2019届中考数学总复习如何列分式方程解应用题新人教版.docx

合集下载

初三第六讲--分式方程的解法及应用题

初三第六讲--分式方程的解法及应用题

分式方程及应用题【知识要点】1.分式方程的概念:分母中含有未知数的方程分式方程的两个主要特征:(1)含分式;(2)分母中含有未知数2.分式方程的解法:把分式方程转化为整式方程,一般步骤是“一乘,二解,三检验”。

一乘是先去分母,方程两边同乘最简公分母,把分式方程转化为整式方程;二解是解这个整式方程;三检验是吧求得的值代入最简公分母中,若等于零,则是增根,若不等于零,则是原方程的解3.分式方程的增根⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根.4.列分式方程解应用题的一般步骤:(1)审题;(2)设未知数;(3)找出相等关系,列分式方程;(4)解 这个分式方程;(5)检验,看方程的解是否满足方程和符合题意;(6)写出答案 【典型例题】 例1、选择题1、用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --=2、分式方程131x x x x +=--的解为( ) A .1 B .-1 C .-2 D .-3 3、分式方程3221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x4、甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是 ( ) A .8 B.7 C .6 D .55、某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 (A )18%)201(400160=++x x (B )18%)201(160400160=+-+x x (C ) 18%20160400160=-+x x (D )18%)201(160400400=+-+xx例2、填空题1、解方程2223321x x x x--=-时,若设21x y x =-,则方程可化为 .2、分式方程11x x1x 2--=+的解为________________. 3、方程2512x x=-的解是 . 4、已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为_____________. 5、在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为 .例3、解下列分式方程 (1)3131=---x x x (2)22111x x =---(3)12111xx x -=--. (4)33122x x x -+=--.例4、应用题1、某服装厂为学校艺术团生产一批演出服,总成本3200元,售价每套40元,服装厂向25名家庭贫困学生免费提供。

中考数学真题分类专题,初三数学第一轮复习资料分式方程的解法及应用PPT课件与练习题及答案

中考数学真题分类专题,初三数学第一轮复习资料分式方程的解法及应用PPT课件与练习题及答案

2 所以,原分式方程的解为x=
1
.
2
类型3 分母先因式分解,再乘最简公分母
5.(2019·黔东南)解方程:1 x 3 3x . 2x 2 x 1
解:原方程可化为1 x 3 3x , 2(x 1) x 1
方程两边乘2(x+1),得 2(x+1)-(x-3)=2×3x
解得x=1. 检验:当x=1时,2(x+1)≠0. 所以,原分式方程的解为x=1.
相向而行,甲船从A地顺流航行180 km时与从B地逆流航行的乙
船相遇,水流的速度为6 km/h,若甲、乙两船在静水中的速度
均为x km/h,则求两船在静水中的速度可列方程为( A )
A. 180 120 x6 x6
B. 180 120 x6 x6
C. 180 120 x6 x
D. 180 120 x x6
解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为 (x-9)元/条,根据题意得:3120 4200 ,解得:x=35,
x9 x
经检验,x=35是原方程的解,且符合题意,∴x-9=26 答:A型芯片的单价为26元/条,B型芯片的单价为35元/条. (2)设购买a条A型芯片,则购买(200-a)条B型芯片,根据题 意得:26a+35(200-a)=6 280, 解得:a=80. 答:购买了80条A型芯片
.
2.(2019·广州)甲、乙二人做某种机械零件,已知每小时
甲比乙少做8个,甲做120个所用的时间与乙做150个
所用的时间相等,设甲每小时做x个零件,下列方程
正确的是( D ) A. 120 150
x x8
B. 120 150
x8 x
C.
120 x8
150 x

