2020届中考复习汕尾市陆丰市中考数学模拟试题(6)(有配套答案)
初中数学广东省汕尾市中考模拟数学考试卷及答案word版

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:﹣2的倒数是()A.2 B.C.﹣ D.﹣0.2试题2:下列电视台的台标,是中心对称图形的是()A. B.C. D.试题3:若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C. x+3>y+3 D.﹣3x>﹣3y试题4:在我国南海某海域探明可燃冰储量约有194亿立方米,数字19400000000用科学记数法表示正确的是()A.1.94×1010 B. 0.194×1010 C. 19.4×109 D. 1.94×109试题5:下列各式计算正确的是()A.(a+b)2=a2+b2 B.a•a2=a3 C. a8÷a2=a4 D. a2+a3=a5试题6:如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE试题7:在Rt△ABC中,∠C=90°,若sinA=,则cosB的值是()A. B.C. D.试题8:汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.试题9:如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我 B.中 C.国 D.梦试题10:已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限试题11:4的平方根是.试题12:已知a+b=4,a﹣b=3,则a2﹣b2= .试题13:已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.试题14:小明在射击训练中,五次命中的环数分别为5、7、6、6、6,则小明命中环数的众数为,平均数为.试题15:写出一个在三视图中俯视图与主视图完全相同的几何体.试题16:如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A= .试题17:计算:(+π)0﹣2|1﹣sin30°|+()﹣1.试题18:已知反比例函数y=的图象经过点M(2,1)(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).试题19:如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.试题20:如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.试题21:一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.试题22:已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.试题23:某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?试题24:如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于E.(1)求证:点E是边BC的中点;(2)求证:BC2=BD•BA;(3)当以点O、D 、E、C 为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.C.试题2答案:A解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选;A.试题3答案:D解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A正确;B、根据不等式的性质2,可得>,故B正确;C、根据不等式的性质1,可得x+3>y+3,故C正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D错误;故选D.试题4答案:A.试题5答案:B试题6答案:D.试题7答案:B.试题8答案:C.D.试题10答案:A.试题11答案:±2.试题12答案:12.试题13答案:平行.试题14答案:6,6.试题15答案:球或正方体.试题16答案:55°.试题17答案:解:原式=1﹣2×+2=1﹣1+2=2.试题18答案:解:(1)∵反比例函数y=的图象经过点M(2,1),∴k=2×1=2,∴该函数的表达式为y=;(2)∵y=,∴x=,∵2<x<4,∴2<<4,解得:<y<1.解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.试题20答案:(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FDE=S平行四边形ABCD,∴=,∴=,∴=,∴△FED的面积为:2.试题21答案:解:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.试题22答案:解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.试题23答案:解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作x天,根据题意得:0.4x+×0.25≤8,解得:x≥10,答:至少应安排甲队工作10天.试题24答案:证明:(1)如图,连接OD.∵DE为切线,∴∠EDC+∠ODC=90°;∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC;∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=DB.∴EB=EC,即点E为边BC的中点;(2)∵AC为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B∴△ABC∽△CDB,∴,∴BC2=BD•BA;(3)当四边形ODEC为正方形时,∠OCD=45°;∵AC为直径,∴∠ADC=90°,∴∠CAD=∠ADC﹣∠OCD=90°﹣45°=45°∴Rt△ABC为等腰直角三角形.试题25答案:解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,∴M点坐标为(1+,3)或(1﹣,3).综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);(3)结论:存在.如图所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;②若AB∥CP2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).。
广东省汕尾市2019-2020学年第二次中考模拟考试数学试卷含解析

广东省汕尾市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是3和﹣1,则点C所对应的实数是( )A.1+3B.2+3C.23﹣1 D.23+12.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元3.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A.相离B.相切C.相交D.不确定4.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.5.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180°B.减小(n﹣2)×180°C.增加(n﹣1)×180°D.没有改变6.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有()A.4 个B.3 个C.2 个D.1 个7.下列运算结果正确的是()A.x2+2x2=3x4B.(﹣2x2)3=8x6C.x2•(﹣x3)=﹣x5D.2x2÷x2=x8.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=45,反比例函数y=48x在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )A.30 B.40 C.60 D.809.下列运算正确的是()A.a2•a3=a6B.a3+a2=a5C.(a2)4=a8D.a3﹣a2=a10.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是()A.38 B.39 C.40 D.4211.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.35B.125+1)C5 1 D.1251)12.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c >0,③a>b,④4ac﹣b2<0;其中正确的结论有()A .1个B .2个C .3个D .4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,等边三角形AOB 的顶点A 的坐标为(﹣4,0),顶点B 在反比例函数k y x =(x <0)的图象上,则k= .14.如图,矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,点D 落在点'D 处.则重叠部分AFC ∆的面积为______.15.如果点A (-1,4)、B (m ,4)在抛物线y =a (x -1)2+h 上,那么m 的值为_____.16.函数y =3x -中自变量x 的取值范围是________,若x =4,则函数值y =________.17.已知:正方形 ABCD .求作:正方形 ABCD 的外接圆.作法:如图,(1)分别连接 AC ,BD ,交于点 O ;(2)以点 O 为圆心,OA 长为半径作⊙O ,⊙O 即为所求作的圆.请回答:该作图的依据是__________________________________.18.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若∠APB=60°,AP=6,那么⊙O2的半径等于________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).求n和b的值;求△OAB的面积;直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(6分)已知,如图1,直线y=34x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为94,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.(1)求抛物线的函数关系式;(2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;(3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.21.(6分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.22.(8分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A.会;B.不会;C.有时会),绘制了两幅不完整的统计图(如图)(1)这次被抽查的学生共有______人,扇形统计图中,“A组”所对应的圆心度数为______;(2)补全两个统计图;(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.23.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?24.(10分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执。
初中数学 广东省汕尾市中考模拟数学考试题考试卷及答案Word版

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:的相反数是A.2 B.-2 C. D.-试题2:下图所示几何体的左视图为试题3:下列计算正确的是A.x+x2=x3B.x2·x3=x6C.(x3)2=x6D.x9÷x3=x3评卷人得分下列说法正确的是A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差是s2甲 = 0.4 ,s2乙 = 0.6,则甲的射击成绩较稳定C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式试题5:今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为A.1.21×106B.12.1×105C.0.121×107D.1.21×105试题6:下列命题正确的是A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形试题7:使不等式x-1≥2与3x-7<8同时成立的x的整数值是A.3,4B.4,5C.3,4,5D.不存在如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心。
