行稳定性变差。

此外,转子电阻取得过大,电动机的转矩会显著减小,效率和材料利用率大大降低。

1-7什么叫“自转”现象,对异步伺服电动机应采取哪些措施来克服“自转”现象, 答:当伺服电动机处于单相供电时,电动机仍然转动,这就是伺服电动机“自转”现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制电机(2版)思考题与习题参考答案(机械工业出版社,李光友等编着)第1章直流伺服电动机1.一台直流电动机,其额定电压为110V ,额定电枢电流为0.4A ,额定转速为3600r/min ,电枢电阻为50Ω,空载阻转矩015.0T 0=N ·m ,试问电动机的额定负载转矩是多少? 解:,=120,2.093N ·m ,a 和电枢电阻a R 。

解:,,1003.矩.0T 0=a R 。

解:100,4.75Ω。

当发电机空载时,电动机电枢加110V 电压,电枢电流为0.12A ,机组的转速为4500r/min 。

试求:(1)发电机空载时的输出电压为多少?(2)电动机仍加110V 电压,发电机负载电阻为1kΩ时,机组的转速为多少?解:(1)(2)由得,,=0.12A,n=4500r/min. 接负载时,U=,解得=4207r/min5.试用分析电枢控制时的类似方法,推导出电枢绕组加恒定电压,而励磁绕组加控制电压时直流伺服电动机的机械特性和调节特性。

并说明这种控制方式有哪些缺点?答:磁场控制时电枢电压保持不变。

机械特性是指励磁电压不变时电动机转速随电磁转矩变化的关系,即=。

由公式可知,当控制电压加载励磁绕组上,即采用磁场控制时,随着控制信号减弱,减小,k n与6.答:电枢控制时,若励磁电压下降,减小,7.I流a答:励磁电压不变,可近似认为不变。

负载转矩减小时,由,8.?答:直流伺服电动机的机械特性为当控制电压和励磁电压均不变时,都是常数,转速和电磁转矩之间是线性关系,且随着电磁转矩放大器的内阻对机械特性来说,与电枢电阻是等价的,电阻越大,直线斜率9.直流伺服电动机在不带负载时,其调节特性有无死区?调节特性死区的大小与哪些因素有关答:有死区。

,死区电压与起始负载转矩,电枢电阻,励磁电压,电机结构有关。

10.当直流伺服电机运行在电动机、发电机、反接制动、能耗制动四个状态时,电磁转矩与转速的方向成什么关系?它们的能量流向有什么特点?答:电动机:电磁转矩与转速方向相同,电能转化为机械能。

发电机:电磁转矩与转速方向相反,机械能转化为电能。

反接制动:电磁转矩与转速方向相反,电能和转子机械能转化为电机内部的热能。

能耗制动:电磁转矩与转速方向相反。

转子机械能转化为电机内部的热能。

11.试述机电时间常数的物理意义。

答:电动机在空载状态下,励磁绕组加额定励磁电压,电枢加阶跃额定控制电压,转速从零升到理想空载转速的63.2%所需的时间。

12.直流伺服电动机当转速很低时会出现转速不稳定现象,简述产生转速不稳定的原因及其对控制系统产生的影响。

答:电枢齿槽的影响,电枢接触压降的影响,电刷和换向器之间摩擦的影响。

造成控制系统误差。

13.一台直流伺服电动机带动恒转矩负载(即负载转矩保持不变),测得始动电压V 4U a0=,当电枢电压为50V 时,其转速为1500r/min ,若要求转速达到3000r/min ,试问要加多大的电枢电压?14.,(2)a0U 。

解:(得,,r/minr/min(2)0.08=1806r/min (3)15.已知一台直流伺服电动机的电枢电压V 110U a =,空载电流A 055.0I a0=,空载转速r/min 4600n 0=',电枢电阻Ω80R a =,试求:(1)当电枢电压V 5.67U a =时的理想空载转速0n 和堵转转矩K T ;(2)该电机若用放大器控制,放大器的内阻Ω80R =,开路电压V 5.67U i =,求这时的理想空载转速0n 和堵转转矩K T 。