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。

2019秋人教版八年级数学上册习题课件:第15章 15.3 第2课时 分式方程的应用

2019秋人教版八年级数学上册习题课件:第15章 15.3 第2课时 分式方程的应用

解:在不耽误工期的情况下只能选择方案(1)或(3).设工期为 x 天,则甲队 单独完成需 x 天,乙队单独完成需(x+5)天,由题意得:4x+x+x 5=1,解得 x=20,经检验 x=20 是原方程的解,且符合题意,则方案(1)需工程款 1.5×20 =30(万元),方案(3)需工程款 1.5×4+1.1×20=28(万元),∵28<30,∴在 不耽误工期的情况下,方案(3)最省工程款.
知识点三:百分率问题
3.(舟山中考)甲、乙两个机器人检测零件,甲比乙每小时多检测 20 个,甲 检测 300 个比乙检测 200 个所用的时间少 10%,若设甲每小时检测 x 个, 则根据题意,可列出方程: 3x00=x2-0020×(1-10%) .
知识点四:商品销售问题 4.(广东中考)某公司购买了一批 A、B 型芯片,其中 A 型芯片的单价比 B 型芯片的单价少 9 元,已知该公司用 3120 元购买 A 型芯片的条数与用 4200 元购买 B 型芯片的条数相等. (1)求该公司购买的 A、B 型芯片的单价各是多少元? (2)若两种芯片共购买了 200 条,且购买的总费用为 6280 元,求购买了多少 条 A 型芯片?
【规范解答】(1)设 B 型机器人每小时搬运 x 千克材料,则 A 型机器人每小 时搬运(x+30)千克材料.根据题意,得x1+00300=8x00.解得 x=120.经检验,x =120 是原方程的解,且符合题意.当 x=120 时,x+30=150.答:A 型机 器人每小时搬运 150 千克材料,B 型机器人每小时搬运 120 千克材料; (2)设购进 A 型机器人 a 台,则购进 B 型机器人(20-a)台.根据题意,得 150a +120(20-a)≥2800.解得 a≥430.∵a 是整数,∴a≥14.答:至少购进 A 型机 器人 14 台.

2019届中考数学总复习:第7课时-分式方程ppt课件(含答案)1

2019届中考数学总复习:第7课时-分式方程ppt课件(含答案)1

考点梳理 自主测试
基础自主导学
考点三 分式方程的实际应用 解分式方程的实际问题与解一元一次方程的实际问题类似,不同 的是要注意检验: (1)检验所求的解是否为所列分式方程的解; (2)检验所求的解是否符合实际.
基础自主导学
考点梳理 自主测试
1.解分式方程3+������������ − 2+2������=1 时,去分母后可得到(
)
A.x(2+x)-2(3+x)=1
B.x(2+x)-2=2+x
C.x(2+x)-2(3+x)=(2+x)(3+x)
D.xቤተ መጻሕፍቲ ባይዱ2(3+x)=3+x
答案:C
2.货车行驶25 km与轿车行驶35 km所用时间相同,已知轿车每小时
比货车多行驶20 km,问:两车的速度各为多少?设货车的速度为x
km/h,依题意列方程正确的是( )
)
A.5 B.-5 C.6 D.4
答案:B
4.方程���������-���2
=
1 的根
2-������
x=
.
答案:-1
5.若关于 x 的方程������������������-+11-1=0 无实根,则 a 的值为
.
答案:-1
A.
25 ������
=
35 ������-20
C.
25 ������
=
35 ������+20
B.
25 ������-20
=
35 ������
D.
25 ������+20
=
35 ������

专题03 分式方程及其应用-2019年中考数学年年考的28个重点微专题(原卷版)

专题03 分式方程及其应用-2019年中考数学年年考的28个重点微专题(原卷版)