若∠B=20°,则∠C的大小等于A.20°B.25°C.40°D.50°试题9:如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为A.2B.C.D.试题10:对于二次函数y = - x2 + 2x.有下列四个结论:①它的对称轴是直线x = 1;②设y1 = - x12 + 2x1,y2 = - x22 + 2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0 < x < 2时,y>0.其中正确结论的个数为A.1B.2C.3D.4试题11:函数y = – 1 的自变量x的取值范围是 .试题12:分解因式:m3– m = .试题13:一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是 .试题14:已知:△ABC中,点E是AB边的中点,点F在AC边上,若以A,E,F为顶点的三角形与△ABC相似,则需要增加的一个条件是 .(写出一个即可)试题15:如图,在□ABCD中,BE平分∠ABC,BC = 6,DE = 2 ,则□ABCD周长等于 .试题16:若= + ,对任意自然数n都成立,则a = ,b = ;计算:m=+ + + … + = .试题17:在“全民读书月活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图。
2020-2021学年广东省汕尾市中考数学仿真模拟试题及答案解析

汕尾市市初中毕业生学业考试数学试题一、选择题1.2-的倒数是( )A .2B .21C .21- D .1- 2.下列电视台的台标,是中心对称图形的是( )A .B .C .D .3.若y x >,则下列式子中错误..的是( ) A .33->-y x B .33y x > C .33+>+y x D .y x 33->- 4.在我国南海某海域探明可燃冰储量约有194亿立方米.数字19 400 000 000用科学记数法表示正确的是( )A .101094.1⨯B .1010194.0⨯C .9104.19⨯D .91094.1⨯5.下列各式计算正确的是( )A .222)(b a b a +=+B .32a a a =⋅C .428a a a =÷D .532a a a =+6.如图,能判定AC EB //的条件是( )A .ABE C ∠=∠B .EBD A ∠=∠C .ABC C ∠=∠D .ABE A ∠=∠7.在Rt ABC ∆中,︒=∠90C ,若53sin =A ,则B cos 的值是( ) A .54 B .53 C .43 D .348.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s (千米)与行驶的时间t (时)的函数关系的大致图象是( )9.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是( )A .我B .中C .国D .梦10.已知直线b kx y +=,若5-=+b k ,6=kb ,那么该直线不经过...( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.4的平方根是12.已知4=+b a ,3=-b a ,则=-22b a 13.已知c b a ,,为平面内三条不同直线,若b a ⊥,b c ⊥,则a 与c 的位置关系是14.小明在射击训练中,五次命中的环数分别为5,7,6,6,6,则小明命中环数的众数为 ,平均数为15.写出一个在三视图中俯视图与主视图完全相同的几何体16.如图,把ABC ∆绕点C 按顺时针方向旋转︒35,得到C B A '''∆,B A ''交AC 于点D ,若︒='∠90DC A ,则=∠A °. 三、解答题17.计算:1021|30sin 1|2)2(-⎪⎭⎫ ⎝⎛+︒--+π.18.已知反比例函数x k y =的图象经过点M (2,1). (1)求该函数的表达式;(2)当42<<x 时,求y 的取值范围.(直接写出结果)19.如图,在Rt ABC ∆中,︒=∠90B ,分别以点A 、C 为圆心,大于AC 21长为半径画弧,两弧相交于点M 、N ,连结MN ,与AC 、BC 分别交于点D 、E ,连结AE .(1)求ADE ∠;(直接写出结果)(2)当AB=3,AC=5时,求ABE ∆的周长.四、解答题20、如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.21.一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.22.已知关于x 的方程022=-++a ax x . (1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.五、解答题23.某校为美化校园,计划对面积为1800m 2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m 2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过...8万元,至少应安排甲队工作多少天?24.如图,在Rt ABC ∆中,︒=∠90ACB ,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线,交BC 于E .(1)求证:点E 是边BC 的中点;(2)求证:BA BD BC ⋅=2; (3)当以点O 、D 、E 、C 为顶点的四边形是正方形时,求证:△ABC 是等腰直角三角形.25.如图,已知抛物线343832--=x x y 与x 轴的交点为A 、D (A 在D 的右侧),与y 轴的交点为C .(1)直接写出A 、D 、C 三点的坐标;(2)若点M 在抛物线上,使得△MAD 的面积与△CAD 的面积相等,求点M 的坐标;(3)设点C 关于抛物线对称轴的对称点为B ,在抛物线上是否存在点P ,使得以A 、B 、C 、P 四点为顶点的四边形为梯形?若存在,请求出点P 的坐标;若不存在,请说明理由.广东省汕尾市中考数学试卷参考答案一、选择题(共10小题,每小题4分,共40分)1.C.2.A3.D4.A5.B6.D7.B8.C9.D10.A二、填空题(共6小题,每小题5分,共30分)11.±2.12.12.13.平行.14.6,6.15.球或正方体.16.55°.三、解答题(一)(共3小题,每小题7分,共21分)17.解:原式=1﹣2×+2=1﹣1+2=2.18.解:(1)∵反比例函数y=的图象经过点M(2,1),∴k=2×1=2,∴该函数的表达式为y=;(2)∵y=,∴x=,∵2<x<4,∴2<<4,解得:<y<1.19.解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.四、解答题(二)(共3小题,每小题9分,共27分)20.(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FDE=S平行四边形ABCD,∴=,∴=,∴=,∴△FED的面积为:2.21.解:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.22.解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.点评:本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.五、解答题(三)(共3小题,第23、24小题各11分,第25小题10分,共32分)23.解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作x天,根据题意得:0.4x+×0.25≤8,解得:x≥10,答:至少应安排甲队工作10天.24.证明:(1)如图,连接OD.∵DE为切线,∴∠EDC+∠ODC=90°;∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC;∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=DB.∴EB=EC,即点E为边BC的中点;(2)∵AC为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B∴△ABC∽△CDB,∴,∴BC2=BD•BA;(3)当四边形ODEC为正方形时,∠OCD=45°;∵AC为直径,∴∠ADC=90°,∴∠CAD=∠ADC﹣∠OCD=90°﹣45°=45°∴Rt△ABC为等腰直角三角形.点评:本题是几何证明题,综合考查了切线性质、圆周角定理、相似三角形、正方形、等腰直角三角形等知识点.试题着重对基础知识的考查,难度不大.25.解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,∴M点坐标为(1+,3)或(1﹣,3).综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);(3)结论:存在.如图所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;②若AB∥CP2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).。
广东省汕尾市陆丰市中考数学模拟试卷(6)(含解析)

2016年广东省汕尾市陆丰市民声学校中考数学模拟试卷(6)一、选择题(共12小题,每小题3分,满分36分)1.计算2×(﹣1)的结果是()A.﹣ B.﹣2 C.1 D.22.若∠α的余角是30°,则cosα的值是()A.B.C.D.3.下列运算正确的是()A.2a﹣a=1 B.a+a=2a2C.a•a=a2D.(﹣a)2=﹣a24.下列图形是轴对称图形,又是中心对称图形的有()A.4个B.3个C.2个D.1个5.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40° B.50° C.60° D.80°6.已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A.第一、二、三象限 B.第二、三、四象限C.第一、二、四象限 D.第一、三、四象限7.如图,你能看出这个倒立的水杯的俯视图是()A.B.C.D.8.如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A.28℃,29℃B.28℃,29.5℃ C.28℃,30℃D.29℃,29℃9.已知拋物线y=﹣x2+2,当1≤x≤5时,y的最大值是()A.2 B.C.D.10.小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()A.2 B.C.2 D.311.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A,B两点,若S△AOB=2,则k2﹣k1的值是()A.1 B.2 C.4 D.812.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A.升B.升 C.升D.升二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上)13.﹣2011的相反数是.14.近似数0.618有个有效数字.15.分解因式:9a﹣a3= .16.如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为.17.如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则的值为.18.如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:①点D为AC的中点;②S△O′OE=S△AOC;③;④四边形O′DEO是菱形.其中正确的结论是.(把所有正确的结论的序号都填上)三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19.计算:()﹣1﹣(5﹣π)0﹣|﹣3|+.20.已知:x1、x2是一元二次方程x2﹣4x+1的两个实数根.求:(x1+x2)2÷()的值.21.