解:(1)r/min(2)r/min第二章交流感应伺服电动机1答:2子电阻。

3答:s m+>1;另外,在制造过程中还应该避免因工艺不良造成控制电压切除后的气隙磁场不是单相脉振磁场,而是稍有椭圆的旋转磁场。

为了实现无“自转”现象,单相供电时电机的合成电磁转矩在整个电动机运行范围内均应为负值,即在整个机械特性曲线上转速与电磁转矩符号始终相反,此时机械特性位于第二、四象限。

4.两相绕组有效匝数不等的两相感应伺服电动机,若外施两相对称电压,电机中能否得到圆形旋转磁场?若要产生圆形旋转磁场,两相绕组的外施电压应满足什么条件?答:对于两相绕组有效匝数不等的两相感应伺服电动机,若外施两相对称电压,电机中不能得到圆形旋转磁90。

场。

若要产生圆形旋转磁场,两相电压的比值应等于两相绕组的有效匝数比,且相位上相差5.幅值控制的两相感应伺服电动机,若有效信号系数?e由0变化到1,电机中的正序、负序磁动势的大小将如何变化?答:在幅值控制的两相感应伺服电动机中,若有效信号系数?e为0,在满足无“自转”现象的条件下,电机转速为0,此时正、负序磁动势大小相等,合成磁动势为脉振磁动势;若有效信号系数?e为1,则合成磁动势为圆形旋转磁动势,即只有正序磁动势,负序磁动势幅值为零;若有效信号系数0<?e<1,则合成磁动势为椭圆形旋转磁动势,负序磁动势的幅值小于正序磁动势幅值,并且随着有效信号系数?e的增大,负序磁动势的幅值逐渐减小。

6答:7.8答:只在转速很低(转速标么值很小)时近似为线性关系。

因此为了使伺服电动机能工作在调节特性的线性范围内,应使其始终在较小的转速标么值下运行,这样,为了提高电机的实际运行转速,就需提高伺服电动机的同步转速,所以常采用中频电源供电。

9.如何改变两相感应伺服电动机的转向?为什么?答:当控制电压相对于励磁电压的相位由滞后变为超前(或反之),电机的转向就会改变。

这可以通过将控制绕组(或励磁绕组)的两端对调实现,对调后控制电压(励磁电压)反相,其与励磁电压(控制电压)相位的超前滞后关系随之改变。

10.机械特性非线性和有效信号系数大小对两相感应伺服电动机的动态性能各有何影响?答:考虑机械特性的非线性,两相感应伺服电动机转速随时间的变化规律已经不再呈指数函数关系,其动态性能将优于线性机械特性时。

但由于实际两相感应伺服电动机的μ值不超过0.2,因而忽略非线性对机电时间常数的影响造成的误差不超过22%,因此机械特性非线性对两相感应伺服电动机动态性能的影响不大,其作用常可忽略。

有效信号系数对动态性能的影响较为显着,随着有效信号系数的减小,控制电压降低,两相感应伺服电动机的动态性能会变差,当控制电压较小时,其过渡过程时间可延长约一倍。

11(1制电压。

(2/k e T T =(3(4技术数计算所得.0m =τ12答:这个最大的输出功率就是电动机的额定功率。

13.一台两极的两相感应伺服电动机,励磁绕组通以400Hz 的交流电,当转速n =18000r/min 时,使控制电压U c =0,问此瞬时:(1)正、反向旋转磁场切割转子导体的速率(即转差率)为多少?(2)正、反向旋转磁场切割转子导体所产生的转子电流的频率各为多少?(3)正、反向旋转磁场作用在转子上的转矩方向和大小是否一样?哪个大?为什么?解:(1)电机的同步速min /r 2400014006060=⨯==p f n s转子导体相对于正向旋转磁场的转差率为转子导体相对于反向旋转磁场的转差率为(2)正向旋转磁场切割转子导体所产生的转子电流的频率为反向旋转磁场切割转子导体所产生的转子电流的频率为(3) 不一样。