专题03 分式方程及其应用一、基础知识1.分式方程的意义:分母中含有未知数的方程叫做分式方程.2.分式方程的解法:(1)去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);(2)按解整式方程的步骤求出未知数的值;(3)验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).二、本专题典型题考法及解析【例题1】解方程:2-x 12x 24-x x 2=++. 【例题2】遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( )A .36369201.5x x +-= B .3636201.5x x-= C .36936201.5x x +-= D .36369201.5x x ++= 【例题3】某绿色食品有限公司准备购进A 和B 两种蔬菜,B 种蔬菜每吨的进价比A 中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A 种蔬菜的吨数与用6万元购进的B 种蔬菜的吨数相同,请解答下列问题:(1)求A ,B 两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A ,B 两种蔬菜,若A 种蔬菜以每吨2万元的价格出售,B 种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W (万元)与购买A 种蔬菜的资金a (万元)之间的函数关系式;(3)在(2)的条件下,要求A 种蔬菜的吨数不低于B 种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.三、分式方程问题训练题及其答案和解析1.解方程:.2.分式方程=1的解是( )A .x=1B .x=﹣1C .x=3D .x=﹣3 3.解方程:+=1;4.关于x 的分式方程﹣=0无解,则m= . 5.2019年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬? (2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?6.若关于x 的分式方程=2的解为非负数,则m 的取值范围是( )A . m >﹣1B . m ≥1C . m >﹣1且m ≠1D . m ≥﹣1且m ≠17.关于x 的方程x 2﹣4x+3=0与=有一个解相同,则a= . 8.若关于x 的分式方程=2﹣的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .1,3D .2,39. xx -=--13211 解上面给出的分式方程去分母得 ( )A.1-2(x-1)=-3B.1-2(x-1)=3C.1-2x-2=-3D.1-2x+2=310.解分式方程:2311x x x x +=--. 11.方程=1的解是 .12.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x 个零件,依题意下面所列方程正确的是( )A .=B . =C . =D . =13.济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.14.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.15.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A 类玩具的进价为m元/个,根据题意可列分式方程为()A. B.C. D.16.在求3x的倒数的值时,嘉淇同学将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.11538x x=- B.11538x x=+ C.1853xx=- D.1853xx=+17.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?18.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?。

2019全国中考数学真题分类汇编之15:分式方程及其应用

2019全国中考数学真题分类汇编之15:分式方程及其应用

一、选择题1.(2019·苏州) 小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本.设软面笔记本每本售价为元,根据题意可列出的方程为( ) A .15243x x =+ B .15243x x =- C .15243x x =+ D .15243x x=- 【答案】A【解析】本题考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.直接利用 “小明243x =+,故选A . 2.(2019·株洲)关于的分式方程2503x x -=-的解为( ) A .﹣3 B .﹣2 C .2 D .3【答案】B【解析】解分式方程,去分母,化分式方程为整式方程,方程两边同时乘以(-3)得,2(-3)-5=0,解得,=-2,所以答案为B 。