假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为10米,小强的身高AB为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到1米,参考数据≈1.41,≈1.73 )22.如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA的中点,阴影部分的面积为﹣,求⊙O的半径r.23.一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A、白B、白C表示),若从中任意摸出一个棋子,是白色棋子的概率为.(1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.24.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)25.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=,求EB的长.26.已知抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.(1)求A、B的坐标;(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB的中点N作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M的坐标;若不存在,请说明理由.2016年广东省汕尾市陆丰市民声学校中考数学模拟试卷(6)参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.计算2×(﹣1)的结果是()A.﹣ B.﹣2 C.1 D.2【考点】有理数的乘法.【专题】计算题.【分析】根据有理数乘法的法则进行计算即可.【解答】解:原式=﹣(1×2)=﹣2.故选B.【点评】本题考查的是有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2.若∠α的余角是30°,则cosα的值是()A.B.C.D.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据题意求得α的值,再求它的余弦值.【解答】解:∠α=90°﹣30°=60°,cosα=cos60°=.故选A.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.互余角的性质:两角互余其和等于90度.3.下列运算正确的是()A.2a﹣a=1 B.a+a=2a2C.a•a=a2D.(﹣a)2=﹣a2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】利用合并同类项、同底数幂的乘法、积的乘方法则进行计算.【解答】解:A、2a﹣a=a,此选项错误;B、a+a=2a,此选项错误;C、a•a=a2,此选项正确;D、(﹣a)2=a2,此选项错误.故选C.【点评】本题考查了合并同类项,同底数幂的乘法,积的乘方,理清指数的变化是解题的关键.4.下列图形是轴对称图形,又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【专题】几何图形问题.【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:第①个图形不是轴对称图形,是中心对称图形,不符合题意;第②个图形是轴对称图形,不是中心对称图形,不符合题意;第③个图形既是轴对称图形,又是中心对称图形,符合题意;第④个图形是轴对称图形,又是中心对称图形,符合题意.所以既是轴对称图形,又是中心对称图形的有③④两个.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40° B.50° C.60° D.80°【考点】平行四边形的性质.【分析】根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∠1的度数即可.【解答】解:∵AD∥BC,∠B=80°,∴∠BAD=180°﹣∠B=100°.∵AE平分∠BAD∴∠DAE=∠BAD=50°.∴∠AEB=∠DAE=50°∵CF∥AE∴∠1=∠AEB=50°.故选B.【点评】此题主要考查平行四边形的性质和角平分线的定义,属于基础题型.6.已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A.第一、二、三象限 B.第二、三、四象限C.第一、二、四象限 D.第一、三、四象限【考点】二次函数图象与系数的关系;一次函数图象与系数的关系.【专题】函数思想.【分析】二次函数图象的开口向上时,二次项系数a>0;一次函数y=kx+b(k≠0)的一次项系数k >0、b<0时,函数图象经过第一、三、四象限.【解答】解:∵二次函数y=ax2的图象开口向上,∴a>0;又∵直线y=ax﹣1与y轴交于负半轴上的﹣1,∴y=ax﹣1经过的象限是第一、三、四象限.故选D.【点评】本题主要考查了二次函数、一次函数图象与系数的关系.二次函数图象的开口方向决定了二次项系数a的符号.7.如图,你能看出这个倒立的水杯的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】几何图形问题.【分析】找到倒立的水杯从上面看所得到的图形即可.【解答】解:从上面看应是一个圆环,都是实心线.故选B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A.28℃,29℃B.28℃,29.5℃ C.28℃,30℃D.29℃,29℃【考点】众数;中位数.【分析】根据中位数和众数的定义解答.【解答】解:从小到大排列为:28,28,28,29,29,30,31,28出现了3次,故众数为28,第4个数为29,故中位数为29.故选A.【点评】本题考查了中位数和众数的概念.解题的关键是正确识图,并从统计图中整理出进一步解题的信息.9.已知拋物线y=﹣x2+2,当1≤x≤5时,y的最大值是()A.2 B.C.D.【考点】二次函数的最值.【专题】函数思想.【分析】根据抛物线的解析式推断出函数的开口方向、对称轴、与y轴的交点,从而推知该函数的单调区间与单调性.【解答】解:∵拋物线y=﹣x2+2的二次项系数a=﹣<0,∴该抛物线图象的开口向下;又∵常数项c=2,∴该抛物线图象与y轴交于点(0,2);而对称轴就是y轴,∴当1≤x≤5时,拋物线y=﹣x2+2是减函数,∴当1≤x≤5时,y最大值=﹣+2=.故选C.【点评】本题主要考查了二次函数的最值.解答此题的关键是根据抛物线方程推知抛物线图象的增减性.10.小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()A.2 B.C.2 D.3【考点】垂径定理的应用;勾股定理.【专题】网格型.【分析】在网格中找点A、B、D(如图),作AB,BD的中垂线,交点O就是圆心,故OA即为此圆的半径,根据勾股定理求出OA的长即可.【解答】解:如图所示,作AB,BD的中垂线,交点O就是圆心.连接OA、OB,∵OC⊥AB,OA=OB∴O即为此圆形镜子的圆心,∵AC=1,OC=2,∴OA===.故选B.【点评】本题考查的是垂径定理在实际生活中的运用,根据题意构造出直角三角形是解答此题的关键.11.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A,B两点,若S△AOB=2,则k2﹣k1的值是()A.1 B.2 C.4 D.8【考点】反比例函数系数k的几何意义.【专题】计算题.【分析】根据反比例函数k的几何意义得到S△BOC=k1,S△AOC=k2,则S△AOB=k2﹣k1=2,然后计算k2﹣k1的值.【解答】解:延长AB交y轴于C,如图,∵直线AB∥x轴,∵S△BOC=k1,S△AOC=k2,∴S△AOC﹣S△BOC=k2﹣k1,∴S△AOB=k2﹣k1=2,∴k2﹣k1=4.故选:C.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.12.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A.升B.升 C.升D.升【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】根据题目中第1次倒出升水,第2次倒出水量是升的,第3次倒出水量是升的,第4次倒出水量是升的…第10次倒出水量是升的…,可知按照这种倒水的方法,这1升水经10次后还有1﹣﹣×﹣×﹣×…×升水.【解答】解:∵1﹣﹣×﹣×﹣×…﹣×=1﹣﹣+﹣+﹣+…﹣+=.故按此按照这种倒水的方法,这1升水经10次后还有升水.故选D.【点评】考查了规律型:数字的变化,此题属于规律性题目,解答此题的关键是根据题目中的已知条件找出规律,按照此规律再进行计算即可.注意=﹣.二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上)13.﹣2011的相反数是2011 .【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,改变符号即可.【解答】解:∵﹣2011的符号是负号,∴﹣2011的相反数是2011.故答案为:2011.【点评】本题考查了相反数的定义,是基础题,比较简单.14.近似数0.618有 3 个有效数字.【考点】近似数和有效数字.【专题】常规题型.【分析】根据有效数字的定义,从左起,第一个不为0的数字算起,到右边精确到的那一位为止.【解答】解:0.618的有效数字为6,1,8,共3个.故答案为:3.【点评】本题考查了近似数和有效数字,是基础知识比较简单,有效数字的计算方法以及是需要识记的内容,经常会出错.15.分解因式:9a﹣a3= a(3+a)(3﹣a).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:9a﹣a3,=a (9﹣a2),=a(3+a)(3﹣a).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.16.如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为144°.【考点】扇形统计图.【专题】计算题.【分析】先根据图求出九年级学生人数所占扇形统计图的百分比为40%,又知整个扇形统计图的圆心角为360度,再由360乘以40%即可得到答案.【解答】解:由图可知九年级学生人数所占扇形统计图的百分比为:1﹣35%﹣25%=40%,∴九年级学生人数所占扇形的圆心角的度数为360×40%=144°,故答案为144°.【点评】本题考查了扇形统计图的知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,读懂图是解题的关键.17.如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则的值为2﹣.【考点】旋转的性质;等边三角形的性质;解直角三角形.【专题】压轴题.【分析】等边△ABC绕点B逆时针旋转30°时,则△BCD是直角三角形,根据三角函数即可求解.【解答】解:设等边△ABC的边长是a,图形旋转30°,则△BCD是直角三角形.BD=BC•cos30°=a,则C′D=a﹣a=a,CD= a∴==2﹣故答案是:2﹣.【点评】本题主要考查了图形旋转的性质,以及直角三角形的性质,正确确定△BCD是直角三角形是解题的关键.18.如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:①点D为AC的中点;②S△O′OE=S△AOC;③;④四边形O′DEO是菱形.其中正确的结论是①③④.(把所有正确的结论的序号都填上)【考点】圆周角定理;平行线的性质;菱形的判定;圆心角、弧、弦的关系.【专题】压轴题.【分析】①连接DO,利用园中角定理以及垂径定理求出即可;②利用相似三角形的性质,面积比等于相似比的平方求出即可;③利用弧长计算公式求出即可;④根据菱形的判定得出即可.【解答】解:①连接DO,∵AO是半圆直径,∴∠ADO=90°,∵OD⊥AC,∴AD=DC,∴①正确.②∵O′E∥AC,∴△EO′O∽△AOC,∴=,∴S△O′OE=S△AOC,∴②错误.③∵OD⊥AC,AD=DC,∴∠AOD=∠DOC,∴∠AO′D=∠AOC,AO=2AO′,∴;∴③正确;④∵D为AC中点,O′为AO中点,∴DO′是△AOC中位线,∴DO′∥CO,∵O′E∥AC,∴O′为AO中点,∵D为AC中点,∴DE∥AO,∴四边形DO′OE是平行四边形,∵DO′=O′O,∴四边形O′DEO是菱形.∴④正确.综上所述,只有①③④正确.故答案为:①③④.【点评】此题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练是一道典型的题目.三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19.