正向旋转磁场产生的电磁转矩与转子转向相同,反向旋转磁场产生的电磁转矩与转子转向相反。

在控制电压U c =0的瞬时,反向旋转磁场产生的电磁转矩应大于正向旋转磁场产生的电磁转矩。

这是因为对于两相感应伺服电动机,为了避免自转现象,转子电阻必须足够大,以使单相供电时正、反向旋转磁场产生的合成电14ck R 幅值15.一台f =110V ,而I fa =0.1A ,试问:(1)(2)U 1=110V 解:(1)由题意可知,堵转阻抗为5502.0110===f fck I U Z ? 当励磁电流为0.2A 时,其有功分量为0.1A ,因此有cos 5500.5275ck ck R Z ϕ==⨯=Ωsin 5500.866476.3ck ck X Z ϕ==⨯=Ω(2)为在起动时获得圆形旋转磁场,电容的容抗应为1.6353.4763.4762752222=+=+=ck ck ck Ca X X R X Ω相应电容值6265.01.6354002101066=⨯⨯==πωCa a X C μF 有效信号系数应为476.3 1.732275ck e ck X R α=== 相应地,控制绕组电压应为111101.732190.51c e e cf U U U k αα'===⋅=V 电容电压为16压-子电压U s 不变,最大值会随着频率的降低而下降,低频时由于定子电阻压降的相对值较大,最大转矩下降较多,会影响电动机的带载能力。

对于恒转矩负载,往往要求在整个调速范围内过载能力不变,因此希望变频运行时不同频率下的最大转矩保持恒定,为此通常需在低频时进行电压补偿,即在U s /f 1=常数的基础上,适当提高低频时的电压,以补偿定子电阻压降的影响。

当频率达到额定频率时,电机端电压已达到额定值,因此在基频以上运行时,若要保持磁通恒定,所要求电压将大于额定电压,考虑到逆变器输出电压及电动机额定电压的限制,基频以上通常采用恒压变频,即使U s =U sN ,此时电机的磁通将随着频率增加而减小。

17.试说明三相感应电动机矢量控制的基本思想。

答:三相感应电动机矢量控制的基本思想是:借助于坐标变换,把实际的三相感应电动机等效成两相旋转坐标系中的直流电动机。

在一个适当选择的两相旋转坐标系中,三相感应电动机具有与直流电动机相似的转矩公式,且定子电流中的转矩分量与励磁分量可以实现解耦,分别相当于直流电动机中的电枢电流和励磁电流,这样在该坐标系中三相感应电动机就可以像直流电动机一样进行控制,从而使得三相感应电动机具有与直流伺服电动机相似的动态性能。

18.何谓坐标变换?交流电机分析与控制中坐标变换的物理意义是什么?答:从数学的角度看,所谓坐标变换就是将方程中原来的变量用一组新的变量代替,或者说用新的坐标系去19.试求:(1(2解:(2若dq20在??21.推导其矢量控制方程,并据此说明感应电动机的矢量控制原理。

答:所谓按转子磁场定向,是指使dq坐标系的d轴始终与转子磁链矢量?r的方向一致,为了与未定向的dq 坐标系加以区别,常将定向后的d轴改称M(Magnetization)轴,相应地q轴改称T(Torque)轴,定向后的坐标系称为按转子磁场定向的MT坐标系。

在按转子磁场定向的MT坐标系中,定子电压方程和定子磁链方程分别为转子电压方程和转子磁链方程为转矩公式为由转子磁链方程,将转子电流用转子磁链和定子电流表达,然后代入转子电压方程和转矩公式,可得下述矢量控制方程:r 12r sM 1L p T i +=或sM r 12r 1i p T L +=ψ,sT r 2212n e i L L p T ψ=,12sl sT r r L i T ωψ= 由矢量控制方程可见,转子磁链?r 仅由定子电流的M 轴分量i sM 产生,与T 轴分量i sT 无关,而电磁转矩由转子磁链?r 和i sT 共同决定,在?r 一定的情况下,电磁转矩与i sT 成正比。

相关文档
最新文档