3.(2019·益阳)解分式方程321212=-+-xx x 时,去分母化为一元一次方程,正确的是( ) A.+2=3 B.-2=3 C.-2=3(2-1) D.+2=3(2-1)【答案】C【解析】两边同时乘以(2-1),得-2=3(2-1) .故选C.4. (2019·济宁)世界文化遗产“三孔”景区已经完成5G 幕站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输兆数据,依题意,可列方程是( ) A .5005004510x x -= B .5005004510x x -= C .500050045x x -= D .500500045x x-= 【答案】A【解析】由题意知:设4G 网络的峰值速率为每秒传输兆数据,则5G 网络的峰值速率为每秒传输10兆数据,4G 传输500兆数据用的时间是500x ,5G 传输500兆数据用的时间是50010x,5G 网络比4G 网络快45秒,所以5005004510x x-=.5. (2019·淄博)解分式方程11222x x x-=---时,去分母变形正确的是( ) A .112(2)x x -+=--- B .112(2)x x -=--C .112(2)x x -+=+-D .112(2)x x -=---【答案】D . 【解析】方程两边同乘以-2,得112(2)x x -=---,故选D .二、填空题1.(2019·江西)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的班马线路段A-B-C 横穿双向行驶车道,其中AB =BC =6米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是米/秒,根据题意列方程得: .【答案】112.166=+xx 【解析】设小明通过AB 时的速度是米/秒,则通过BC 的速度是通1.2米/秒,根据题意列方程得112.166=+xx .2. (2019·岳阳)分式方程121x x =+的解为= . 【答案】1【解析】去分母,得:+1=2,解得=1,经检验=1是原方程的解.3. (2019·滨州)方程+1=的解是____________.【答案】=1【解析】去分母,得-3+-2=-3,解得=1.当=1时,-2=-1,所以=1是分式方程的解.4. (2019·巴中)若关于的分式方程2222x m m x x+=--有增根,则m 的值为________. 【答案】1【解析】解原分式方程,去分母得-2m =2m(-2),若原分式方程有增根,则=2,将其代入这个一元一次方程,得2-2m =2m(2-2),解之得,m =1.5. (2019·凉山)方程1121122=-+--xx x 解是 . 【答案】=-2【解析】原方程可化为1)1)(1(2112=-+---x x x x ,去分母得(2-1)(+1)-2=(+1)(-1),解得1=1,2=-2,经检验1=1是增根,2=-2是原方程的解,∴原方程的解为=-2.故答案为=-2.6.(2019·淮安)方程121=+x 的解是 . 【答案】-1【解析】两边同时乘以(+2),得+2=1,解得=-1.7. (2019·重庆B 卷)某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的34 和83 .甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是【答案】 1819【解析】设第一车间每天生产的产品数量为12m ,则第五、六车间每天生产的产品数量分别9m 、32m; 设甲、乙两组检验员的人数分别为,y 人;检查前每个车间原有成品为n.∵甲组6天时间将第一、二、三车间所有成品同时检验完∴每个甲检验员的速度=1212126m m m n n n x6()+++++ ∵乙组先用2天将第四、五车间的所有成品同时检验完∴每个乙检验员的速度=1292m m n n y2()+++ ∵乙再用了4天检验完第六车间的所有成品∴每个乙检验员的速度=324m n y6⨯+ ∵每个检验员的检验速度一样∴1212122(129)632624m m m n n n m m n n m n x y y 6()++++++++⨯+==∴1819x y =.三、解答题1.(2019山东省德州市,19,8)先化简,再求值:(﹣)÷(﹣)•(++2),其中+(n﹣3)2=0. 【解题过程】(﹣)÷(﹣)•(++2)=÷• =••=﹣.∵+(n ﹣3)2=0.∴m +1=0,n ﹣3=0,∴m =﹣1,n =3.∴﹣=﹣=. ∴原式的值为.2.(2019·遂宁)先化简,再求值ba a ab a b a b ab a +--÷-+-2222222 ,其中a,b 满足01)22=++-b a ( 解:b a a b a a b a b a b a +--÷-+-=2)())(2)((原式=b a b a b a b a +--⨯+-21=b a +-1 ∵01)22=++-b a (∴a=2,b=-1,∴原式=-13.(2)(2019·泰州,17题,8分)【解题过程】去分母2-5+3(-2)=3-3,去括号2-5+3-6=3-3,移项,合并2=8,系数化为1=4,经检验,=4是原分式方程的解.4.(2019山东滨州,21,10分)先化简,再求值:(-)÷,其中是不等式组的整数解.【解题过程】 解:原式=[-]•=•=,………………………………………………………………………………5分解不等式组,得1≤<3,…………………………………………………………7分则不等式组的整数解为1、2.……………………………………………………8分当=1时,原式无意义;…………………………………………………………9分当=2,∴原式=.……………………………………………………………10分5. (2)(2019·温州)224133x x x x x+-++.【解题过程】原式=24-13x x x ++=233x x x ++=3(3)x x x ++=1x .6.(2019山东威海,19,7)列方程解应用题小明和小刚约定周末到某体育公园去打羽毛球.他们到体育公园的距离分别是1200米,300米.小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.