计算:()﹣1﹣(5﹣π)0﹣|﹣3|+.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】分别根据负整数指数幂、0指数幂、绝对值的性质及二次根式的化简计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2﹣1﹣3+2,=0.故答案为:0.【点评】本题考查的是实数的运算,熟知负整数指数幂、0指数幂、绝对值的性质及二次根式的化简是解答此题的关键.20.(2011•防城港)已知:x1、x2是一元二次方程x2﹣4x+1的两个实数根.求:(x1+x2)2÷()的值.【考点】根与系数的关系.【专题】计算题.【分析】先根据一元二次方程根与系数的关系确定出x1与x2的两根之积与两根之和的值,再根据=即可解答.【解答】解:∵一元二次方程x2﹣4x+1=0的两个实数根是x1、x2,∴x1+x2=4,x1•x2=1,∴(x1+x2)2÷()=42÷=42÷4=4.【点评】本题考查的是一元二次方程根与系数的关系,是一道基础题型.21.假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为10米,小强的身高AB为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到1米,参考数据≈1.41,≈1.73 )【考点】解直角三角形的应用﹣仰角俯角问题.【专题】压轴题.【分析】根据题意画出图形,根据sin60°=可求出CE的长,再根据CD=CE+ED即可得出答案.【解答】解:在Rt△CEB中,sin60°=,∴CE=BC•sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.2≈10m,答:风筝离地面的高度为10m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22.如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA的中点,阴影部分的面积为﹣,求⊙O的半径r.【考点】切线的判定与性质;勾股定理;扇形面积的计算.【专题】计算题.【分析】(1)连OC,由OA=OB,CA=CB,根据等腰三角形的性质得到OC⊥AB,再根据切线的判定定理得到结论;(2)由D为OA的中点,OD=OC=r,根据含30度的直角三角形三边的关系得到∠A=30°,∠AOC=60°,AC=r,则∠AOB=120°,AB=2r,利用S阴影部分=S△OAB﹣S扇形ODE,根据三角形的面积公式和扇形的面积公式得到关于r的方程,解方程即可.【解答】(1)证明:连OC,如图,∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线;(2)解:∵D为OA的中点,OD=OC=r,∴OA=2OC=2r,∴∠A=30°,∠AOC=60°,AC=r,∴∠AOB=120°,AB=2r,∴S阴影部分=S△OAB﹣S扇形ODE=•OC•AB﹣=﹣,∴•r•2r﹣r2=﹣,∴r=1,即⊙O的半径r为1.【点评】本题考查了切线的判定定理:过半径的外端点与半径垂直的直线为圆的切线.也考查了含30度的直角三角形三边的关系以及扇形的面积公式.23.一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A、白B、白C表示),若从中任意摸出一个棋子,是白色棋子的概率为.(1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.【考点】列表法与树状图法.【专题】数形结合.【分析】(1)白色棋子除以相应概率算出棋子的总数,减去白色棋子的个数即为黑色棋子的个数;(2)列举出所有情况,看两次摸到相同颜色棋子的情况数占总情况数的多少即可.【解答】解:(1)3÷﹣3=1.答:黑色棋子有1个;(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到两次摸到相同颜色棋子数是解决本题的关键.24.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意列式计算而得到结果,并检验是原方程的解,而求得.(2)设售价为每千克a元,求得关系式,又由630a≥7500×1.26,而解得.【解答】解:(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果共购进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.【点评】本题考查了分式方程的应用,由已知条件列方程,并根据自变量的变化范围来求值.25.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=,求EB的长.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【专题】几何综合题;压轴题.【分析】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,得到∠GAD=∠EAB从而△GAD≌△EAB,即EB=GD;(2)EB⊥GD,由(1)得∠ADG=∠ABE则在△BDH中,∠DHB=90°所以EB⊥GD;(3)设BD与AC交于点O,由AB=AD=2在Rt△ABD中求得DB,所以得到结果.【解答】(1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD∴∠GAD=∠EAB,∵四边形EFGA和四边形ABCD是正方形,∴AG=AE,AB=AD,在△GAD和△EAB中,∴△GAD≌△EAB(SAS),∴EB=GD;(2)解:EB⊥GD.理由如下:∵四边形ABCD是正方形,∴∠DA B=90°,∴∠AMB+∠ABM=90°,又∵△AEB≌△AGD,∴∠GDA=∠EBA,∵∠HMD=∠AMB(对顶角相等),∴∠HDM+∠DMH=∠AMB+∠ABM=90°,∴∠DHM=180°﹣(∠HDM+∠DMH)=180°﹣90°=90°,∴EB⊥GD.(3)解:连接AC、BD,BD与AC交于点O,∵AB=AD=2,在Rt△ABD中,DB=,在Rt△AOB中,OA=OB,AB=2,由勾股定理得:2AO2=22,OA=,即OG=OA+AG=+=2,∴EB=GD=.【点评】本题考查了正方形的性质,考查了利用其性质证得三角形全等,并利用证得的条件求得边长.26.已知抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.(1)求A、B的坐标;(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB的中点N作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)令y=0求得x的值,从而得出点A、B的坐标;(2)令x=0,则y=﹣3a,求得点C、D的坐标,设直线CD的解析式为y=kx+b,把C、D两点的坐标代入,求出直线CD的解析式;(3)设存在,作MQ⊥CD于Q,由Rt△FQM∽Rt△FNE,得=,及可得出关于m的一元二次方程,求出方程的解,即可得出点M的坐标.【解答】解:(1)由y=0得,ax2﹣2ax﹣3a=0,∵a≠0,∴x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴点A的坐标(﹣1,0),点B的坐标(3,0);(2)由y=ax2﹣2ax﹣3a,令x=0,得y=﹣3a,∴C(0,﹣3a),又∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,得D(1,﹣4a),∴DH=1,CH=﹣4a﹣(﹣3a)=﹣a,∴﹣a=1,∴a=﹣1,∴C(0,3),D(1,4),设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得,,解得,∴直线CD的解析式为y=x+3;(3)存在.由(2)得,E(﹣3,0),∵点B的坐标(3,0),N是线段OB的中点,∴N(,0)∴F(,),EN=,作MQ⊥CD于Q,设存在满足条件的点M(,m),则FM=﹣m,EF==,MQ=OM=由题意得:Rt△FQM∽Rt△FNE,∴=,即=,∴2(+m2)=(﹣m)2,整理得4m2+36m﹣63=0,∴m2+9m=,m2+9m+=+(m+)2=m+=±∴m1=,m2=﹣,∴点M的坐标为M1(,),M2(,﹣).【点评】本题是二次函数的综合题型,其中涉及的知识点有一元二次方程的解法.在求有关存在不存在问题时要注意先假设存在,再讨论结果.。
【附20套中考模拟试题】广东省汕尾市陆丰市2020年中考数学一模试卷含解析

21.(6 分)某运动品牌对第一季度 A、B 两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售 额如图 6 所示.1 月份 B 款运动鞋的销售量是 A 款的 ,则 1 月份 B 款运动鞋销售了多少双?第一季度这两 款运动鞋的销售单价保持不变,求 3 月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售 情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.
广东省汕尾市陆丰市 2020 年中考数学一模试卷
一、选择题(本大题共 12 个小题,每小题 4 分,共 48 分.在每小题给出的四个选项中,只有一项是符合 题目要求的.) 1.如图 1 是 2019 年 4 月份的日历,现用一长方形在日历表中任意框出 4 个数(如图 2),下列表示 a,b,c,
d 之间关系的式子中不正确的是( )
∵△ABC 是等边三角形, ∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°, ∵AD⊥BC,
∴BD=CD=1,AD= 3 BD= 3 ,
∴△ABC 的面积为 1 BC•AD= 1 2 3 = 3 ,
2
2
S 扇形 BAC= 60 22 = 2 , 360 3
∴莱洛三角形的面积
2
S=3×
一、选择题(本大题共 12 个小题,每小题 4 分,共 48 分.在每小题给出的四个选项中,只有一项是符合 题目要求的.) 1.A 【解析】 【分析】 观察日历中的数据,用含 a 的代数式表示出 b,c,d 的值,再将其逐一代入四个选项中,即可得出结论. 【详解】 解:依题意,得:b=a+1,c=a+7,d=a+1. A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6, ∴a﹣d≠b﹣c,选项 A 符合题意; B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9, ∴a+c+2=b+d,选项 B 不符合题意; C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15, ∴a+b+14=c+d,选项 C 不符合题意; D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1, ∴a+d=b+c,选项 D 不符合题意. 故选:A. 【点睛】 考查了列代数式,利用含 a 的代数式表示出 b,c,d 是解题的关键. 2.C 【解析】 熟记反证法的步骤,然后进行判断即可. 解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况; A、∠α 的补角∠β>∠α,符合假命题的结论,故 A 错误; B、∠α 的补角∠β=∠α,符合假命题的结论,故 B 错误; C、∠α 的补角∠β<∠α,与假命题结论相反,故 C 正确; D、由于无法说明两角具体的大小关系,故 D 错误. 故选 C. 3.B
2024届广东省汕尾陆丰市重点达标名校中考数学仿真试卷含解析