【解题过程】设小明的速度为米/分钟,则小刚的速度为3米/分钟,根据题意,得, 解得=50经检验,得=50是分式方程的解,所以,3=150.答:小明和小刚两人的速度分别是50米/分钟,小刚的速度为150米/分钟.7.(2019山东省青岛市,20,8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲加工了多少天?【解题过程】解:(1)设乙每天加工x 个零件,则甲每天加工1.5x 个零件,由题意得:60060051.5x x=+ 化简得600 1.56005 1.5x ⨯=+⨯解得40x =1.560x ∴= 经检验,40x =是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x 天,乙加工了y 天,则由题意得604030001501207800x y x y +=⎧⎨+⎩①②… 1000300043x x-=由①得75 1.5y x=-③将③代入②得150120(75 1.5)7800x x+-…解得40x…,答:甲至少加工了40天.8.(2019·衡阳)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需多少元:(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?解:(1)设买一个B商品为元,则买一个A商品为(+10)元,则30010010x x=+,解得=5元.所以买一个A商品为需要15元,买一个B商品需要5元.(2)设买A商品为y个,则买B商品(80-y)由题意得4(80) 1000155(80)1050y yy y≥-⎧⎨≤+-≤⎩,解得64≤y≤65;所以两种方案:①买A商品64个,B商品16个;②买A商品65个,B商品15个.9.(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(l)班、其他班步行的平均速度.【解题过程】10.(2019·自贡)解方程:.解方程两边乘以(-1)得,2-2(-1)=(-1)解得,=2.检验:当=2时,(-1)≠0,∴=2是原分式方程的解.∴原分式方程的解为=2.11. (2019·眉山) 在我市“青山绿水”行动中,某社区计划对面积为3600m 2的区域进行绿化,经投标由甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m 2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?解:(1)设乙队每天能完成的绿化面积为m 2,则甲队每天能完成的绿化面积为2m 2, 根据题意,得:60060062x x-=,解得:=50,经检验,=50是原方程的解,∴2=100. 答:甲队每天能完成的绿化面积为100m 2,乙队每天能完成的绿化面积为50m 2.(2)设甲工程队施工a 天,乙工程队施工b 天刚好完成绿化任务.由题意得:100a+50b=3600,则a=722b -=1362b -+,根据题意,得:1.2×722b -+0.5b ≤40,解得:b ≥32. 答:至少应安排乙工程队绿化32天.12. (2019·乐山)如图,点A 、B 在数轴上,它们对应的数分别为2-,1+x x ,且点A 、B 到原点的距离相等.求x 的值.解:根据题意得: 21=+x x , 去分母,得)1(2+=x x ,去括号,得22+=x x ,解得2-=x B A经检验,2-=x 是原方程的解.13. (2019·达州) 端午节前后,张阿姨两次到超市购买同一种粽子, 节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个,这种粽子的标价是多少?解:设粽子的标价是元,则节后价格为0.6, 根据题意得:276.07296=+x x ,57.6+72=16.2,=8,经检验:=8是原分式方程的解,且符合题意.答:这种粽子的标价是8元.14. (2019·巴中)在”扶贫攻坚”活动中,某单位计划选购甲,乙两种物品慰问贫困户,已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲,乙两种物品的单价各为多少?②如果该单位计划购买甲,乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?解:(1)设甲物品元,则乙物品单价为(-10)元,根据题意得50045010x x =-,解之,得=100,经检验,=100是原分式方程的解,所以-10=90,答甲物品单价为100元,乙物品单价为90元.(2)设购买甲种物品a 件,则购买乙种物品(55-a)件,根据题意得5000≤100a+90(55-a)≤5050,解之,得5≤a ≤10,因为a 是整数,所以a 可取的值有6个,故共有6种选购方案.15.(2019·泰安)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节临之际用3000元购进A,B 两种粽子1100个,购买A 种粽子与购买B 种粽子的费用相同.已知A 种粽子的单价是B 种粽子单价的1.2倍.(1)求A,B 两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A,B 两种粽子共2600个,已知A,B 两种粽子的进价不变.求A 种粽子最多能购进多少个?解:(1)设B 种粽子单价为元,则A 种粽子单价为1.2元,购买A 种粽子与购买B 种粽子的费用相同,共花费3000元,故两种粽子都花费1500元,根据题意得1500150011001.2x x+=,解之,得=2.5,经检验,=2.5是原分式方程的解,∴1.2=3,答A 种粽子单价为3元,B 种粽子单价为2.5元;(2)设购进A 种粽子y 个,则购进B 种粽子(2600-y)个,根据题意得3y+2.5(2600-y)≤7000,解之,得y ≤1000,∴y 的最大值为1000,故A 种粽子最多能购进1000个.16. (2019·无锡)解方程:(2)1421+=-x x .解:去分母得+1=4(-2),解得=3,经检验 = 3是方程的解.。