2024届广东省汕尾陆丰市重点达标名校中考数学仿真试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算1+2+22+23+…+22010的结果是( )A .22011–1B .22011+1C .()20111212- D .()201112+12 2.方程23x 1x =-的解是 A .3B .2C .1D .0 3.不等式组1351x x -<⎧⎨-≤⎩的解集是( ) A .x >﹣1 B .x≤2 C .﹣1<x <2 D .﹣1<x≤24.下列说法中,正确的是( )A .长度相等的弧是等弧B .平分弦的直径垂直于弦,并且平分弦所对的两条弧C .经过半径并且垂直于这条半径的直线是圆的切线D .在同圆或等圆中90°的圆周角所对的弦是这个圆的直径5.将一把直尺与一块三角板如图所示放置,若140∠=︒则∠2的度数为( )A .50°B .110°C .130°D .150°6.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .107.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( )A .平均数B .标准差C .中位数D .众数8.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( )A .B .C .D .9.在直角坐标平面内,已知点M(4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r 的取值范围为( )A .0r 5<<B .3r 5<<C .4r 5<<D .3r 4<<10.函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置是( )A .B .C .D .11.下列几何体中,俯视图为三角形的是( )A .B .C .D .12.-5的相反数是( )A .5B .15C 5D .15- 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:()()5353+-=_________ . 14.方程x-1=1x -的解为:______.15.如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A =52°,则∠1+∠2的度数为_______.16.计算(+1)(-1)的结果为_____.17.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB =6cm ,BC =8cm ,则EF =_____cm .18.如图,Rt △ABC 中,∠BAC=90°,AB=3,AC=62,点D ,E 分别是边BC ,AC 上的动点,则DA+DE 的最小值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)计算:|﹣3|+5)0﹣(﹣12)﹣2﹣2cos60°; (2)先化简,再求值:(1111a a --+)+2421a a +-,其中a=﹣2. 20.(6分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A ,B ,C ,D 四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C 等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名? (4)若从体能为A 等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.21.(6分)在Rt △ABC 中,∠ACB =90°,BE 平分∠ABC ,D 是边AB 上一点,以BD 为直径的⊙O 经过点E ,且交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若BF =6,⊙O 的半径为5,求CE 的长.22.(8分)阅读材料,解答下列问题:神奇的等式当a ≠b 时,一般来说会有a 2+b≠a+b 2,然而当a 和b 是特殊的分数时,这个等式却是成立的例如: (13)2+23=13+22()3,(14)2+34=14+23()4,(15)2+45=15+(45)2,…(1100)2+99100=1100+(99100)2,… (1)特例验证:请再写出一个具有上述特征的等式: ;(2)猜想结论:用n (n 为正整数)表示分数的分母,上述等式可表示为: ;(3)证明推广:①(2)中得到的等式一定成立吗?若成立,请证明;若不成立,说明理由; ②等式(m n )2+n m n -=m n +(n m n-)2(m ,n 为任意实数,且n≠0)成立吗?若成立,请写出一个这种形式的等式(要求m ,n 中至少有一个为无理数);若不成立,说明理由.23.(8分)一次函数()y kx b k 0=+≠的图象经过点()A 11-,和点()B 15,,求一次函数的解析式.24.(10分)如图,已知∠ABC=90°,AB=BC .直线l 与以BC 为直径的圆O 相切于点C .点F 是圆O 上异于B 、C 的动点,直线BF 与l 相交于点E ,过点F 作AF 的垂线交直线BC 于点D .如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=3CD,请说明你的理由.25.(10分)为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:2≈1.414,3≈1.732)26.(12分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)27.(12分)解下列不等式组:6152(43) {2112323x xxx++-≥->①②参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.【题目详解】设S=1+2+22+23+ (22010)则2S=2+22+23+…+22010+22011②②-①得S=22011-1.故选A.【题目点拨】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.2、A【解题分析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故选A.3、D【解题分析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D4、D【解题分析】根据切线的判定,圆的知识,可得答案.【题目详解】解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D正确;故选:D.【题目点拨】本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键.5、C【解题分析】如图,根据长方形的性质得出EF ∥GH ,推出∠FCD=∠2,代入∠FCD=∠1+∠A 求出即可.【题目详解】∵EF ∥GH ,∴∠FCD=∠2,∵∠FCD=∠1+∠A ,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选C.【题目点拨】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.6、B【解题分析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【题目详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1,∴22AB BC +2286+,∵DE 是△ABC 的中位线,∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM ,∵∠FCE=∠FCM ,∴∠EFC=∠ECF ,∴EC=EF=12AC=5,∴DF=DE+EF=3+5=2.故选B.7、B【解题分析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为x i,则样本B中的数据为y i=x i+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择.8、A【解题分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集.2(1–x)<4去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.9、D【解题分析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.【题目详解】解:∵点M的坐标是(4,3),∴点M到x轴的距离是3,到y轴的距离是4,∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,∴r的取值范围是3<r<4,故选:D.【题目点拨】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.10、B【解题分析】根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.【题目详解】分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选B.【题目点拨】此题考查一次函数的图象,关键是根据一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.11、C【解题分析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【题目详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【题目点拨】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.12、A【解题分析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解题分析】利用平方差公式求解,即可求得答案.【题目详解】=2-2=5-3=2.故答案为2.【题目点拨】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.14、1x=【解题分析】两边平方解答即可.【题目详解】原方程可化为:(x-1)2=1-x,解得:x1=0,x2=1,经检验,x=0不是原方程的解,x=1是原方程的解故答案为1x=.【题目点拨】此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验.15、64°【解题分析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=12∠ABC,∠2=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB)=64°.故答案为64°.点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.16、1【解题分析】利用平方差公式进行计算即可.【题目详解】原式=()2﹣1=2﹣1=1,故答案为:1.【题目点拨】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.17、2.1【解题分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【题目详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:2268=10(cm),∴DO=1cm,∵点E、F分别是AO、AD的中点,∴EF=12OD=2.1cm,故答案为2.1.【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.18、16 3【解题分析】【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论.【题目详解】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE 的值最小,就是A'E 的长;Rt △ABC 中,∠BAC=90°,AB=3,AC=62, ∴BC=()22362+=9, S △ABC =12AB•AC=12BC•AF , ∴3×62=9AF ,AF=22,∴AA'=2AF=42,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE ,∴∠A'=∠C ,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC ,∴''AA BC A E AC=, ∴429'62A E =, ∴A'E=163, 即AD+DE 的最小值是163, 故答案为163.【题目点拨】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)-1;(2)261827+-. 【解题分析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a 的值代入即可求出答案.【题目详解】(1)原式=3+1﹣(﹣2)2﹣2×12=4﹣4﹣1=﹣1;(2)原式=211a a -+()()+4211a a a ++-()() =2621a a +- 当a =﹣2+2时,原式=222542+-=261827+-. 【题目点拨】 本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20、(1)50;(2)16;(3)56(4)见解析【解题分析】(1)用A 等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A 、B 、D 等级的人数得到C 等级的人数,然后补全条形图;(3)用700乘以D 等级的百分比可估计该中学八年级学生中体能测试结果为D 等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【题目详解】(1)10÷20%=50(名) 答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C 等级的学生有16名.图形统计图补充完整如下图所示:(3)700×450=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名. (4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=21 126.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21、(1)证明见解析;(2)CE=1.【解题分析】(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.(2)根据垂径定理可求BH=12BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长. 【题目详解】(1)证明:如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵ BE平分∠ABC.∴∠OBE=∠EBC,∴∠OEB=∠EBC,∴OE∥BC,∵∠ACB=90°,∴∠OEA=∠ACB=90°,∴ AC是⊙O的切线.(2)解:过O作OH⊥BF,∴BH=12BF=3,四边形OHCE是矩形,∴CE=OH,在Rt△OBH中,BH=3,OB=5,∴,∴CE=1.【题目点拨】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.22、(1)(16)1+56=16+(56)1;;(1)(1n)1+1nn-=1n+(1nn-)1;;(3)①成立,理由见解析;②成立,理由见解析.【解题分析】(1)根据题目中的等式列出相同特征的等式即可;(1)根据题意找出等式特征并用n表达即可;(3)①先后证明左右两边的等式的结果,如果结果相同则成立;②先证明等式是否成立,如果成立再根据等式的特征写出m,n至少有一个为无理数的等式. 【题目详解】解:(1)具有上述特征的等式可以是(16)1+56=16+(56)1,故答案为(16)1+56=16+(56)1;(1)上述等式可表示为(1n)1+1nn-=1n+(1nn-)1,故答案为(1n)1+1nn-=1n+(1nn-)1;(3)①等式成立,证明:∵左边=(1n)1+1nn-=21n+2(1)n nn-=221n nn-+,右边=1n +(1n n -)1=22221n n n n n -++=221n n n-+, ∴左边=右边,∴等式成立;②此等式也成立,例如:(2)1+22-=2+(22-)1. 【题目点拨】本题考查了规律的知识点,解题的关键是根据题目中的等式找出其特征.23、y=2x+1.【解题分析】直接把点A (﹣1,1),B (1,5)代入一次函数y =kx +b (k ≠0),求出k 、b 的值即可.【题目详解】∵一次函数y =kx +b (k ≠0)的图象经过点A (﹣1,1)和点B (1,5),∴15k b k b -+=⎧⎨+=⎩,解得:23k b =⎧⎨=⎩. 故一次函数的解析式为y =2x +1.【题目点拨】本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.24、(1)275 (2)证明见解析(3)F 在直径BC 下方的圆弧上,且23BF BC = 【解题分析】(1)由直线l 与以BC 为直径的圆O 相切于点C ,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF ∽△BEC ,然后根据相似三角形的对应边成比例,即可求得EF 的长;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD ,同理可得∠AFB=∠CFD ,则可证得△CDF ∽△BAF ;②由△CDF ∽△BAF 与△CEF ∽△BCF ,根据相似三角形的对应边成比例,易证得CD CE BA BC =,又由AB=BC ,即可证得CD=CE ;(3)由CE=CD ,可得CE ,然后在Rt △BCE 中,求得tan ∠CBE 的值,即可求得∠CBE 的度数,则可得F 在⊙O 的下半圆上,且23BF BC =. 【题目详解】(1)解:∵直线l 与以BC 为直径的圆O 相切于点C .∴∠BCE=90°,又∵BC 为直径,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB ,∴△CEF ∽△BEC , ∴CE EF BE CE=, ∵BE=15,CE=9, 即:9159EF =, 解得:EF=275 ; (2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD ,同理:∠AFB=∠CFD ,∴△CDF ∽△BAF ;②∵△CDF ∽△BAF ,∴CF CD BF BA=, 又∵∠FCE=∠CBF ,∠BFC=∠CFE=90°,∴△CEF ∽△BCF , ∴CF CE BF BC=, ∴CD CE BA BC =, 又∵AB=BC ,∴CE=CD ; (3)解:∵CE=CD ,∴33,在Rt △BCE 中,tan ∠CBE=3CE BC =, ∴∠CBE=30°, 故CF 为60°,∴F 在直径BC 下方的圆弧上,且23BF BC =.【题目点拨】考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.25、凉亭P到公路l的距离为273.2m.【解题分析】分析:作PD⊥AB于D,构造出Rt△APD与Rt△BPD,根据AB的长度.利用特殊角的三角函数值求解.【题目详解】详解:作PD⊥AB于D.设BD=x,则AD=x+1.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°•AD,即DB=PD=tan30°•AD=x=33(1+x),解得:x≈273.2,∴PD=273.2.答:凉亭P到公路l的距离为273.2m.【题目点拨】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.26、1 2【解题分析】过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PD•tan26.6°;解Rt△CBD,得出CD=PD•tan37°;再根据CD﹣BD=BC,列出方程,求出PD=2,进而求出PE=4,AE=5,然后在△APE中利用三角函数的定义即可求解.【题目详解】解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD•tan∠BPD=PD•tan26.6°.在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,∴CD=PD•tan∠CPD=PD•tan37°.∵CD﹣BD=BC,∴PD•tan37°﹣PD•tan26.6°=1.∴0.75PD﹣0.50PD=1,解得PD=2.∴BD=PD•tan26.6°≈2×0.50=3.∵OB=220,∴PE=OD=OB﹣BD=4.∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.∴PE 60tan AE 12120α===. 27、﹣2≤x <92. 【解题分析】先分别求出两个不等式的解集,再求其公共解.【题目详解】()6152432112323x x x x ⎧++⎪⎨-≥-⎪⎩①②, 解不等式①得,x <92, 解不等式②得,x≥﹣2, 则不等式组的解集是﹣2≤x <92. 【题目点拨】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。
广东省汕尾市2019-2020学年中考第三次模拟数学试题含解析

广东省汕尾市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.73.计算(-ab2)3÷(-ab)2的结果是()A.ab4B.-ab4C.ab3D.-ab34.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°5.下列事件是确定事件的是()A.阴天一定会下雨B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书6.图为小明和小红两人的解题过程.下列叙述正确的是( )计算:31x-+231xx--A .只有小明的正确B .只有小红的正确C .小明、小红都正确D .小明、小红都不正确7.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些 8.下列实数中是无理数的是( )A .227B .2﹣2C .5.15&&D .sin45°9.下列计算正确的是( )A .a 3•a 2=a 6B .(a 3)2=a 5C .(ab 2)3=ab 6D .a+2a =3a10.在下列二次函数中,其图象的对称轴为2x =-的是A .()22y x =+B .222y x =-C .222y x =--D .()222y x =- 11.下列命题是真命题的是( )A .如实数a ,b 满足a 2=b 2,则a =bB .若实数a ,b 满足a <0,b <0,则ab <0C .“购买1张彩票就中奖”是不可能事件D .三角形的三个内角中最多有一个钝角12.甲、乙两辆汽车沿同一路线从A 地前往B 地,甲车以a 千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a 千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B 地,比甲车早30分钟到达.到达B 地后,乙车按原速度返回A 地,甲车以2a 千米/时的速度返回A 地.设甲、乙两车与A 地相距s (千米),甲车离开A 地的时间为t (小时),s 与t 之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t 的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为( )A.0个B.1个C.2个D.3个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.两个等腰直角三角板如图放置,点F为BC的中点,AG=1,BG=3,则CH的长为__________.14.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.15.如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_____.16.王英同学从A地沿北偏西60°方向走100米到B地,再从B地向正南方向走200米到C地,此时王英同学离A地的距离是_____米.17.一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,…按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_____.18.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知抛物线y=ax 2+bx+c .(Ⅰ)若抛物线的顶点为A (﹣2,﹣4),抛物线经过点B (﹣4,0)①求该抛物线的解析式;②连接AB ,把AB 所在直线沿y 轴向上平移,使它经过原点O ,得到直线l ,点P 是直线l 上一动点. 设以点A ,B ,O ,P 为顶点的四边形的面积为S ,点P 的横坐标为x ,当4+62≤S≤6+82时,求x 的取值范围;(Ⅱ)若a >0,c >1,当x=c 时,y=0,当0<x <c 时,y >0,试比较ac 与l 的大小,并说明理由. 20.(6分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是 ;(2) 搅匀后,从中任取一个球,标号记为k ,然后放回搅匀再取一个球,标号记为b ,求直线y=kx+b 经过一、二、三象限的概率.21.(6分)在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在CD 上,CF=AE ,连接BF ,AF . (1)求证:四边形BFDE 是矩形;(2)若AF 平分∠BAD ,且AE=3,DE=4,求tan ∠BAF 的值.22.(8分)解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①② 23.(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?24.