新人教版初中数学[中考总复习:数与式综合复习--知识点整理及重点题型梳理](基础)

新人教版初中数学[中考总复习:数与式综合复习--知识点整理及重点题型梳理](基础)

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:数与式综合复习—知识讲解(基础)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数.有理数和无理数统称实数.2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系.要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础.3.相反数实数a和-a叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b=0;反过来,如果a+b=0,那么a和b互为相反数.4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那么|a|=0.要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数.5.实数大小的比较在数轴上表示两个数的点,右边的点所表示的数较大.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c =a+(b+c); 乘法交换律 ab =ba ;乘法结合律 (ab)c =a(bc); 分 配 律 a(b+c)=ab+ac .(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减. 算式里如果有括号,先进行括号内的运算. 如果只有同一级运算,从左到右依次运算. 7.平方根如果x 2=a ,那么x 就叫做a 的平方根(也叫做二次方根). 要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根. 8.算术平方根正数a 的正的平方根,叫做a 的算术平方根.零的算术平方根是零. 要点诠释:从算术平方根的概念可以知道,算术平方根是非负数. 9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字. 10.科学记数法把一个数记成±a ×10n的形式(其中n 是整数,a 是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念及性质 1.二次根式的概念≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式. 常用的二次根式的有理化因式:(1(2)a a +-互为有理化因式;一般地a a +-(3. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a aa b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变.要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m mm ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1pp a a-=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简. (2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用公式法分解. 要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数; (3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的有关概念及运算1.实数2-,0.3,172,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5【思路点拨】常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(33256、、,…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.【答案】A ;【解析】本题主要考查无理数的概念.无理数是指无限不循环小数,2,π-都是无限不循环小数, 故共有2个无理数.【总结升华】无理数通常有以下几类:①开方开不尽的数;②含π的数;③看似循环但实际不循环的小数;④三角函数型:sin35°、tan27°、cos29°等.抓住这几类无理数特征,则可以轻松解决有关无理数的相关试题. 举一反三:【课程名称:数与式综合复习 402392 :例1—2】【变式】如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ).A .32--B .-31-C .32+-D .31+【答案】A.2.计算:(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (2)85(2)25-⨯ .【思路点拨】注意在第(1)题中,32-与3(2)-的不同运算顺序和4499÷⨯的运算顺序. 【答案与解析】(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦480.2549409⎛⎫=-⨯-÷⨯- ⎪⎝⎭9249402(8140)4⎛⎫=--⨯⨯-=--- ⎪⎝⎭24143=--=-.(2)85(2)25-⨯444442525(425)25100252500000000=⨯⨯=⨯⨯=⨯=.【总结升华】在进行有理数运算时,要注意运算的顺序,要有灵活运用运算律、运算法则和相反数、倒数、0、1的运算特性的意识,寻求简捷的运算途径.举一反三: 【变式】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭;【答案】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭21.50.4 1.4 1.5 1.42.95=--+-=--=- .3. 若x-3+x-y+1=0,计算322x y+xy +4y .【思路点拨】几个非负数相加和为0,则这几个非负数必定同时为0,进而求出x 、y 的值. 【答案与解析】依题意得30,10,x x y -=⎧⎨-+=⎩解得3,4,x y =⎧⎨=⎩∴3222224x y+xy +y(x +xy+)y(x+)(x+)(3)410.44222y y y y y ====+⨯=【总结升华】2a ,(a 0)a a ≥,这三个非负数中任意几个相加得0,则每一个都得0.