(10分)先化简,再求值:(x 2x 2+- +24x 4x 4-+)÷x x 2-,其中x=1225.(10分)如图,已知点D 在反比例函数a y x =的图象上,过点D 作DB y ⊥轴,垂足为(0,3)B ,直线y kx b =+经过点(5,0)A ,与y 轴交于点C ,且BD OC =,:2:5OC OA =.求反比例函数a y x=和一次函数y kx b =+的表达式;直接写出关于x 的不等式a kx b x>+的解集. 26.(12分)如图,∠MON 的边OM 上有两点A 、B 在∠MON 的内部求作一点P ,使得点P 到∠MON 的两边的距离相等,且△PAB 的周长最小.(保留作图痕迹,不写作法)27.(12分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数) 频率 5a 0.2 618 0.1 714 b 88 0.16 合计 50 c我们定义频率=频数抽样人数,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是1850=0.1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省汕尾市陆丰市中考数学模拟试卷(6)一、选择题(共12小题,每小题3分,满分36分)1.计算2×(﹣1)的结果是()A.﹣ B.﹣2 C.1 D.22.若∠α的余角是30°,则cosα的值是()A.B.C.D.3.下列运算正确的是()A.2a﹣a=1 B.a+a=2a2C.a•a=a2D.(﹣a)2=﹣a24.下列图形是轴对称图形,又是中心对称图形的有()A.4个B.3个C.2个D.1个5.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40° B.50° C.60° D.80°6.已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A.第一、二、三象限 B.第二、三、四象限C.第一、二、四象限 D.第一、三、四象限7.如图,你能看出这个倒立的水杯的俯视图是()A.B.C.D.8.如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A.28℃,29℃B.28℃,29.5℃ C.28℃,30℃D.29℃,29℃9.已知拋物线y=﹣x2+2,当1≤x≤5时,y的最大值是()A.2 B.C.D.10.小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()A.2 B.C.2 D.311.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A,B两点,若S△AOB=2,则k2﹣k1的值是()A.1 B.2 C.4 D.812.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A.升B.升 C.升D.升二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上)13.﹣2011的相反数是.14.近似数0.618有个有效数字.15.分解因式:9a﹣a3= .16.如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为.17.如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则的值为.18.如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:①点D为AC的中点;②S△O′OE=S△AOC;③;④四边形O′DEO是菱形.其中正确的结论是.(把所有正确的结论的序号都填上)三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19.计算:()﹣1﹣(5﹣π)0﹣|﹣3|+.20.已知:x1、x2是一元二次方程x2﹣4x+1的两个实数根.求:(x1+x2)2÷()的值.21.假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为10米,小强的身高AB为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到1米,参考数据≈1.41,≈1.73 )22.如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA的中点,阴影部分的面积为﹣,求⊙O的半径r.23.一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A、白B、白C表示),若从中任意摸出一个棋子,是白色棋子的概率为.(1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.24.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)25.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=,求EB的长.26.已知抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.(1)求A、B的坐标;(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB的中点N作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M 的坐标;若不存在,请说明理由.广东省汕尾市陆丰市中考数学模拟试卷(6)参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.计算2×(﹣1)的结果是()A.﹣ B.﹣2 C.1 D.2【考点】有理数的乘法.【专题】计算题.【分析】根据有理数乘法的法则进行计算即可.【解答】解:原式=﹣(1×2)=﹣2.故选B.【点评】本题考查的是有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2.若∠α的余角是30°,则cosα的值是()A.B.C.D.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据题意求得α的值,再求它的余弦值.【解答】解:∠α=90°﹣30°=60°,cosα=cos60°=.故选A.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.互余角的性质:两角互余其和等于90度.3.下列运算正确的是()A.2a﹣a=1 B.a+a=2a2C.a•a=a2D.(﹣a)2=﹣a2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】利用合并同类项、同底数幂的乘法、积的乘方法则进行计算.【解答】解:A、2a﹣a=a,此选项错误;B、a+a=2a,此选项错误;C、a•a=a2,此选项正确;D、(﹣a)2=a2,此选项错误.故选C.【点评】本题考查了合并同类项,同底数幂的乘法,积的乘方,理清指数的变化是解题的关键.4.下列图形是轴对称图形,又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【专题】几何图形问题.【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:第①个图形不是轴对称图形,是中心对称图形,不符合题意;第②个图形是轴对称图形,不是中心对称图形,不符合题意;第③个图形既是轴对称图形,又是中心对称图形,符合题意;第④个图形是轴对称图形,又是中心对称图形,符合题意.所以既是轴对称图形,又是中心对称图形的有③④两个.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40° B.50° C.60° D.80°【考点】平行四边形的性质.【分析】根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∠1的度数即可.【解答】解:∵AD∥BC,∠B=80°,∴∠BAD=180°﹣∠B=100°.∵AE平分∠BAD∴∠DAE=∠BAD=50°.∴∠AEB=∠DAE=50°∵CF∥AE∴∠1=∠AEB=50°.故选B.【点评】此题主要考查平行四边形的性质和角平分线的定义,属于基础题型.6.已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A.第一、二、三象限 B.第二、三、四象限C.第一、二、四象限 D.第一、三、四象限【考点】二次函数图象与系数的关系;一次函数图象与系数的关系.【专题】函数思想.【分析】二次函数图象的开口向上时,二次项系数a>0;一次函数y=kx+b(k≠0)的一次项系数k>0、b <0时,函数图象经过第一、三、四象限.【解答】解:∵二次函数y=ax2的图象开口向上,∴a>0;又∵直线y=ax﹣1与y轴交于负半轴上的﹣1,∴y=ax﹣1经过的象限是第一、三、四象限.故选D.【点评】本题主要考查了二次函数、一次函数图象与系数的关系.二次函数图象的开口方向决定了二次项系数a的符号.7.如图,你能看出这个倒立的水杯的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】几何图形问题.【分析】找到倒立的水杯从上面看所得到的图形即可.【解答】解:从上面看应是一个圆环,都是实心线.故选B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A.28℃,29℃B.28℃,29.5℃ C.28℃,30℃D.29℃,29℃【考点】众数;中位数.【分析】根据中位数和众数的定义解答.【解答】解:从小到大排列为:28,28,28,29,29,30,31,28出现了3次,故众数为28,第4个数为29,故中位数为29.故选A.【点评】本题考查了中位数和众数的概念.解题的关键是正确识图,并从统计图中整理出进一步解题的信息.9.已知拋物线y=﹣x2+2,当1≤x≤5时,y的最大值是()A.2 B.C.D.【考点】二次函数的最值.【专题】函数思想.【分析】根据抛物线的解析式推断出函数的开口方向、对称轴、与y轴的交点,从而推知该函数的单调区间与单调性.【解答】解:∵拋物线y=﹣x2+2的二次项系数a=﹣<0,∴该抛物线图象的开口向下;又∵常数项c=2,∴该抛物线图象与y轴交于点(0,2);而对称轴就是y轴,∴当1≤x≤5时,拋物线y=﹣x2+2是减函数,∴当1≤x≤5时,y最大值=﹣+2=.故选C.【点评】本题主要考查了二次函数的最值.解答此题的关键是根据抛物线方程推知抛物线图象的增减性.10.小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()A.2 B.C.2 D.3【考点】垂径定理的应用;勾股定理.【专题】网格型.【分析】在网格中找点A、B、D(如图),作AB,BD的中垂线,交点O就是圆心,故OA即为此圆的半径,根据勾股定理求出OA的长即可.【解答】解:如图所示,作AB,BD的中垂线,交点O就是圆心.连接OA、OB,∵OC⊥AB,OA=OB∴O即为此圆形镜子的圆心,∵AC=1,OC=2,∴OA===.故选B.【点评】本题考查的是垂径定理在实际生活中的运用,根据题意构造出直角三角形是解答此题的关键.11.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A,B两点,若S△AOB=2,则k2﹣k1的值是()A.1 B.2 C.4 D.8【考点】反比例函数系数k的几何意义.【专题】计算题.【分析】根据反比例函数k的几何意义得到S△BOC=k1,S△AOC=k2,则S△AOB=k2﹣k1=2,然后计算k2﹣k1的值.【解答】解:延长AB交y轴于C,如图,∵直线AB∥x轴,∵S△BOC=k1,S△AOC=k2,∴S△AOC﹣S△BOC=k2﹣k1,∴S△AOB=k2﹣k1=2,∴k2﹣k1=4.故选:C.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.12.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A.升B.升 C.升D.升【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】根据题目中第1次倒出升水,第2次倒出水量是升的,第3次倒出水量是升的,第4次倒出水量是升的…第10次倒出水量是升的…,可知按照这种倒水的方法,这1升水经10次后还有1﹣﹣×﹣×﹣×…×升水.【解答】解:∵1﹣﹣×﹣×﹣×…﹣×=1﹣﹣+﹣+﹣+…﹣+=.故按此按照这种倒水的方法,这1升水经10次后还有升水.故选D.