举一反三:【变式】已知|1|80a b ++-=,则a b -= .【答案】本题考查绝对值与算数平方根的非负性,两个非负数的和为0,所以这两数都为0.因为|1|80a b ++-=,所以a=-1,b=8. a b -=﹣9.类型二、分式的有关运算4.对于分式211x x -+,当x 取何值时,(1)分式有意义? (2)分式的值等于零?【思路点拨】当分母等于零时,分式没有意义,此外,分式都有意义;当分子等于零,并且分母不等于零时,分式的值等于零. 【答案与解析】(1)由分母x+1=0,得x =-1.∴ 当x ≠-1时,分式211x x -+有意义.(2)由分子210x -=,得1x =或1x =-. 而当x =-1时,分母x+1=0; 当x =1时,分母10x +=.∴ 当x =l 时,分式211x x -+的值等于零.【总结升华】讨论分式有无意义时,一定要对原分式进行讨论,而不能讨论化简后的分式.类型三、二次根式的运算5.(2014春•平泉县校级期中)已知a=,求﹣的值.【思路点拨】先利用因式分解原式进行化简,再进行约分和利用二次根式的性质计算,由于a==4﹣2,则a ﹣4<0,所以原式可化简为a ﹣3+,然后把a 的值代入计算即可. 【答案与解析】 解:原式=﹣=a ﹣3﹣, ∵a==4﹣2, ∴a ﹣4<0, ∴原式=a ﹣3+=a ﹣3+, =4﹣2﹣3+=2﹣.【总结升华】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.也考查了分式的混合运算.举一反三:【变式】计算:2(1848)(212)(23)+---;【答案】2(1848)(212)(23)+---(3243)(223)(2263)=+---+646662452623=+---+=-.6.当x 为何值时,下列式子有意义? (1)32x -; (2)125xx -+. 【思路点拨】第(1)题中,根号外的负号与根号是否有意义无关;第(2)题中,因为与分式有关,因此要综合考虑x 的取值范围.【答案与解析】(1)320x -≥,即32x ≤. ∴ 当32x ≤时,32x --有意义. (2)120x -≥,且x+5≠0,∴ 当12x ≤,且x ≠-5时,125x x -+有意义.【总结升华】要使偶次根式有意义,被开方数为非负数;分式有意义分母不为0.举一反三:【课程名称:数与式综合复习 402392 :例1—2】 【变式】下列说法中,正确的是( )A .3的平方根是3B .5的算术平方根是5C .-7的平方根是7-±D .a 的算术平方根是a【答案】B.类型四、数与式的综合运用7.(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7… 黑白两种瓷砖的总块数 15 25… (2)依上推测,第n 个图形中黑色瓷砖的块数为 ;黑白两种瓷砖的总块数为 (都用含n 的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.【思路点拨】找规律题至少要推算出三个式子的值,再去寻求规律,考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力. 【答案与解析】解:(1)填表如下:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7 10… 黑白两种瓷砖的总块数 15 25 35 …(2)第n 个图形中黑色瓷砖的块数为3n+1;黑白两种瓷砖的总块数为10n+5; (3)能,理由如下:10n+5﹣(3n+1)﹣(3n+1)=2015,精品文档 用心整理资料来源于网络 仅供免费交流使用 解得:n=503答:第503个图形.【总结升华】本题考查数形结合、整理信息,将图形转化为数据,猜想规律、探求结论.抓住其中的黑色瓷砖数目的变化规律,结合图形,观察其变化规律.举一反三:【变式】如图所示的是一块长、宽、高分别为7cm ,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少?22(57)3153++=(cm).【答案】路径①的长为路径②的长为22(37)5125++=22(35)7113++=(cm). 113。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019 届中考数学总复习如何列分式方程解应用题新人教版
列分式方程解简单的实际应用问题的方法和步骤与列一元一次方程解应用题基本相
同.简单地可分为:设、找、列、解、检、答等六个步骤.
具体是:
(1) 设弄清题意和题目中的数量关系,用字母( 如 ) 表示题目中的一个未知数;
x
(2)找找到能够表示应用题全部含义的一个相等的关系;
(3)列根据这个相等的数量关系式,列出所需的代数式,从而列出分式方程;
(4)解解这个所列的分式方程,求出未知数的值;
(5)检检验;
(6)答写出答案 ( 包括单位名称 ) .
这六个步骤关键是“列”,难点是“找” .
如:(山西省)甲、乙两个建筑队完成某项工程,若两队同时开工,12 天就可以完成工程;乙队单独完成该工程比甲队单独完成该工程多用10 天.问单独完成此项工程,乙队需要多少天?
由上述的六个步骤求解如下:
( 1)设乙单独完成工程需x 天,则甲单独完成工程需(x10 )天;
( 2)甲做 1 天的工作量 +乙做 1 天的工作量=甲、乙两人合做 1 天的工作量;
( 3)根据题意,得
11 1
;x 10 x 12
(4)解这个方程:去分母,得x2- 34x+120=0,配方,得(x-17)2= 169,两边开平方,得 x -17=±13,即 x 1=30, x 2=4;
( 5)经检验,x1=30, x2=4 都是原方程的根,当x=30时, x-10=20,当 x=4时, x-10=-6,因为时间不能为负数,所以只能取x=30;
( 6)答:乙队单独完成此项工程需要30 天.
为了能说明问题,下面我们再举几例:
例 1(上海市)为加强防汛工作,市工程队准备对苏州河一段长为2240 米的河堤进行
加固.由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20 米,因而完成
此段加固工程所需天数将比原计划缩短 2 天.为进一步缩短该段加固工程的时间,如果要求每天加固224 米,那么在现在计划的基础上,每天加固的长度还要再增加多少米?
解:设现在计划每天加固河堤x 米,则原计划每天加固河堤(x-20)米;原计划完成
全部工程需2240
天,现在只需
2240
天,由题意可得
2240

2240
= 2,x 20x x 20x
去分母,整理,得x2-20 x -2240=0.
解得 x1=160, x2=-140(舍去).
所以 224- 160= 64(米).
答:在现在计划的基础上,每天加固的长度还要再增加64 米.
工程总量
说明:这是一道工程问题,常用的基本关系有:=工程完成时间.
工作效率
例 2(湖南省)便民服装店的老板在株洲看到一种夏季衬衫,就用8000元购进若干件,以每件 58 元的价格出售,很快售完,又用17600 元购进同种衬衫,数量是第一次的 2 倍每件进价比第一次多了 4 元,服装店仍按每件58 元出售,全部售完,问该服装店这笔生意盈
利多少元?
解:设从株洲第一次进货每件为x 元,则第二次进货每件为(x+4)元.
由题意可得
2× 8000 = 17600 .
x
x
4
去分母,整理,得 16000( x +4)= 17600 x .
解得 x = 40.
经检验, x = 40 是原方程的解.
所以共进衬衫数为:
8000 17600 = 600,
40
44
所以盈利数为 600× 58-( 8000+17600)= 9200(元).
答: 该服装店这笔生意盈利
9200 元.
说明:这是一道与市场营销有关的问题, 常见的数量关系有: 商品单价×销售数量=销
售额;销售利润=(商品售价-进货价)×销售量;利润率=
商品净利润 × 100%;
这批商品的进价
商品打折销售中, a 折销售价=原价×
a
( 0< a < 10, a 取整数).
10
例 3 (湖北省)一自行车队进行训练,
训练的路程是 55 千米,出发后所有队员都保持
相同的速度前进,行进一段路程后,
1 号队员将速度提高 10 千米超出队伍,当其余队员又
前进 20 千米后, 2 号队员的速度也提高了
10 千米,结果 2 号队员比 1 号队员晚
1
小时到
10
达终点,问车队从出发至最后的队员到达终点所花的时间是多少?
解: 设车队出发时的速度是 x 千米/时,
由题意可得
20

20 = 1 . x
x
10 10
去分母,整理,得 x 2+10 x - 2000= 0. 解得 x 1=40, x 2=- 50(舍去).
所以 55÷ 40=
11
(小时)
8
11
小时.
答: 整个车队从出发至最后的队员到达终点所花的时间是
8
路程 说明:这是一道行程类问题, 常见关系量有:
=时间; 追及问题时的数量关系是:
速度
同一路程 - 同一路程
=时间差.
慢速 快速
列分式方程解应用题与列整式方程解应用题的步骤基本相同.但也要注意以下两个问
题:一是明确列分式方程解应用题的关键是用公式表示一些基本的数量关系; 二是列分式方程解应用题一定要验根,还要保证其结果符合实际意义;三是要注意单位的统一.。

相关文档
最新文档