【点评】考查了规律型:数字的变化,此题属于规律性题目,解答此题的关键是根据题目中的已知条件找出规律,按照此规律再进行计算即可.注意=﹣.二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上)13.﹣2011的相反数是2011 .【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,改变符号即可.【解答】解:∵﹣2011的符号是负号,∴﹣2011的相反数是2011.故答案为:2011.【点评】本题考查了相反数的定义,是基础题,比较简单.14.近似数0.618有 3 个有效数字.【考点】近似数和有效数字.【专题】常规题型.【分析】根据有效数字的定义,从左起,第一个不为0的数字算起,到右边精确到的那一位为止.【解答】解:0.618的有效数字为6,1,8,共3个.故答案为:3.【点评】本题考查了近似数和有效数字,是基础知识比较简单,有效数字的计算方法以及是需要识记的内容,经常会出错.15.分解因式:9a﹣a3= a(3+a)(3﹣a).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:9a﹣a3,=a (9﹣a2),=a(3+a)(3﹣a).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.16.如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为144°.【考点】扇形统计图.【专题】计算题.【分析】先根据图求出九年级学生人数所占扇形统计图的百分比为40%,又知整个扇形统计图的圆心角为360度,再由360乘以40%即可得到答案.【解答】解:由图可知九年级学生人数所占扇形统计图的百分比为:1﹣35%﹣25%=40%,∴九年级学生人数所占扇形的圆心角的度数为360×40%=144°,故答案为144°.【点评】本题考查了扇形统计图的知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,读懂图是解题的关键.17.如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则的值为2﹣.【考点】旋转的性质;等边三角形的性质;解直角三角形.【专题】压轴题.【分析】等边△ABC绕点B逆时针旋转30°时,则△BCD是直角三角形,根据三角函数即可求解.【解答】解:设等边△ABC的边长是a,图形旋转30°,则△BCD是直角三角形.BD=BC•cos30°=a,则C′D=a﹣a=a,CD= a∴==2﹣故答案是:2﹣.【点评】本题主要考查了图形旋转的性质,以及直角三角形的性质,正确确定△BCD是直角三角形是解题的关键.18.如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:①点D为AC的中点;②S△O′OE=S△AOC;③;④四边形O′DEO是菱形.其中正确的结论是①③④.(把所有正确的结论的序号都填上)【考点】圆周角定理;平行线的性质;菱形的判定;圆心角、弧、弦的关系.【专题】压轴题.【分析】①连接DO,利用园中角定理以及垂径定理求出即可;②利用相似三角形的性质,面积比等于相似比的平方求出即可;③利用弧长计算公式求出即可;④根据菱形的判定得出即可.【解答】解:①连接DO,∵AO是半圆直径,∴∠ADO=90°,∵OD⊥AC,∴AD=DC,∴①正确.②∵O′E∥AC,∴△EO′O∽△AOC,∴=,∴S△O′OE=S△AOC,∴②错误.③∵OD⊥AC,AD=DC,∴∠AOD=∠DOC,∴∠AO′D=∠AOC,AO=2AO′,∴;∴③正确;④∵D为AC中点,O′为AO中点,∴DO′是△AOC中位线,∴DO′∥CO,∵O′E∥AC,∴O′为AO中点,∵D为AC中点,∴DE∥AO,∴四边形DO′OE是平行四边形,∵DO′=O′O,∴四边形O′DEO是菱形.∴④正确.综上所述,只有①③④正确.故答案为:①③④.【点评】此题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练是一道典型的题目.三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19.计算:()﹣1﹣(5﹣π)0﹣|﹣3|+.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】分别根据负整数指数幂、0指数幂、绝对值的性质及二次根式的化简计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2﹣1﹣3+2,=0.故答案为:0.【点评】本题考查的是实数的运算,熟知负整数指数幂、0指数幂、绝对值的性质及二次根式的化简是解答此题的关键.20.(2011•防城港)已知:x1、x2是一元二次方程x2﹣4x+1的两个实数根.求:(x1+x2)2÷()的值.【考点】根与系数的关系.【专题】计算题.【分析】先根据一元二次方程根与系数的关系确定出x1与x2的两根之积与两根之和的值,再根据=即可解答.【解答】解:∵一元二次方程x2﹣4x+1=0的两个实数根是x1、x2,∴x1+x2=4,x1•x2=1,∴(x1+x2)2÷()=42÷=42÷4=4.【点评】本题考查的是一元二次方程根与系数的关系,是一道基础题型.21.假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为10米,小强的身高AB为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到1米,参考数据≈1.41,≈1.73 )【考点】解直角三角形的应用﹣仰角俯角问题.【专题】压轴题.【分析】根据题意画出图形,根据sin60°=可求出CE的长,再根据CD=CE+ED即可得出答案.【解答】解:在Rt△CEB中,sin60°=,∴CE=BC•sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.2≈10m,答:风筝离地面的高度为10m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22.如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA的中点,阴影部分的面积为﹣,求⊙O的半径r.【考点】切线的判定与性质;勾股定理;扇形面积的计算.【专题】计算题.【分析】(1)连OC,由OA=OB,CA=CB,根据等腰三角形的性质得到OC⊥AB,再根据切线的判定定理得到结论;(2)由D为OA的中点,OD=OC=r,根据含30度的直角三角形三边的关系得到∠A=30°,∠AOC=60°,AC=r,则∠AOB=120°,AB=2r,利用S阴影部分=S△OAB﹣S扇形ODE,根据三角形的面积公式和扇形的面积公式得到关于r的方程,解方程即可.【解答】(1)证明:连OC,如图,∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线;(2)解:∵D为OA的中点,OD=OC=r,∴OA=2OC=2r,∴∠A=30°,∠AOC=60°,AC=r,∴∠AOB=120°,AB=2r,∴S阴影部分=S△OAB﹣S扇形ODE=•OC•AB﹣=﹣,∴•r•2r﹣r2=﹣,∴r=1,即⊙O的半径r为1.【点评】本题考查了切线的判定定理:过半径的外端点与半径垂直的直线为圆的切线.也考查了含30度的直角三角形三边的关系以及扇形的面积公式.23.一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A、白B、白C表示),若从中任意摸出一个棋子,是白色棋子的概率为.(1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.【考点】列表法与树状图法.【专题】数形结合.【分析】(1)白色棋子除以相应概率算出棋子的总数,减去白色棋子的个数即为黑色棋子的个数;(2)列举出所有情况,看两次摸到相同颜色棋子的情况数占总情况数的多少即可.【解答】解:(1)3÷﹣3=1.答:黑色棋子有1个;(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到两次摸到相同颜色棋子数是解决本题的关键.24.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意列式计算而得到结果,并检验是原方程的解,而求得.(2)设售价为每千克a元,求得关系式,又由630a≥7500×1.26,而解得.【解答】解:(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果共购进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.【点评】本题考查了分式方程的应用,由已知条件列方程,并根据自变量的变化范围来求值.25.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=,求EB的长.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【专题】几何综合题;压轴题.【分析】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,得到∠GAD=∠EAB从而△GAD ≌△EAB,即EB=GD;(2)EB⊥GD,由(1)得∠ADG=∠ABE则在△BDH中,∠DHB=90°所以EB⊥GD;(3)设BD与AC交于点O,由AB=AD=2在Rt△ABD中求得DB,所以得到结果.【解答】(1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD∴∠GAD=∠EAB,∵四边形EFGA和四边形ABCD是正方形,∴AG=AE,AB=AD,在△GAD和△EAB中,∴△GAD≌△EAB(SAS),∴EB=GD;(2)解:EB⊥GD.理由如下:∵四边形ABCD是正方形,∴∠DAB=90°,∴∠AMB+∠ABM=90°,又∵△AEB≌△AGD,∴∠GDA=∠EBA,∵∠HMD=∠AMB(对顶角相等),∴∠HDM+∠DMH=∠AMB+∠ABM=90°,∴∠DHM=180°﹣(∠HDM+∠DMH)=180°﹣90°=90°,∴EB⊥GD.(3)解:连接AC、BD,BD与AC交于点O,∵AB=AD=2,在Rt△ABD中,DB=,在Rt△AOB中,OA=OB,AB=2,由勾股定理得:2AO2=22,OA=,即OG=OA+AG=+=2,∴EB=GD=.【点评】本题考查了正方形的性质,考查了利用其性质证得三角形全等,并利用证得的条件求得边长.26.已知抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.(1)求A、B的坐标;(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB的中点N作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M 的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)令y=0求得x的值,从而得出点A、B的坐标;(2)令x=0,则y=﹣3a,求得点C、D的坐标,设直线CD的解析式为y=kx+b,把C、D两点的坐标代入,求出直线CD的解析式;(3)设存在,作MQ⊥CD于Q,由Rt△FQM∽Rt△FNE,得=,及可得出关于m的一元二次方程,求出方程的解,即可得出点M的坐标.【解答】解:(1)由y=0得,ax2﹣2ax﹣3a=0,∵a≠0,∴x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴点A的坐标(﹣1,0),点B的坐标(3,0);(2)由y=ax2﹣2ax﹣3a,令x=0,得y=﹣3a,∴C(0,﹣3a),又∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,得D(1,﹣4a),∴DH=1,CH=﹣4a﹣(﹣3a)=﹣a,∴﹣a=1,∴a=﹣1,∴C(0,3),D(1,4),设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得,,解得,∴直线CD的解析式为y=x+3;(3)存在.由(2)得,E(﹣3,0),∵点B的坐标(3,0),N是线段OB的中点,∴N(,0)∴F(,),EN=,作MQ⊥CD于Q,设存在满足条件的点M(,m),则FM=﹣m,EF==,MQ=OM=由题意得:Rt△FQM∽Rt△FNE,∴=,即=,∴2(+m2)=(﹣m)2,整理得4m2+36m﹣63=0,∴m2+9m=,m2+9m+=+(m+)2=m+=±∴m1=,m2=﹣,∴点M的坐标为M1(,),M2(,﹣).【点评】本题是二次函数的综合题型,其中涉及的知识点有一元二次方程的解法.在求有关存在不存在问题时要注意先假设存在,再讨论结果.。